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Intensity Correlations in Raman Scattering* 
ALEXANDER L. F E T T E R ^ 

Department of Physics, University of California, Berkeley, California 
(Received 5 April 1965) 

Correlated counting rates in Raman scattering are proposed as a means of studying optical phonons in 
crystals. This technique may be used to measure both the lifetime and spatial coherence of the vibrational 
states. Experimental counting times are estimated to be the order of 50 jusec for the case of a gas laser as a 
light source. 

I. INTRODUCTION 

CORRELATED counting rates have been a subject 
of discussion and interest since Hanbury Brown 

and Twiss1 found positive correlations between two 
coherent light beams. Each beam in their experiment is 
detected separately, so that the effect is an intensity 
correlation, rather than the more usual amplitude cor
relation, typified by the Michelson interferometer. The 
experiment was first explained by essentially classical 
wave phenomena.1,2 Recently, a quantum-mechanical 
theory of intensity correlations has been developed3 

and applied to beams of scattered particles,4 which 
contain information about the correlations in the 
target. In most practical situations, the incident beam 
is too weak to permit measurement of scattered in
tensity correlations. The development of the laser, 
however, makes such experiments feasible, and con
sequently this paper contains a detailed calculation of 
the scattering of a light beam from a crystal. As a 
specific example, we consider Raman scattering, in 
which an incident photon excites a lattice vibration in 
one of the optical modes. The scattered photons are 
measured in two detectors, whose output is multiplied 
in a correlator, as in Fig. 1. A variable delay line may 
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Incident beam 

FIG. 1. Illustration of a general intensity-correlation experiment. 
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be inserted in the output of one of the detectors. In
tensity correlations between the scattered photons can 
then be used to study both the lifetime and spatial co
herence of the vibrational states. 

A discussion of Raman scattering from crystals is 
given in Sec. I I , together with a formulation of the 
incident and scattered beams. The amplitude correla
tion function and the cross section for Raman scattering 
are calculated in Sec. I I I . Our main interest, of course, 
is the intensity correlation function, which is computed 
in Sec. IV. The target correlations are contained in an 
unusual type of phonon correlation function, whose 
structure is studied in Sec. V with the aid of simple 
models. Detailed results are presented for diamond, 
which has a strong first-order Raman spectrum. Finally, 
Sec. VI contains a discussion of fluctuations in the cor
related counting rates and an estimate of the time 
necessary for measurement with actual physical 
systems. 

II. RAMAN SCATTERING BY CRYSTALS 
The Raman effect in crystals is one in which an inci

dent photon is scattered by the vibrations in the crystal 
lattice. The wave number of visible light (~10 5 cm -1) 
lies very close to the center of the first Brillouin zone, 
whose width is the order of 108 cm -1. The wave number 
of the phonon is also approximately 105 cm -1 , so that 
momentum (as well as energy) is conserved with no 
additional reciprocal lattice vector. If a phonon is 
emitted, then the scattered photon has a lower fre
quency, and the transition is called a Stokes process. 
The opposite case, in which a phonon is absorbed, is 
called an anti-Stokes process. In thermal equilibrium, 
the Stokes process dominates when hu£$>kT, where coo 
is the frequency of the phonon, k is Boltzmann's con
stant, and T is the equilibrium temperature of the 
lattice. For diamond, o?o~2.51X1014 rad/sec,5 so that 
even at room temperature, the anti-Stokes process is 
negligible. 

The theory of the Raman effect in crystals was first 
formulated by Born and Bradburn,6 based on the polar-
izability tensor introduced by Placzek.7 First-order 

5 H. M. J. Smith, Phil. Trans. Roy. Soc. London A241, 105 
(1948). 

6 M. Born and M. Bradburn, Proc. Roy. Soc. (London) A188, 
161 (1947). 

7 G. Placzek, Bandbuch der Radiologic, edited by E. Marx 
(Akademische Verlagsgesellschaft M. B. H., Leipzig, 1934), 
Vol. VI/2, p. 205. 
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transitions (emission or absorption of a single phonon) 
are forbidden if each lattice site is an inversion center. 
Thus diamond shows a first-order Raman effect,5 

while rock salt (NaCl) does not.6 More recently, 
Loudon8 has given a fully quantum-mechanical deriva
tion of the Raman effect in crystals, which emphasizes 
the importance of the electrons in the scattering mecha
nism. The incident photon is absorbed, creating a 
virtual electron-hole pair. The pair emits or absorbs a 
phonon, and the crystal then returns to its initial state, 
emitting the scattered photon. The transition ampli
tude is calculated in third-order perturbation theory 
and contains 6 (=3!) terms, corresponding to the 
various possible time orderings of the three individual 
processes. 

