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The anharmonic contributions to the energy, specific heat, frequency-wave-vector dispersion relations and 
damping of phonons in a crystal have been studied using the recent technique of thermodynamic Green's 
functions based on field-theoretic methods. General expressions for these quantities have been deduced. It 
has been shown that at absolute zero the number of density is finite for the anharmonic solid and it is of the 
same order as the square of the fractional change in the normal-mode frequencies. The cases of a linear chain 
and a simple model of a crystal have been studied in detail. The normal modes of a linear chain exhibit 
some unusual but interesting features for different amounts of anharmonicity. The half-width of the phonons 
of the anharmonic chain has been evaluated for all temperatures for both normal and umklapp processes. For 
a solid, the complicated integrals that occur because of anharmonicity are simplified by an approximation 
scheme suggested by us. Within the scope of this approximation it is found that the frequency-wave-vector 
dispersion curves for a solid show a dip at the maximum wave number, quite similar to that observed for solids 
like lead and copper. The width of phonons is proportional to the square of the wave number, and the thermal 
conductivity is seen to be finite at low temperatures and to vary inversely with temperature at high 
temperatures. 

I. INTRODUCTION 

TH E potential energy of a crystal is usually ex
panded in a power series of nuclear displacements 

from their equilibrium positions. In the harmonic ap
proximation one retains only the quadratic terms and 
then the problem is solved exactly in terms of the 
normal modes of vibration of the crystal. The system 
can be quantized and each quantum of normal mode is 
known as a "phonon." The thermodynamic properties 
are easily worked out by treating the crystal as an 
assembly of these phonons. 

However, there are many features of a real solid which 
can not be explained by the harmonic approximation 
alone, for example, the thermal expansion, specific heat 
at high temperatures, thermal conductivity, and fre
quency-wave-vector dispersion relations, etc. Many of 
these features of a solid can be explained by going 
beyond the harmonic approximation. The next terms in 
the power series expansion of the potential energy are 
the cubic and quartic terms. The role of these an
harmonic forces in determining the actual response of 
the crystal is by no means negligible, because these 
anharmonic terms contain phonon-phonon interactions 
which can explain some of the more interesting prop
erties of the crystals. 

Recently, the anharmonic free energy and specific 
heat of solids have been calculated by Maradudin and 
co-workers.1"3 They have used the Bloch expansion 
formula which for a system described by the Hamil-

tonian H=H0+Hi is 
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-/3ff=/>-0#o H d&#'*WyfT+'** 

+ f d&#'**Rxe-*'** f dp"efi"n'>H1<rfi"s* J, 

where P=(kjBT)~~1 and Hi is a small anharmonic 
perturbation to the Hamiltonian H0 of the harmonic 
approximation. 

So far we have not come across any published work 
where the anharmonic contribution to the energy of the 
system has been evaluated quantum mechanically, 
either at low or at high temperatures, although the 
recent formulation of thermodynamic Green's functions 
leads naturally to the evaluation of the energy of the 
system through the correlation functions. In Sec. I I we 
shall deduce an exact expression for the energy in the 
presence of cubic anharmonicity alone in terms of the 
one-particle correlation function. We shall treat the 
quartic anharmonicity in an approximate way. 

Our Green's function will be similar to that of 
Thompson,4 which gives directly the displacement and 
momentum correlation function. The approximation of 
limiting the chain of Green's function equations will be 
used to write the two-particle Green's function as a sum 
of products of one-particle Green's function and equal-
time correlation functions. These approximations are 
not the usual perturbation approximation; indeed they 
are better than Hartree-Fock approximations as pointed 
out by Thompson.4 

Once the decoupling scheme has been decided upon, 
it is easy to obtain a simple expression for the Green's 
function. Examining the Green's function in the com
plex energy plane, it is found that there are poles that 
lie above and below the real axis. The real part of the 

4 B . V. Thompson, Phys. Rev. 131, 1420 (1963). 
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pole in the positive half-plane is identified as the 
perturbed mode, and the imaginary part as the half-
width of the mode. When the poles lie close to the real 
axis one can meaningfully discuss a phonon number 
density and it turns out that at absolute zero of tem
perature this number density does not vanish as it does 
for a perfect crystal. 

In Sec. I l l , the general formulas deduced in Sec. I I 
have been used to calculate the properties of a linear 
chain. Detailed discussion of the dynamic properties of 
the anharmonic chain is given. The width of the phonons 
is obtained for all temperatures and is found to be 
proportional to the absolute temperature. In Sec. IV, 
we have performed similar calculations for a solid based 
on a very simplified approximation, which we have 
called the soft phonon approximation. The frequency-
wave-vector dispersion curve is found to drop near the 
maximum wave number. 

II. GENERAL FORMULATIONS 

We consider a Bravais crystal of N atoms, each of 
mass M. Our Hamiltonian for the system is 

and 

A(k)=l if & = 0 , or reciprocal lattice vector, 
= 0 otherwise. (5) 

Equations of motion for A k and Bk are 

i(dA k/dt) = [_A k,H~] = cckBk, 

i(dBk/dt) = [BhH^ = UkAk 

+ 6 £ V^(khk27~k)AklAk2 
k\,k2 

+8 £ V^(ki,h,ks,-k)AklAk2Ak3. (6) 

6 A. A. Maradudin and A. E. Fein, Phys. Rev. 128, 2589 (1962). 

i i,j i,3,k 

+(1/24) £ w«U<UyU*U,, (1) 
i,j,k,l 

where U* is the displacement of the ith atom from the 
equilibrium position. The <p coefficients are general 
force constants of the lattice. We confine ourselves to 
quadratic, cubic, and quartic terms in the potential 
energy. In terms of phonon annihilation and creation 
operators, the atomic displacement can be expressed as 

1 e(k,j) 
U<=—r—— E——-fatf+fl^V**'1" (*=D. (2) 

(2MiV)1/2k,y[Wky]1/2 

In this expression cokj- is the frequency of the normal 
mode described by the wave vector k and polarization 
index j , and e(kj) is the polarization vector for the 
mode (k,j). 

For convenience we define the operators 

A ky = dkj+#-k/; Bkj- — akj— a_k/. 