To simplify the calculations in this paper, the elec
trons will not be treated explicitly; instead, a model 
interaction Hamiltonian Hi is used, in which the 
photon emits or absorbs a phonon directly. The strength 
of the interaction is chosen to reproduce Loudon's cal
culated scattering cross section. The physical system 
considered here thus consists of photons and phonons 
contained in a volume V (the volume of the crystal), 
interacting through Hi. It is convenient to describe the 
system in the notation of second quantization. We intro
duce creation (annihilation) operators a,t(k)(a^(k)) 
that create (annihilate) one photon with wave vector 
k and polarization rj.9 These satisfy the usual Bose-
Einstein commutation relations, 

[ a , ( k ) , a / ( k / ) ] = ^ 5 k V , (1) 

where d is the Kronecker delta. The permissible wave 
vectors form a discrete set because of the finite volume, 
and the index rj takes on two values that specify the 
two independent states of polarization. The unper
turbed photon Hamiltonian is 

Ha= Zk,(te*)W(kK(k)+i], (2) 
where c is the speed of light. Equation (2) shows the 
equivalence between the radiation field and an as
sembly of uncoupled harmonic oscillators. 

In a similar manner, the lattice vibrations are de
scribed by creation (annihilation) operators b\^(q)(b\(q)) 
that create (annihilate) one phonon with wave vector 
q in the branch X. These operators also satisfy the Bose-
Einstein commutation relations, 

[6x(q),M(q/)]=8xv8q,'. (3) 

For simplicity, we shall treat only lattices with two 
atoms per unit cell; in this case, the vibration spectrum 
has three acoustical branches and three optical 

8 (a) R. Loudon, Proc. Roy. Soc. (London) A275, 218 (1963); 
(b) R. Loudon, Advan. Phys. 13, 423 (1964). 

9 The quantization of the electromagnetic field is treated in 
W. Heitler, The Quantum Theory of Radiation (Oxford University 
Press, Oxford, 1954), 3rd ed., Chap. I and II. A particularly clear 
discussion of the polarization of plane electromagnetic waves may 
be found in J. D. Jackson, Classical Electrodynamics (John Wiley 
& Sons, Inc., New York, 1962), pp. 205-207. 

branches.10 This work is restricted to optical modes, 
because the scattering from the acoustical modes 
(Briliouin scattering) is generally much weaker. The 
lattice Hamiltonian HL is assumed to be the complete 
phonon Hamiltonian including both harmonic and 
anharmonic terms, but neglecting the effect of 
imperfections. 

The total Hamiltonian for the photon-phonon system 
is 

H=H0+Hi, (4) 

where Hi is considered as a perturbation on the un
perturbed Hamiltonian 

Ho=HR+HL, (5) 

The form of Hi is taken to be 

HT= E E «,a)«/(-10 
11 'q i?i?'X 

X[^(q)+Jx+(-q)]vx5i+ i '+ q >o, (6) 

in which a photon emits or absorbs a single phonon. In 
Eq. (6), the potential v^\ describes a transition from 
an initial state with a photon of polarization -q to a final 
state with a photon of polarization r?'; the associated 
phonon belongs to the branch X. Strictly speaking, dif
ferent potentials are associated with the emission and 
absorption of phonons, but the distinction is not im
portant because only the dominant Stokes process is 
considered here. For calculations later in this work, it is 
important to introduce unit polarization vectors t\v for 
the photons and eqx for the phonons. The model po
tential may then be written in terms of the Raman 
tensor Ru>* 