Akj and Bkj are directly related to the Fourier trans
forms of the displacement and momentum operators. 
Substitution of (2) in (1) gives the Hamiltonian in 
second quantized form as 

Here and in what follows we use only one index k to 
denote (k/) . 

We define the one-phonon retarded Green's function 
as6 

Gkg(t,t') = {(Ak(t),AW))) = -i0(t-O(ZAk(t),Ami), 
where 

ZA,B1=AB-BA, 
and 

0(x) = l for x > 0 
= 0 for * < 0 . 

6 D. N. Zubarev, Usp. Fiz. Nauk 71, 71 (1960) [English transl.: 
Soviet Physics—Uspekhi 3, 320 (I960)]. 

H=T,WkjW<*kj+h)+ E VW(k1jhk2J2,ksjd)AklhAk2J2Akzh 
ky k1.k2.k3 

+ £ V(i)(k1jhk2J2^Jh^ddAkihAk2hAk3hAkdi. (3) 
ki,k2,k3,k4 
i1.i2.i3.i4 

The coefficients Vis) and F ( 4 ) which appear in the anharmonic Hamiltonian are the Fourier transforms of the third-
and fourth-order atomic force constants. They are completely symmetric in the indices (kiji) and are given by5 

VM(kljhk2J2,ksjz) = A(k l+k 2 +k 3 ) , 

(4) 
1 <Kkiyi,k2i2,k3i3,k4i4) 

F^)(k1i1,k2i2,k3i3,k4i4) = A(k!+k2+k3+k4)-
where 

(2)224JV CwkmCOk2y2cok3y3^k4y4]1/2 

^(k1i1,k2i2,k3i3)= E ( ^ W ^ 3 / 2 ) e ( k i i i ) e ^ , 
i,j,k 

vQiiMMthj^ £ (^•w/M2)e(k1i1)e(k2i2)e(k3i3)e(k4i4)e2"(kl-R'+-), 
i,j,k,l 

k1.k2.k3
i1.i2.i3.i4
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We also define the one-particle correlation function as Therefore 

Fqk(t/) = (A^(f)Ak(t)). E=Eo+T, mWak)+ E V^{kiMM){AklAk2AH) 
k ki,k2,ks 

The Fourier transforms Gk(oj) and Jk(co) of the one- ^ vwtb b b b\tA A A A \ 
particle Green's function and the correlation function ^MMM \kw*Mfa)\AklAHAktAH) 
are defined as 

r+« = £ o + L «*»*+<7s>+<74>, (11) 
Gk(t-0= / GkMer^^^d<a k 

a n ( j °° where E0 is the usual zero point energy of the harmonic 

/

+00 crystal. Now we differentiate the correlation function 

Jk(a))(Ti(*<*-'')d<a. (7 ) (BM)Ak(t)) with respect to t' and, after summing 
-°° over all k, we get 

Here we will just indicate the relation between the — Ud/dfYy^iB^U^Akit)) 
correlation function and the thermodynamic Green's k 
function. Details of the formalism can be seen in Ref. 6. x^ / A t / v \ A / A \ I A sr ITCOCL Z, z, \ / A A A \ 
™ u , , , ., r ,. r / x • i 4. J x . i . =Z«*\-4*T(*M*(0>+6 zZ VW(k,khk2){AklAk2Ak) The spectral-density function /^(co) is related to the & k,ktk2,h 
one-particle Green's function by the relation , ^ _ TT,JW, , , , s / . , , , v / . ~ N 

F y + 8 Z ^ W i ^ X ^ * , ^ * ) . (12) 
Gk(o)+ie)-Gk(o)-ie)==-i(e^-l)Jk(cx)) hMMM 

o r . /o/ / 'a 1 w T i~ / i • \ /Q\ ^ ° e v a ^ u a t e t n e right-hand side of Eq. (12) we differ-
Jk{a>) - - (2/{e^-1)) ImG*(co+*e) (8) e n t i a t e ^ firgt r e l a t i o n o f E q . ( 9 ) w i t h r e s p e c t t o ( a n d 

where e —> 0 is implied. then take the limit t=f. We get a very useful relation: 

(i) The Number Density <F8> = * £ - / " da>Jk(a>)(a>*-a>k
2)-i(Vt). (13) 

The spectral-density function Jk(co) is directly related k ~~°° 
to the number density of the system. In terms of the The usefulness of the above relation lies in the fact that 
operators Ak and Bk, the number density is (Vz) is now expressible in terms of the one-particle 

/ + \ i n A + A \ . / A +T> \ i IT* + A \ . /r> +T> \-i correlation function. Using the relations (10) and (13) 

m=wa>)=xwA>)+(AfB,,)+wAu)+wB>n we get an expression for & energy of theystem f j j 
We now use the relations Eq. (11) as 

d E=E0-UVi) 
MBkKOMt))=-i—(Af(t')Ak(t)) ! -+* 

dt' +O0 + * £ - / M5o>2+co*2+6coco*)/*(co). (14) 

^ -oo So far we have not made any approximation in obtaining 

(B f(t')B (t))= '—(E t(t')A (f)) ( " ^ , a n ( * l t *s c* e a r * r o m ^ e e x P r e s s i ° n ^o r ^ t n a t > ^ t n e 

^ \ fc k\)/ quartic anharmonic term is absent, then E is exactly 

/

+00 known in terms of Jk(u). I t is possible to write formally 

u2Jk(c0)e~~lO3(t~t')dco j exact expressions for the thermodynamic functions when 
, -°° the anharmonic terms of all orders are present (e.g. free 

^ energy as an integral over coupling parameter). How-
m(A k

t(tf)Bk(t)) = i—(A k
f(t')A k(t)) ever, it is not possible to express the energy of the system 

dt in terms of the one-particle correlation function. For 

/

+0° -iWu- ') J / instance, to evaluate the cubic and quartic contributions 

o)jk{o))e aa), [V) w e can express the energy in terms of one-particle and 
00 two-particle correlation functions. The complex problem 

and take the limit t = t'; the number density comes out of anharmonicity is considerably simplified if the two-
to be particle correlation function is decoupled according to 1 F* A , " W / N7 , . ^ the scheme »*=- / (l+—J/*(«)&>. (10) 

4 J _ 0 0 V co*/ (abcd)=(ab)(cd)+(ac)(bd)+(ad)(bc), (15) 
(ii) The Energy of the System where a, b, c, d are the operators Ak or Bk. Therefore, 

. , . the approximate form of (F4) is 
The energy of the system is equal to the thermal 

average of the Hamiltonian which is (F4> = 3 £ V^(kh —kh k2, —k2) 
k\,k2 

E=(H). X(AkMH)(AkMk2). (16) 
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(iii) The Green's Functions 

The equation of motion for the Green's function Gkq is 

-(d*/dt2+uk*)Gkq=2mdkq8(t-t')+6o>k E VW(khk2,-kX(AklAk2,Aj(t'))) 

+8co* Z VW(k1,ki,k,,-kX<4tlAttAH,Aj(t')))- (17) 
&1»&2,&3 

The Green's function of the last term is now decoupled according to relation (15). To evaluate the Green's function 
r ^ 2 3 ( 1 ) = ((A klAk2,A /(*'))) contained in the second term, we need the Green's functions Yklk^

2) = {(BklA k2,A fl
f (*')))> 

Tklk2q
(z) = ((AklBk2,Aq^(tf))) and Tklk2q

(A) = ((BklBk2,Aq
f(tf))) as can be seen from the equations of motion given 

below. 

f(drw/&)=«irw+«2r<«, 

i(drW/dt) = a>2T^+aiT^+6 Z VM{qhq2, ~k)((AqiAq2Ak2,AJ(t'))) 

+ 8 E V^(qhq2,qh-k1){(AqiAq2Aq3Aki,AgKt'))), 
31,22,53 

t(dro)/&)=«,r»)+«irw+6 E F( ,)(?I,?«, -h){{AnAqiAkl,Aq\t'))) 
51,52 

+ 8 E VW(qi,q2,qz,-h)((AqlAq2A13Akl,As^t'))), (18) 
51,52,53 

«(drM)/<ft)=«,r<»+«1rw+6 E W(quqt, -k){(BklAqiAn,Aj(t'))) 
51,52 

+ 8 E V^(qi,q2,qh-k2){{BklAqiAq2An,Aq\t')))+6j: V™(q1,qt,-kM{AtlAtlBhuAj(t'))) 
51,52,53 51,52 

+ 8 E F<«(j i ,g,> f f t , -*0«^«^«4«rB*.,^. t(O». 
51,52,53 

Thompson4 has tried to shorten the procedure by writing 
the equations for r (1) and T(4) only, and his second-order 
differential equations for T(1) and T(4) are approximately 
true. The five-operator Green's functions can be de
coupled as sums of products of the three-operator 
correlation functions (and Green's functions) and two-
operator Green's functions (and correlation functions). 
After these decouplings are done, one can proceed to 
solve for Gkq. It is easily noticed that the contribution 
from the terms obtained from decoupling the five-
operator Green's functions are small, being of the order 
of the product of cubic and quartic coupling parameters. 
We neglect them because such terms are comparable 
to the contributions that can arise from the higher order 
expansion of the potential energy of the crystal beyond 
the quartic anharmonic term. However, in an analysis 
of the type attempted by Thompson4 (where he takes 
into account higher order effects in the neutron-scatter
ing problem) these contributions have to be considered. 
So we obtain the following two equations for the Fourier 
transforms of the Green's functions. 

(w*-uk*)Gkq=-8kq+6wk E v»Kkt, *», -k)rklkM^ 

+240)* E V^(ki,k2, -h, -k)GkiqNkl 
k\,kz 

and 

r*1*lfl
(1)=/?(*i,*2,co)E F W ( - * I , - * 2 , qi)GqiQJ (19) 

51 

where7 

C01+C02 

Ffafajo) = 6(N!+N2)— 

CO2— (C01+C02) 2 

C0l—Cx)2 

+6(N2-Ni) 
a ) 2 — ( « i — W 2 ) 2 

+6(N1'+NA 1 
La?2— (W1+CO2)2 OO2— (C0l—C02)2J 

and 

Nk=(AMk), Nj={BklAk?) and N2'={AkjBk2). (20) 

Finally we get from Eqs. (19) 

Gt(«) = (uk/Tr)(oi2-uk
2-2oikM .(co))"1, (21) 

where 

Af*(«) = 3 E \V^(~k,khk2)\
2F(khk2^) 

ki,k2 

+ 12Y,VM(kh-khk,-k)Nkl. 
hi 

Let us define 

Mk(w+ie) = Ak(o)) — iTk(cc), 

7 The last term in first equation of (20) is missing from Ref. 4. 
It is, however, seen by evaluating (iVi'+AV) from (9) that 
(iVi'-hiW) can be omitted in the desired degree of accuracy. 
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where I t is obvious also that Afc(co) and T^co) are the 
AAJ(«) = 18(P X I F (3)(--& &i ^2) I2 Hilbert transforms of each other and Ak(cc) is an even 

*i,*2 function of co and T^co) an odd function. The above 
r C01+C02 wi~w2 1 results agree with previous calculations4,5 if Nk is pre-

X (iVi+iVa)—— - + ( # 2 - # i ) assigned the value Nk=2nk+1. 
L CO2—(CO1+CO2)2 CO2—(C0i —C02) 2J 

+ 12 X F < 4 ) ( - & , jfe, —Ai, ifeOiVjfc!, (22) ( iv) Physical Properties of the Anharmonic SoHd 

i The poles of the Green's function will be given by the 
M zeros of the denominator of Eq. (21). The real part of 

(r*w) = 18x€(w)^ \V 3 (—k, ki, k2) I2 ^ p 0^ e g j v e s ^ g dispersion formula and the imaginary 
part gives the half-width of the phonons.6 In our case 

XL(^i+^2)(coi+a>2)<5(co -(coi+co2)2) t h e p e r t u r b e d n o r m a l mode is given by the equation 

where 
+ (N>-Nx)^-^-(^m, (23) 6 ^ + 2 w * A ^ ) . (24) 

e(co) = 1 for co>0 The correlation function Nk which is obtained directly 
= — 1 for co<0. from the spectral density function is 

2co* r+0° dca 1 
Nk 

2m n 
— I m / 

7T J_Q ( e * « - 1 ) (co2-cofc
2-2cofcAit(co)+2icofcrA;(co)e(co)) 

co th^co r*(co) 
da> . (25) 