^ ' X = g(wj^ 'W qx)"~ 1 / 2 E (€ ln )*(^ - l ' i » '* ) i ' («qx) i^ i i ' / , (7 ) 
ii'j 

where the indices ii'j refer to the Cartesian axes of the 
crystal.11 Here c*)i is the frequency of a photon with 
wave number I, and a>qx is the frequency of a phonon 
with wave vector q in the branch X. The constant g is 
given by 

g= (2we2/m2ah) (h/2MN)1*, (8) 

where e,m are the charge and mass of the electron, a is 
the lattice spacing, M is the reduced mass of the two 
atoms in the unit cell and N is the total number of unit 
cells in the crystal. We shall frequently use the 
abbreviation 

*„< X ^E («,)i(*.iv*)*(«qx)/R»'', (9) 
ii'j 

and the potential becomes 

^^x=g(o)zcoZ/coqx)-1/2^^x. (10) 
10 A general discussion of phonons may be found in J. M. 

Ziman, Electrons and Phonons (Oxford University Press, Oxford, 
1960), Chaps. I and III . 

11 An extensive table of the Raman tensor for various crystal 
symmetries is given in Ref. 8(b), pp. 440-447. 
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It is essential to use time-dependent perturbation 
theory since space and time correlations are the quan
tities of ultimate interest. For this purpose, the inter
action representation12 is most convenient, in which the 
time dependence of an operator 0 is governed by the 
unperturbed Hamiltonian Ho 

O{t) = exp(iH0t/h)O exp(-iH0t/h) . (11) 

Thus the time-dependent photon and phonon operators 
are 

a7i(kj) = exp(iHRt/ti)ari(k) exp(~iHRt/h) 
= a„(k) exp(—io)kt) , 

ix(q,0 = exp(iHr
L//*)6x(q) exp(-iHLt/h) , (13) 

where the commutation relations Eq. (1) have been 
used to derive the second line of Eq. (12). The standard 
treatment of phonon processes uses a somewhat dif
ferent representation,10 in which the time development 
of the phonon operators is governed solely by the har
monic part of the lattice Hamiltonian. In contrast, 
Eq. (13) contains the full lattice Hamiltonian and is 
particularly useful for the study of lifetime effects. 

In the interaction representation, a state at time t is 
obtained from the same state at to by the application of 
an operator U(t,to), 

|*)=Wo)|*o>. (14) 

In particular, the final state | / ) after the scattering has 
occurred is obtained from the initial state | i) before the 
scattering by Eq. (14), 

\f)=um\i), (is) 

where t(to) is long after (before) the scattering event. 
The operator U may be expanded in powers of Hi in the 
following manner: 

J to 

xff dt'dt"(HT(t')Hi(t"))++ • • •, (16) 

where the subscript + means that the operators are 
positively time ordered, from right to left in ascending 
order. 

The incident beam is assumed to be well collimated 
around a momentum hp (p means wave vector, not mo
mentum). The initial state \i) represents a given state 
of both the target and the beam. An ensemble average 
is taken over the target and beam states at the end of 
the calculation. For the target, this is merely a thermal 
average; for the beam, the ensemble depends on the 
details of the light source. 

12 See, for example, S. S. Schweber, An Introduction to Rela-
tivistic Quantum Field Theory (Row, Peterson and Company, 
Evanston, Illinois, 1961), pp. 316-338. 

Q The formulation described in this section will now be 
L- used to calculate the correlation functions of the scat

tered beam. 
e 
e III. AMPLITUDE CORRELATION FUNCTION 

v It is useful to introduce an operator <p{yt) that anni
hilates one photon at the space-time point yt, 

S *(y*)= V~m E M *±MKt)eik'*, (17) 

x where the origin of coordinates is in the crystal. The 
polarization of the annihilated photon lies along the 

v direction of the vector <p. By definition, the amplitude 
' correlation function is13 

J (/k+(y2/2)^(yi/i)|/). (18) 

As a preliminary step, it is simplest to compute the 
quantity 

\ ?(D I/>=*>(! W W ) , (19) 

where the abbreviation 1 has been introduced for 
(yi/i). The interaction Hamiltonian HT that produces 

c Raman scattering is weak, and the perturbation ex
pansion Eq. (16) for U may be used. Since yi lies out 
of the path of the incident beam, the first term of 

) Eq. (16) does not contribute, and Eq. (19) becomes 

> r* 

> «Kl)l/>=-G/*)*(l)/ dt'HxMli), (20) 
J to 

I where higher order terms have been neglected. If only 
the Stokes process is included, Eq. (20) may be written 
explicitly as 

» ft 
p(l) | />=- (* /*V 1 ' 2 ) E E / <ftV<*yi-«*'i> 

kll ' SM'X J t0 

Xek^(k)^(MO^+(-lr,0 

x ^ a + r ^ ' K ^ U ) , (21) 

where Eq. (12) has been used to replace a$(k,0 by a$(k). 
The point yi is many wavelengths from the crystal, 

and it is permissible to make an asymptotic evaluation 
in this limit.4 The sum over k is replaced by an integral 
(Ek~~* (2ir)~W%fd3k)) and the angular integration is 
performed with the asymptotic formula 

dQke
ik*yF(k)= (2T/iky)eikvF(y) , (22) 

where k and y are unit vectors. Equation (21) then 
vanishes unless —V—ky\ and rj'= J, because the incident 
beam has no photons of momentum Myi. With this 

13 The correlation functions, Eqs. (18) and (42), when averaged 
over quantum states, are identical with those considered by 
Glauber in Ref. 3. 
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simplification, Eq. (21) reduces to 

I kdk dtf 

Jo J to 

71/2 

*( i ) l />=~——EE 
fiy (2TT)2 *X in 

X a ^ W i , W G - ^ i , *'K«x|*>. (23) 

The frequency of the optical phonons for small q is 
essentially independent of q. Hence, in Eq. (23), the 
exponential dependence on k is given by exp\jk(yi—ch 
+ct')~]. The integral over k may be evaluated approxi
mately4 by setting &=&!==/—c-1cox except in the expo
nent ; this yields 

Jo 
kdk exp\jk(yi--cti+ct')']f(k) 

-hfik^lirbiyi-ch+ct') . (24) 

The delta function can then be used to perform the 
integration over f, with the result 

?(DI/>= 
71/2 

• E X ^ i S y i ^ 1 - ^ 
2irfiy\C $x u 

X^(k1)a r ?(l)^t(k1)&x t( l_k1 , riK«x|*>, (25) 

where ki=&i#i, and n is a retarded time 

T I = / I — y i / c . (26) 

The calculation of the general amplitude correlation 
function is now straightforward. If the photon polariza
tion is measured along the directions Hi and $2, Eq. (18) 
becomes 

< / | ^ ( 2 ) - ^ r ^ ( l ) | / > 

Vfak2 
E E (d2-eyi*'*)(4i-eyi€) 

(lirhcYyiy* *x«'X' i*iv 

Xexpp/(j i— c/i)—i/'(y2— d2)>,'*'X'**tox 

X <i IJX' (V-k2, T 2 ) ^ ( k 2 ) o / ( l ' )^+ (k2) 

Xa l (k 1 )^ ( l )^ t (k 1 )& x t ( l -k 1 , TI) 11>. (27) 

The initial states of the beam and target are inde
pendent, so that the matrix element separates into two 
factors. Furthermore, the initial state contains no 
photons of wave vector k i and k2; with the use of the 
commutation relations, the amplitude correlation func
tion simplifies to 

Vkja 
E Eexpp/{yi—y2—c(h— / s)}] 

X( e y 2 r*^2) (^ i -e y i £ ){ t |V( l )a , ( l ) | i> 

X<*' |5va-k2, r 2 )5xt ( l -k I ; n ) | i K r v X 5 x - (28) 

Scattered photon 

FIG. 2. Kinematics 
of a Stokes process 
in Raman scattering. 