7T Jo (co 2 -co , 2 -2co ,A, ) 2 +4co, 2 r , 2 

T h e physical q u a n t i t y nk is given b y E q . (10) and after appropr ia te subst i tut ions becomes 

1 f+co co2+cofc
2+2coco* 

nk= I m / dco-
27rcofc J -oo (efia>— l)(co2—co/b2—2a)kAk(cx))-\-2ia)kTk(u)e(a))) 

if 
7T J Q 

' l(o)2+m2) coth^co-2cocojr^(co) 
du . (26) 

(co2-co,2-2co,A,)2+4co,2r,2 

There is no direct relationship between Nk and nk. are distributed over various normal modes and it 
The idea of a number density is physically meaningful follows from Eq. (27) that 

only when the damping is considered to be small. In this ( * ___ m /r) sA(T nx-. 2 ,1Q\ 
limit we see that the spectral density function Jk(co) has m{1 ~>0)~ LW*»*)*** - * ") J • K^) 
a steep maximum at the value co= ek. If we replace the In the harmonic approximation this number vanishes 
Breit-Wigner form of the spectral density function by a whereas it is proportional to the square of the fractional 
Dirac 5 function, then the integrals are easily done and change in the normal mode frequencies. This may prove 
we get the following fairly accurate expressions for the useful for qualitative discussion of the effect of an-
number density and the Nk: harmonicity on the thermodynamic properties of solids. 

^ , = (l/4cofcefc)[(co,-€fc)
2+(co,2+e^2)(coth|/3€A-l)],(27) T h e contribution of quartic anharmonicity to the 

. energy of the system, according to our approximation, 
Nk= (co,/eA) c o t h ^ * . (28) i g g i v e n i n t e r m g Qf NhS a g 

When co* is close to ek one can replace Nk by 2**+l . , U J , 7 rm. 
The expression for the number density nk has been { }~ ^2 t " * 1 ' * ^ * 2 ' - * 2 ^ * 1 ^ * * " - . ^ U J 

written in a form such that in the limit /3 —» 00 the second 
term vanishes. At absolute zero the particles (phonons) The total energy is 

1 r+co da> 5co2+cofc2+6cocofc 
E^Eo-UV,)-— I m £ / 

= E{ 

6TT JO ./_„ (e^-1) (a)2-a>k
2-2ookAk+2ia)kTke(a))) 

1 r00 (5co2+cofc
2) cothj^co rfc(co) 2 r™ doocoTk(co) 

•*<^4>+— ! > * / ĉo X > * 2 / . (31) 
3x A Jo (co2-co*2-2co*A*)2+4co*2r*2 TT ft J 0 (co2-co&

2-2cofcAA;)
2+4co,2r*2 
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This is our final expression for the energy of the 
system. The specific heat can be obtained by using the 
relation 

Cv=-kB$2(dE/d$). (32) 

Very accurate results will be obtained if expression (31) 
can be evaluated for any specific model of a crystal. I t 
seems to us that it is impossible to evaluate this expres
sion in closed form in all generality without the aid of 
computers. Finally we obtain the energy in our approxi
mation as 

E = E Q - j : F < 4 > ( - * I , * I , * 2 , - * 2 ) 

ki,k2 

X ((«*,/e*,) cothiPektXimt/ekt) coth§/3ej,2) 

+ A L((w*2+5e*2)A*) cothjfc*. (33) 
k 

The expression for the energy given by Eq. (33) is a 
useful nonperturbative result. The cubic anharmonicity 
does not enter explicitly. I t alters the normal mode 
frequency in a significant way and hence the energy. 

III. APPLICATION TO A MONATOMIC 
LINEAR CHAIN 

In this section we shall work out various anharmonic 
properties of a monatomic linear chain. I t is quite 
obvious that the model of a linear chain is nonphysical 
as well as unrealistic; however in the absence of accurate 
calculations of anharmonic properties of solids beyond 
perturbation theory, we feel that it is worthwhile to 
study the anharmonic properties of a linear chain. Apart 
from this, the one-dimensional model will serve as a 
guide for calculations in three-dimensional models. 
Similar calculations for the free energy of a linear chain 
have been made by Maradudin and co-workers.1 They 
have shown there that for a monatomic linear chain 

| V™(-k, kh k2) 12= (82/28Sy*N)A(-k+ki+k2)muklm2 

and 
7<4>(-*i, kh k2, -k2) = W96y2N)m1m21 (34) 

where y, 8, and e are harmonic, cubic, and quartic force 
constants (nearest neighbor) for the linear chain. The 
unperturbed normal mode frequencies are given by 

co&
2=coL

2sin2^, coL=(47/ikr)1/2 

k = 2irl/N where / lies between —%N and +§iV. (35) 

(i) Lifetime of Phonons 

The cubic anharmonicity gives a finite width to the 
normal modes and is responsible for dissipation of 
energy, so that the transport properties (e.g. thermal 
conductivity) turn out to be finite. In fact at high tem
peratures the thermal conductivity is essentially 
governed by the cubic anharmonicity. We have already 
deduced in Eq. (23) an expression for the width at all 

temperatures and we shall see that it turns out to be 
finite. Furthermore the contribution from normal and 
umklapp processes can be discussed clearly and easily 
in the case of a linear chain. Maradudin8 has also ob
tained a finite width at high temperatures. 

For the linear chain we omit the polarization index, 
and we obtain the width from Eq. (23) after substitution 
for F ( 3 ) . By rearranging the terms we write it as 

Tk(a>) = (™k8
2/16yW)e(a>) £ A(-£+&i+£2)coico2 

X[(^ lW2+iVr2a!1){6(a!2- (a>i+«2)2) 

+S(« 2 - ( W l -a> 2 ) 2 )} + (iVicoi+^2C02) 

X { 5(co2- (wi+a>2)2)- 5(co2- (coi- a>2)2)}]. 