Phonon 

In the special case that yi/i=y2^2 and tii—fit, the 
amplitude correlation function is particularly interest
ing, for it then represents the density of scattered 
photons at yih, polarized along $1. If, in addition, we 
sum Hi over the three perpendicular coordinate direc
tions, Eq. (28) measures the photon density, independ
ent of polarization, and may be rewritten as 

< / | * t ( l ) - * ( l ) | / > 

;EEI^x|2(i|a;(lK(l)iO 
(2rhcyi)2 *x i„ 

X(iMl~K r i)6x+(l-k l 5 n) |f> , (29) 

where X' has been set equal to X because the two phonon 
operators refer to a common time. The thermal average 
over the target states merely replaces the phonon 
matrix element by (ti\(l—ki)+l), where the number 
operator is defined by n\(q) = b\f (q)b\(q) and (•••) 
indicates an ensemble average. If the beam is well 
collimated and has a well-defined frequency, as in a 
gas-laser beam, the sum over I97 may be replaced by the 
single term li?=pf, where pf is the wave vector and 
polarization of the incident beam. In this limiting case, 
the density of scattered photons is 

</l^(i)^d)iy> 
= Vg2(a>kl/a>p)(2Thc2

yi)-
2 

X<t|a rt(p)a r(p)|f> 

X E ^ x c o x ~ V x + l ) | ^ x l S (30) 

where Eq. (10) has been used to write v in terms of the 
Raman tensor. 

The sum over polarizations must be calculated for a 
specific crystal symmetry. Loudon11 gives a detailed 
treatment of the form of Ru>* for the different point 
groups. In the case of diamond, Ru>3'—R if all three 
indices are different, and is zero otherwise. As a specific 
example, consider the incident beam along the z axis 
of the diamond crystal, with the photon scattered at an 
angle \pi in the xz plane. This is shown in Fig. 2, where 
the approximation wx^cp, ki=p has been made. For 
small wave vectors, one phonon mode is longitudinal 
and two are transverse, all with a single degenerate fre
quency. If the incident photon is polarized at an angle 
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X with respect to the xz plane, it is not difficult to show 
that 

=«0-1<«o+l>|i?|8{l+cos2
x sinVi} , (31) 

where the subscript 0 refers to the degenerate optical 
phonons. 

In an actual experiment, Eq. (29) must be integrated 
over the sensitive volume of the finite detector of area 
Si, width wi, and efficiency 71. Furthermore, the re
sponse time of the detector must be taken into account 
through a response function Li(h). We shall follow 
Goldberger and Watson4 and write the counting rate 
in the detector as 

Gi= f (1X/I ^(1)-*>(!)!/>, (32) 

where 

( l ) - - - s / dhUiTx-h) <Pyiy(jd (33) 

For subsequent calculations, it is useful to introduce the 
Fourier transform Bi(<a) of the response function, 

U (t) = (2T)-1 / • duBMe-™*. (34) 

An ensemble average must be taken over the initial 
states, and the measured counting rate is 

(GI)=-TX[_PBPTG{] , (35) 

where p# (py) is the density matrix of the incident beam 
(target). Since the target is in thermal equilibrium, pr 
is merely the canonical density matrix at a fixed tern-
perature. The effect of the ensemble average is to replace 
<^l% t(pK(p)!i)inEq. (30) by 

(% t(p)%(p))=Tr[p^(p)a r(p)] , (36) 

If the detector is small, the variable y\ may be replaced 
by the distance Y\ from the crystal to the detector. 
With Eqs. (30) and (32)-(36), the mean counting rate 
is 

Si Vg <o* 
(Gi^BiiO)—wl7l (a?(p)%(p)> 

Fi2 (2irhc2)2 copcoo 

X < ^ o + l ) | ^ | 2 { l + c o s 2
x s i n V i } . (37) 

For most purposes, B±(0) may be set equal to one, which 
is valid for a low-pass filter.4 

The incident flux may be calculated from the quan
tity (i\ <pf(yt)'<p(yt)\i); from Eq. (17), this is 

(i\ J(yt)• <p(yt) I i)= V-KiW(j>)otb) Ii) • (38) 

The average number of particles incident on a unit 
area per unit time is the flux F, where 

/ ^ F - W ( P H ( P ) > - (39) 

It is also convenient to consider a calibrated detector, 
such that yi—c/wi. The mean counting rate then 
becomes 

(G1)=B1(Q)-
WAi 

•F<no+l> 
0)pO)Q 

X|#|2{l+cos2
xsinVi} , (40) 

which reproduces Loudon's result.8 The differential 
cross section is 

da/dQ= (GiX^iWSiFr2^}-1 

_e4F2co f c l^0+l) | i^1 2 

2h8fn4a2MNc*a>pu0 

{l+cos 2
x s inVi} , (41) 

where Eq. (8) has been used. The numerical value of 
da/d2 is approximately 10~6—10~7 cm2/sr for a crystal 
volume of 1 cm3.8 I t can be seen from Eq. (41) that the 
number of scattered photons is proportional to the 
volume of the crystal. 

IV. INTENSITY CORRELATION FUNCTION 

The intensity correlation function is defined as 

(f\Hr vHWv *KWv *(1)*2- <P(2) [ f) , (42) 

where the photon polarizations at 1 and 2 are measured 
along the directions $1 and n%. A schematic experimental 
apparatus to measure Eq. (42) has been shown in Fig. 1. 
The calculation proceeds as in Sec. I l l , but is considera
bly longer. The operator U must now be expanded to 
second order, because two separate scattering events 
are involved. I t is simplest to consider the quantity 

nv <p(l)n2-<p(2) | / ) 

X [ [ dt'dfiH^HrinUi), (43) 

where Eq. (16) has been used. The evaluation of 
Eq. (43) is similar to Eqs. (20)-(26), and the result for 
a double Stokes process is 

nvcp(l)nr<p(2)\f) 

V 
Z E kik2exp£il(yi--ct1) 

+iV (j2— ct2)l (ni • cyi?) (n2 • £y2r) 

X<V (l'W+ (k2)6v+ (V-k2, T2)]+ 1 i) 

X^xVS'X' (44) 

The factor (2!)"1 has been cancelled by the two ways 
of combining the annihilation operators in the factors 
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<p with the creation operators in the factors Hi, The 
time ordering of the photon operators in Eq. (44) is 
irrelevant, since the incident and scattered photons lie 
in different directions (and thus commute). 

The intensity correlation function can be computed 
from Eq. (44) with no difficulty. The matrix element 
between initial states factors into one containing twelve 
photon operators and one containing four phonon 
operators. The photon matrix element may be simplified 
because the initial state has no photons with the wave 
vectors lying along $1 or $2. We shall sum independently 
over the three perpendicular directions of $1 and #2, so 
that the polarization of the scattered photons is not 
measured. The intensity correlation function then 
becomes 

(f\<pH2)<pHl):<?(l)<?(2)\f) 

V2 

(2irho)4(y1y2)2 «' */*xv luiv 

X<i|a/(!0^t(l)^(l)^(10K) 

X{<; | [Ml , -k2 , r2)bli(l~kh ri)]_ 

X [ V ( l - k i , r i ) V a / - k 2 , T2)~]+\i) 

+ exp[i(l—r){yi—y2—c(ti—t2)}'] 

X<i|CV(l"k2,r2)JM(I,-ki,ri)3-

X C V a - k ^ r O M a ' - k ^ r O l - l f ) 

X^>'%'£M*^x*y*'X'} • (45) 

Here the double scalar product implied by : is taken 
between the pairs of operators at the same point, and 
the subscript — means negative time ordering. The two 
terms are conventionally described as "direct" and 
"exchange" respectively. Equation (45) also contains 
additional terms proportional to dj^^d^, which con
tribute only when the two detectors in Fig. 1 are re
placed by a single detector. These terms lead to a 
negligible correction of order Y22rl(pVllz)~2<£l, after 
Eq. (45) is integrated over the finite size of the detector. 