Strictly speaking, the observed width is of the per
turbed normal mode. However we assume this to be 
equal to the width at the unperturbed frequency which 
can be written as 

r*(o>,) = (7rco*52/4TW) L A ( - * + * i + * 0 « i W 

X5(co,4-2co&
2(co1

2+co22) + (wi2-co2
2)2) 

X i(Nia)2+N2o)i) + (Niwx+Nw) 

Xe(co&
2-coi2-o;2

2)], (36) 

where we have used the formulas 

e(x)8(x2-a2) = (\2a\)-1Z5(x-a)-8(x+a)~] 
and 

8[(x-a)(x-b)2=(\a-b\)-1Z8(x-a)+8(x-b)1. 

The advantage of writing in this fashion is that the 
argument of the Dirac 8 function now contains the 
square of the normal-mode frequencies and the trouble
some modulus-of-the-sine functions do not arise. 
Furthermore, the roots of the argument of the Dirac 
delta function turn out to be very simple. The important 
point is to sum over k2 (or ki) keeping the properties of 
A(—k+ki+k2) in mind. We use the indices l=Nki/2ir, 
m=Nk2/2ir, and n=Nk/2ir and write Eq. (36) as 

N/2 

Tn= (™nS
2/473i\0£ E K-l+m+nW^J 

l m=—iV/2 

X5(co.4-2cow
2(a)Z

2+com
2) + (coz

2-com
2)2) 

X[_(NlO)m+NmC0l) + e(cCn
2 — 0>l2 — Wffl

2) 

XiNiCtii + NmWm]. 

The A function implies that m=n—l^zM, where Jlf=0, 
ztN, ±2iV, • • •. Since the ranges of summation of / and 
m are only from —N/2 to +N/2, the value of M can 
only be 0 or ±iV. When M=0 the process is called a 
normal process and when M=±N the process is called 

8 A. A. Maradudin, Phys. Letters 2, 298 (1962). 
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an umklapp process. However, for any value of 
M (0, zkN, ±2N, • • •) o)n+M=con so that the summand 
in Tn is independent of M. Therefore we can write 

+N/2 

l m=—N/2 

X 5( / (« n ,C0z ,«^i ) )g( iV^iVn-Z,W| ,«n-z) . ( 3 7 ) 

The quantity in the square bracket can only be 1; i.e., 
there exists only one value of m such that m—n—lov 
n—l-±:N. However, if n>0, it is easily seen that, for 
normal processes (i.e., n—l~ m) to occur, we should have 
the range of I restricted by n—%N<K\N and for 
umklapp process (i.e., n—l=m—N) by —\N<1 
<n—^N. Thus the normal and umklapp contributions 
(for k > 0) are 

p normal: 

and 

•p umklapp 

m82 r 

8T3 J*-
dqo)q

2o)k-q
2 

X8(f(o)kyCCq,0)k-q))g(Nq}Nk-q}0)qyO)k-q) 

_md2 r 

8 7
3 i_ 

dqcoq
2cok-

(38) X d(f(0)k,<*>q,(*>k-Q))g(Nq,Nk-q,0>q}O)k-q) • 

The argument of the Dirac 8 function is 

f(0)k,01q,0>k-q) 

=coL
4[sin4§&-2 s i n 2 ^ ( s i n 2 | g + s i n 2 | ( ^ - g ) ) 

+ ( s i n 2 J g - s i n 2 J ( ^ - g ) ) 2 ] 
= — 4coL2cofc2 sin2 |g sin2§(&—q) 

so that the poles are at q==0 and q=k. If we take 
ArA;=coth|iScoA; and use the property of the Dirac 8 
function 

t(f(*))=T,*(x-Xi)/\f'(xi)\, 

where X{ are the roots of f(x) = 0, we obtain an expres
sion for the half-width for all temperatures 

r , normal — _ k — X) 0(7r—q)6(q—k+7r)cog
2cok-

3273coL
2 e=o 

q==k 

X[(NqUk-q+Nk-qa>q)+e(siniq sir$(q—k)) 

X (NqO)q+Nk-q03k~.q)3n S m 2 # Sill2§.(* — ̂ ) COS|# 

+s in 2 | g sin§(&—q) co$%{k—q) | ] _ 1 . 

To evaluate the above expression we use the fact that 
Km3^o o)QNq= 2/fi and we get 

I V o r m a l ^ ( 5 2 / 8 7
3 ) ( c O L / / 3 ) ^ ( 7 r - ^ ) . 

Similarly, 

r AumklapP : = (8*/16y*)(G)L/p)d(k-1c) . 

Finally we get the total contribution to the half-width as 

Tk=(82/16y*)(a>L/p)Zl+d(7r-k)'] for k>0. (39) 

In general the half-width is 

r * = (82/16y*)(uL/m+K*-k)dfr+k)-], (40) 

which can also be obtained directly from Eq. (37). If we 
take the implications of the Heaviside 0 function seri
ously (i.e. 0(0) = i ) , we see that when k falls on the zone 
boundary the width is reduced from (4:82/32yz)(a)L/P) 
to M&2/yz)("L/P). (The experiments of Ref. 13 show 
such a drop in width.) 

(ii) Frequency-Wave-Vector Relations and 
Energy Shifts 

I t is not possible to evaluate A&(co) in closed form at 
all temperatures. Therefore one has to be satisfied with 
evaluating it at high and low temperatures only. 

At high temperatures we have iW^2/j8coi so that we 
obtain for the energy shift, after substituting (34) in 
(22) and simplifying, the result 

a>k/ e 82\ 82ojkco2 r+* r * / ky\ 
Afc(co) = —[ H (P / dq\ o)2—o)L

2+o)L2 c o s - cosl q— } 
4/A7

2 73/ 8TT73/3 J-* L 2 \ 2 / J 

X[co4-2co2coL
2+2coW cos§£ c o s ( g - ^ ) + c o L

4 sin2 |* s i n 2 ^ - ^ ) ] " 1 . 