The narrow width of the laser beam permits replace
ment of the sums over I17 and IV by the single term pf. 
For a typical beam frequency width of Aw* ~ 107 rad/sec, 
this approximation requires that \yi~ y2— c (h—tz) \ 
<g,c/Aa)B~ 3X103 cm. The remainder of this paper is 
therefore limited to spatial separations | yi—y2 | <3C3 X103 

cm and temporal separations \h~ ^ ^ ( A C O J S ^ ^ I O - " 7 

sec. In fact, the lifetime of the vibrational states, which 
is the delay time of interest, is usually less than 10~9 

sec. With this simplification, the two terms within curly 
brackets in Eq. (45) are equal, and the intensity corre
lation function depends on only a single phonon corre
lation function. The correlated counting rate Gu may 
be found by integrating Eq. (45) over the sensitive 
volume and response function of the two detectors. In 

the notation of Eq. (33), the ensemble average of Gu is 

{G12) = I(1)J(2)TTZPBPT 

X { / | ^ ( 2 ) ^ ( 1 ) : ^ ( 1 ) 9 ( 2 ) | / ) ] . (46) 

V. TARGET CORRELATIONS 

The information about the target correlations is con
tained in a single phonon correlation function, defined 
by 

CW'X'(qiri,q2T2) 
= T r { p r [ V (q2,r2)^(qi,ri)]_ 

X[6x t(qi Jr1)5v t(q2,r2)]+} , (47) 
where 

q * = p - k , . (48) 

Although a general evaluation of Eq. (47) is difficult, it 
is possible to study certain limiting cases. In the har
monic approximation, the phonon Hamiltonian is 

HL»= Z , x (^o,x)[&x t(q)6x(q)+|] , (49) 

and the time dependence of the phonon operators is 
given by Eq. (13) as 

Jx(q,0 = »x(q)<r<»w«; bf(q,t) = bf(q)e""M. (50) 

The different vibrational modes in Eq. (49) are un
coupled and undamped. This approximation is there
fore unsuitable for the study of lifetime effects. 

The phonon correlation function in the harmonic 
approximation may be calculated with Eq. (50). I t is 
easiest to evaluate the diagonal matrix elements first 
and then to take the thermal average. The result is 

Cfl\^y((llTlyq2T2) 

= <»x(qi)+l><»x<(q2)+l> 
X {5x /A

/
iu' + 5x/*'5x'J^q1q2 

Xexp[i(«qix—«q2v)(n—r2)]} . (51) 

The following property of the thermal averages has 
been used in the derivation of Eq. (51): 

(n*) = [ £ Ss
2e-W" (S+1/2)][Z ,*-&» (H-i/2)]-! 

= 2<»>H-<»>, (52) 
where 

< » > = ( ^ * - - l ) - 1 (53) 

and ft is the usual reciprocal temperature. 
The first term on the right side of Eq. (51) represents 

the uncorrected portion of C, while the second term 
contains the true phonon correlations. The factor Sqiq2 

reflects the harmonic approximation, in which the dif
ferent modes are uncorrelated. The most interesting 
feature of the correlated portion is the presence of 
oscillations at the difference frequency of the various 
modes. For a nonpolar crystal such as diamond, the 
three optical modes are nearly degenerate for small q, 
and the oscillations in Eq. (51) have a low frequency. 
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FIG. 3. Apparatus to measure phonon lifetimes with 
(a) temporal delay (b) spatial delay. 

For a polar crystal such as NaCl, the longitudinal mode 
lies substantially higher than the transverse modes, and 
the oscillation frequency is too high to be observed. In 
a real solid (with anharmonic forces or crystal imper
fections), the correlated part of C is damped like 
exp(—r |n— T2I), and the Kronecker delta in qi and 
q2 is considerably broadened. 

The exponential damping suggests a direct method 
of measuring phonon lifetimes. If the two detectors in 
Fig. 1 are replaced by a single detector, as in Fig. 3(a), 
the correlated counting rate measures the autocorrela
tion function. As the delay time is increased, the corre
lated part of C becomes small, providing a measurement 
of T, the inverse lifetime. A second method is shown in 
Fig. 3(b), where a half-silvered mirror splits the scat
tered beam. As one detector is moved along the direction 
of the beam, the damped term again becomes small. 
Since the phonon lifetimes are very short ( ~ 10~9—10~10 

sec for Z<<C300oK), the second method is simpler, in
volving paths of ^10— 1 cm. Unfortunately, the 
method becomes impractical at room temperatures, 
when the lifetimes are less than 10~n sec. Phonons in 
different directions are correlated within a finite solid 
angle Oc; the detector in either Fig. 3(a) or Fig. 3(b) 
should subtend a solid angle comparable with or less 
than Oc. 