This integral is evaluated with due care to the principal value problem and the result for the shift is 

Co*/ e 82\ 82a>ka) 
A*(co) = — ( 1+ [0(o>2-4coL

2 s in 2 i ^ ) / ( co 2 -4^ 2 s i n 2 ! * ) 1 ' 2 - ^ 2 - W cos2i&)/(co2-4coL
2 cos2 l*)1 / 2 l (41) 

4/3 Vy2 7 3 / 8 7 ^ 

The modified normal mode frequency ek is determined by the equation 

0>k2/ € 5 2 \ 82C0k
2€k €k2 = Uk2 + 

2/ € 5 2 \ 

A T 2 y*/ 2(3 V 7 8 / 473^ 

XC0(co2-4coL
2 sin2i^)/(co2-4coL

2 sin2J^)^2-0(co2-4coL
2 cos2^)/(co2-4wL

2 cos2!*)1 '2] . (42) 
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P,= P8= 0 . 4 

P«—Pa" - 0 . 2 

HARMONIC APPROXIMATION 

THE SOLUTIONS FOR P, = I.O 
P=O. I 

FIG. 1. (a) Dispersion curves 
for the linear chain, (b) Three 
solutions for the frequency of a 
linear chain. 

This we rewrite as 

ek*=m2+PiUk2+P2m26ktd(ek*-^L
2 sin2i&)/(€fc2-4coL

2 sin2^)1 '2 

-0(e,2-4coL
2 cos2i£)/(e*2-4coz,2 c o s W 2 ] , (43) 

where Pi and P2 are to be read from Eq. (42). 
We notice that ek

2>Ao)L
2 cos2|& is not satisfied for any k. For values of k such that ek

2>4:ooL
2 sin2J&, (43) becomes 

a cubic equation in e&. This cubic equation has been solved for various parameters which characterize anhar-
monicity, and temperatures and graphs for ek versus k have been plotted in Figs. 1(a) and 1(b) for Pi=P 2=0.4, 
p1== —p2= —0.2, and P i= 1.0, P2=0.1. It appears to us that the existence of three acceptable roots is an interesting 
feature of the solution, although we can not comment on their significance. The drop at a particular value of k in 
Fig. 1(a) strongly resembles the Kohn type of effect in three-dimensional solids. 

At low temperatures NiC^l+2 £«=i°° e~^w\ and we get, after substituting (34) in (22), 

A*(«) = -
52UkO)L 

167T73 
-IT 

dq sin 
k—q 

(sin +sin 
k—q \T k I. . 

j sm2—I sin 
+sin 

k — q 

)T eooicOOL 

4TT7 2 

d2m oo r+* 

47T73 »-l J -r 
ecofccoz, 

4TTT 2 

oo / • * 

n=l Jo 
dqsm~e~^ULsinql2. (44) 

2 

The first integral in (44) is evaluated by breaking it up 
into three integrals between the limits — x to 0, 0 to k, 
and k to 7r, so that moduli are correctly accounted for 
and we obtain 

co*/ e 82\o)L 1 / e 82\ 
Ah=-( ) - + -

4 Y y 2 7 3 / T T 1 2 \ 7
2 7 3 / 

d2\0)L 1 

Vy* 7 3 /5T 12 Vy 

The dispersion relation is 

52 

vy ' Y 3 / COL/52 \ 7 

7TC0fc 

7 8 / / 3 2 « L 
(45) 

r coL/ e 52\ 7T / € 52\-] 
e*2=co*2 1 + - ) + ) . (46) 

This can be written as 

€*2=€i>*2. (47) 

In Eq. (47) eL is the new maximum frequency. Dis
persion relation at low temperatures remains a sine 
curve except that the maximum frequency is changed. 

(iii) Number Density 

We have already shown that for a solid, the number 
density at absolute zero is nonvanishing. For a linear 
chain, 

Ak(T -> 0) = (W47r ) ( e / 7
2 - W ) • 



T H E O R Y O F A N H A R M O N I C C R Y S T A L S A1577 

The number density at absolute zero is At low temperatures, we obtain for the energy 

nk=l(Ak/m)2. Na>L
2+5eL

2 NT (5eL*+a>L
2) 

El= +— -
Maradudin and Fein5 have given plausible values for 6x ez, 18/3 €L 
e, 5, 7, and o)L for a model of lead which are eN /ML2 TT2O)L

2\2 

€=4.016X1021 erg/cm4 , 8= -9.693X1012 erg/cm3 24ty\ireL $Hj}) 

y= 1.819X104 erg/cm2, and cojL=2.057X1013 sec"1. , " , A, . , , . \ « 1 + , 
from which the specific heat can be easily evaluated. 

Putting in these values we get the number of phonons The zero point energy is 
to be 8.5X10~4%. This corresponds to about 1018

 A7 2 . c o2 7174 
vibrations per mole.9 £ (0)= (49) 

6TT €L° 247T272€L02 

Uv; ergy a p 1 where €L° is the maximum frequency at absolute zero. 
For Eh, the energy at high temperatures, we obtain In a perturbative sense our result (49) for the zero point 

from Eqs. (33) and (43) energy does not agree with the result of Ref. 1. 
However, if we make a series expansion of our Breit-

Wigner function 

60\ P+PJ 2WHP+P- 2mTk{w) 2wkTk(w) 
where xS(co2-€*2)+ - + • • • (SO) 

N/ 0 \ e2V 1 

3\ B+PJ : 

P=PPI. 
(co2-€*2)2+4co*2iy (co2-a>,2)2 

__ . . . _, . . _ and integrate over co, and then further expand the result 
The specific heat Cv is given by f o r s m a U ^ w e g e t t h e pe rturbation-theoretic results. 

C I / B2 \ e 2B+P ^ o n e a c ^ s t n e s e c o n d term as above, one cannot be sure 
— ! _ = - J 5 _ | J ? (43) whether one can still talk of phonons in a meaningful 
NkB 6\ ( £ + P ) 2 / 2472( /3+P)2 way.6 Using Eqs. (31) and (50), one can write the energy 

as the sum of three terms 
which of course agrees with the result of Maradudin 
and co-workers1 if we make a perturbation expansion 

E=Ei+E2+Ea, (51) 
of (48) in powers of the parameter P i . where 

£ 1 = - i W + A - Z ( K 2 + 5 6 i
2 ) / e * ) coth§/3e*, 

h 

r(Ni+Ni) coth|/8(coi+o)2) (N2-Ni) coth§j9(«i-wj)"| 
£ 2 = 6 E \V^(-k,hi,kt)\h»t\ , 

k,ki,k2 L (CO1+CO2)2 —Wfc2 ( « l—W2) 2 — W&2 J 

f 2Vl+tf« 
£ 3 = 9 Z I V«K-h, *i , *») 12«>* [((coi+w2)2+W,2) cothJi8(«i+«0-2«*(wi+a)0] 

fc.fcl.fo K ( w i — C O 2 ) 2 —COfc2)2 

[((a?i—co2)
2+cofc2)coth|/S(coi—co2)~2co^(coi—co2)][ . (52) 

( ( C 0 l — C 0 2 ) 2 —COfc2)2 

From Eqs. (52) we get for the zero-point energy 

€ €(J0L CO1+CO2 

£i(0)=JE«* (E"*)2+ E«*+i2 E |v«>(-*,M2)|* A 967W ^ 12TT72 * kMM cofc
2-(coi+co2)

2 

JE,(O)=I2 E irwc-*,*!,*,)!* , (53) 
kMM (W1+CO2)2—a?fc2 

£3«» = 18 £ | F < 3 > ( - M i , £ 2 ) | 2 • 
&,fcl,&2 (a)i+C02+COfc)2 

9 The author is thankful to Dr. A. A. Maradudin for bringing to his notice the importance of the number density. 
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Therefore from Eqs. (51) and (53) the zero-point energy is 

N0)L iVeCOjr,2 32 COkO)oOOk-q E(0) 0)L €0)L
2 0)L

2d2fT ~1 

E ( o ) = = + E = _ + - ( 1 2 - T T 2 ) , (54) 
7T 8 T T V 4:SydNk,qo)k+o)q+o)k.q N T 8 T T V 67r373L16 J 

which is essentially the perturbation result of Ref. 1. 
Continuing as above, it can be shown that the specific 
heat at low temperature also agrees with the previously 
obtained result. 

(v) Thermal Conductivity 

Having calculated Tk one can use the expression10 

for lattice thermal conductivity 

K=knP2 E rqjcoqj
2Cqj

2(e^V/le^-1]2), (55) 

where 2Yk={rk)~
l and Cqy is the velocity of (q^) 

phonon, to calculate the thermal conductivity of a 
linear chain. I t is 

K= Z <Cq
2 . 

52coL q r > ^ - i ] 2 

To proceed further, we have to (i) assume a particular 
form of harmonic dispersion relation which we have 
taken as 

co&/=coz,/ sm2%Trka0, 

where a0 is the lattice constant, (ii) indicate the method 
of evaluating the summation ki, k2. We replace 
S k i —> (N/ti)J*ki2dki sinddddcp, where 12 is the volume 
of the first Brillouin zone. 

A simple Debye model calculation of Aky has a 
logarithmic singularity due to poles at forward and 
backward angles. This means that the self-energy term 
is divergent for the anharmonic phonon whose frequency 

18 P. Carruthers, Rev. Mod. Phys. 33, 72 (1961). 

This reduces at high temperatures to 

Kh/N=(kBPysa>Lao2)/252, 

where a0 is the separation between two atoms. At low 
temperatures 

Kl/N=kByW/d2. 

Thus the thermal conductivity at absolute zero is 
finite and at high temperature it decreases as 1/T. 

IV. APPLICATION TO SOLIDS 

For a solid it is difficult to obtain any result without 
reference to a model. For the sake of simplicity we shall 
take the form of anharmonic coefficients F ( 3 ) and F ( 4 ) 

as taken by Klemens11 in preference to the more realistic 
calculations of Maradudin, Fien and Vineyard6,12 

is proportional to wave number. I t appears to us that 
this is sufficient reason not to use the Debye approxima
tion for calculating anharmonic contributions because 
there is no way of getting rid of this infinity. A phonon 
with Debye dispersion relation (or a photon) can dis
integrate into two phonons (or two photons) only in the 
forward direction, according to momentum and energy 
conservation considerations. Thus, the probability for 
disintegration into a pair and subsequent recombination 
to form a phonon is maximum at forward and backward 

11 P. G. Klemens, Solid State Physics, edited by F. Seitz and 
D. Turnbull (Academic Press Inc., New York, 1958), Vol. 7, p. 1. 

12 A. A. Maradudin, A. E. Fien, and G. H. Vineyard, Phys. 
Status Solidi 2, 1479 (1962). 

F < « ( - k i i ! , k2y2, k8i8) = (Xy/288WLy^)«icoaw8A(-k1+k2+k8) 
and 

F^(Wl,W2,k8i8,k4i4)= (77y/96cOjL^)(c01C02C03C04)1/2A(k1+k2+k3 + k4) , (56) 

where X, and rjj are dimensionless parameters. Further we assume that the summations over j \ and j \ implied in 
Eqs. (22) and (23) are such that the maximum contributions come when j\= y2= j . We can now write Aky and rky as 

XyCOky I 
Ak;(o>)= L A(—k+ki+k 2 )o) ico 2 

16c0z,yiV ki,k2 I 

<oi+co2 (001—co2) 
, +(Nt-Ni) 
co2— (a>i+co2)2 co2—(coi—co2) 

(Nx+Nz) +(N1-N2)-
co2) -j 

- c o 2 ) 2 J 

UkjV} COq/ /3eqy 

_| Y, coth 3 
SCOLJN q eqy 2 

7rXycokje(co) 
rki(co) = E A ( - k + k i + k 2 ) c o i 2 c o 2

2 

4cOLy^ ki,k2 

X [ ^ 2 + ^ 2 0 ) 1 + (^icoi+^2co2)e(co2-coi2-co2
2)]5(co4- 2co2(coi2+co2

2)+(coi2-co2
2)2). 

(57) 
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angles. I t is not unreasonable to assume that the kernel 
of Eqs. (57) [call it K (ki, cos0)] possesses maxima for 
c o s 0 = ± l . We approximate the kernel by 

K(kh cos0) = £p5:(*i, + 1)+K(kh - 1 ) ] , 

which implies that the kernel goes linearly from its 
maximum to zero at 90° and then rises linearly to a 
maximum at 180°. To us this appears to be a very 
reasonable approximation and may be termed a soft 
phonon approximation. With this approximation the 
integrals involved in calculating physical quantities are 
very similar to those encountered in the linear chain. 
Proceeding exactly as in Sec. I I , the following results 
are obtained: 

(i) Width 

I t is difficult to separate the normal and umklapp 
processes. In view of the approximation for cokj, the 
summand is no longer invariant under translation by a 
reciprocal lattice vector. Ignoring the distinction be
tween these processes, we obtain for the width 

TrXjOi^j/Nir' 

) / ; 
r k ; = —'-—-[ ] / dq g2coq

2cok_q
2 

X CiVqC0k-q+^k-qC0q+ (NqO)q+A^k-qCOk-q) 

Xe(sinj7r^a0 sin|x(^—k)ao)~] 

X8(—4:ULj2<*)kj2 sin2§7r<7ao sin2^w(k—q)a0). (58) 

The integral in (58) is evaluated in the same way as 
the integral of Eq. (37) and we get 

r*y= (3\j/32l3)(kao)20(km-k). (59) 

This final result is not invariant under reciprocal lattice 
vector translation even though the original expression 
for rfc, [Eq. (23)] is invariant. A possible translationally 
invariant quantity could be 

Tkj= (3\j/ST2^O)Lj)o)kj20(o)Lj~~O)kj) . 

In our opinion this is a very good estimate of the phonon 
width. 

The results of Brockhouse and co-workers13 for lead 
indicate a sin2§7r&a0 variation for the width. There are, 
however, large experimental uncertainties for higher 
k values. We have evaluated Tkj for co = cojby. In view of 
this (and our previous) approximations, the k2 variation 
as obtained here is not inconsistent with experiment. 
An approximate comparison with the results of Ref. 13 
shows that for the width to be of the order of 2 to 4 MeV 
at kao=l, we need P\= (Ay/4j&oz,y) to be of the order 
of unity. I t will be seen below that for this value of 

13 B. N. Brockhouse, T. Arase, G. Caglioti, M. Sakamoto, 
R. N. Sinclair, and A. D. B. Woods, Inelastic Scattering of Neutrons 
in Solids and Liquids (International Atomic Energy Agency, 
Vienna, 1961), p. 531. 

Pi9 the dispersion relation shows a dip for kao close 
to unity. 

(ii) Thermal Conductivity 

Since the width is proportional to temperature, the 
anharmonic contribution to the lattice thermal con
ductivity is inversely proportional to temperature at 
high temperatures. At low temperatures however, it is 
constant because the width varies as (kao)2. Thus the 
variation of the thermal conductivity with temperature 
is similar to that of a linear chain. 

(iii) Frequency-Wave-Vector Relations 

We now proceed to calculate the energy shift and 
subsequently the dispersion relations for solids. We 
will consider both the high temperature and low tem
perature limits, and make use of our "soft-phonon" 
approximation. 

At low temperatures, as before, we have 

A w = 
XycOky 

Y, C0qC0k_ 
q+Wk_ UkjTJj 

Z^q-q H^ Z^ w q» 
So)LjN q. COk2— (wq+C0k_q)2 So) LjN <i 

(61) 

In the soft-phonon approximation the first term of (61) 
gives two integrals which have been evaluated by break
ing the interval into 0 to k and k to km so that moduli 
are correctly accounted for and we obtain 

Akj= (—3\jQOkj/4:Tr*)[jr—4:-\-'jrkao cot|7r&tfo 
+ ( ^ a o ) 2 ] + 3 c o ^ ( 7 r - 2 ) / 7 r 3 . (62) 

Temperature-dependent terms have been omitted from 
(61). Finally we obtain the dispersion relation 

efc/=a)/by2[l — (3\y/27r3)(7r—4+7r£a0 cotj7r&#o 
+ ( | 7 rW 2 )+6^ (7 r -2 ) /7 r 3 ] . (63) 

At high temperatures as usual, we have 

— XyCOki <0k/Ay 
(60) A k . = + (p £ [«W

S-C0qi
2-C0k_q,y2] 

X Oky4— 2coky
2(wqy

2+a>k-q,y2) 

coky*?y 
+ (coqy2-cok_q,y2)2]-1+ . (64) 

He re again the soft-phonon approximat ion leads t o two 
integrals . T h e y combine together in to one integral a n d 
we obta in 

Ajy = —— 1 - ~ — cos2(%Tkao)I(kao)+—— , (65) 
4/foLy 800) Lj 4fio)Lj 

where 

I (ka0) = 
3 / " 

7T3 J0 

dq-
cosq— coswkao 

(66) 
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FOR F? = 12 ,P*=1.8 

FOR f?=0.6 , Pa=0.9 

FIG. 2. Dispersion 
curves for solids. 

The dispersion relation is 

Ckj 
L 4 

{2+cos2(iTkaQ)I(ka0))-
m 1 

ftorj 

= ^/ [ l -P 1 (2+cos 2 K^ao)/ (^ao))+P2] . (67) 

Integral (66), as it stands, has poles at q=zhTka0. We 
subtract an integral which is zero to remove these poles, 
and evaluate the following integral numerically: 

I(kao) 
3 r 

7T3i0 

dq-
q2—7r2k2ao2 

cosq—cosTkao 
(68) 

Curves depicting the e&(&) relation from Eqs. (63) and 
(67) are presented in Fig. 2. It is easily seen that the 
shape of the curve for Pi=1.2, P2=1.8 is very similar 
to the experimentally observed dispersion curves for 

lead.13*14 The dip however depends on the relative 
values of Xy and rjj. 

We repeat that the calculations on solids have been 
done using our soft phonon approximation which has 
made most calculations possible. A comparison with the 
more exact computer calculation of Maradudin and 
Fein5 for lead will now be made to examine the extent 
to which our approximation can be trusted. For trans
verse modes they obtain (and also the experiments13 

agree) that 2r*=0.25X10-3 eV for ka0=0.2 at 425°K. 
Using these values we get from our Eq. (59) for the 
transverse mode Xjr^O.03. From Eq. (65) we now 
calculate 

A* 
for ka0=0.25, —= -0.0035X77000, 

for £00=0.50, — -0.0061 XT/6W; 

whereas, Maradudin and Fein5 obtain — 0.00306 XT/d* 
and -0.0033XP/0OO, respectively, where 0OO=143.4°K. 
In view of this agreement as to order of magnitude with 
an entirely different model, the approximation scheme 
suggested here seems to be reliable for obtaining esti
mates of anharmonic contributions to properties of a 
solid. 
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