In the harmonic approximation, it is possible to 
evaluate the polarization sums in the calculation of 
(Gu). The relevant part of Eq. (45) is 

X(Wx' (q i r i ,q 2 T2) . (54) 

The structure of the Raman tensor for diamond has 
already been discussed in the evaluation of Eq. (31). 
With the expression Eq. (51) for the phonon correlation 
function, Eq. (54) at equal retarded times reduces to 

IRI *(n0+1)2[{ l + c o s 2
x sinVi} {l+cos2x sin2^} 
+Sqiq 2 {l+cos 4

x s inVi}] , (55) 

where, as in Fig. 2 and Eq. (31), the incident beam is 
polarized at an angle x with respect to the xz plane, and 
the two photons are scattered through angles \p\ and $2 
in the same plane. 

The phonon correlation function may be treated more 
generally if ri=T2, since the equal-time commutation 
relations Eq. (3) are then valid. The time ordering 
becomes unnecessary, and Eq. (47) may be written as 

C/**,*'X'(qiT,q2T) 

= M x v < C « x ( q i ) + l I » v ( q 2 ) + l ] > , (56) 

where we have assumed that qi5^q2. In the limit of 
equal times, Eq. (47) thus measures the correlation 
between the density of phonons with different wave 
vectors and polarizations. In actual crystals, the 
phonons have a finite lifetime F - 1 , and are localized 
within a distance A—VgT-1, where vg is the group ve
locity. A wave packet of dimension A requires a spread 
Aq?x A"-1 in the wave vectors, which means that phonons 
with wave vectors qi and q2 are correlated if 
I Qi—Q2I <A - 1 . The dispersion curve for optical phonons 
is very flat, so that vg and A are both small. Hence cor
relations between phonons persist for widely separated 
wave vectors. 

A possible experiment would measure the variation 
in correlated counting rate with the angular separation 
of the two detectors in Fig. 1. The counting rate de
creases for angular separations larger than the range of 
correlations. Equation (56) shows that diamond is not 
a suitable choice for this technique, because the average 
number of phonons is much less than one. A better sub
stance would be (for example) GaP, which has a pair 
of strong first-order Raman lines at an energy of 
^400 cm-1.14 A temperature of 300 °R corresponds to a 
mean occupation number (w)«0.16, so that correlation 
measurements would indeed be feasible. 

VI. FLUCTUATIONS IN COUNTING RATE 

In any actual experiment, the correlated counting 
rate (Gu) fluctuates, and it is important to estimate the 
counting times necessary to achieve a reasonable signal 
to noise ratio. Measurements of intensity correlations 
in scattering experiments are usually limited by the low 
intensity of the scattered beam. As we shall show, how
ever, an intense laser source allows counting times the 
order of 50 /xsec. The fluctuations in (Gu) have been 
studied by Goldberger and Watson,15 and their results 
are applied in this section. 

14 M. V. Hobden and J. P. Russell, Phys. Letters 13, 39 (1964). 
15 M. L. Goldberger and K. M. Watson (to be published). 
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I t is convenient to define a quantity 

G a v ( r ) = / " GniTitTi+MTx, (57) 
J o 

whose ensemble average is 

<G a v(r))=r<G1 2(r)>, (58) 

because the beam intensity is constant during the meas
urement interval. The fluctuation in the correlated 
counting rate is determined by 

<Gav
2)-<Gav>2, (59) 

and the signal-to-noise ratio is 

S/N= (Gav){(G^)~(Gavn-w. (60) 

The form of Eq. (59) depends markedly on the experi
mental situation. For Raman scattering, the different 
parts of the crystal radiate in phase, so that the ap
proximation of a "point source" is valid in the calcula
tion of Eq. (59). In addition, the beam spectrum is 
narrow, in the sense that 

C2>WAOOB , A T V A C O ^ I , (61) 

where Ar r is the response time of the detector. Equa
tion (61) is well satisfied for typical values: A7>~10~10 

sec, w~ 1 cm, AOOB— 107 sec-1. 
For our proposed experiments, Eq. (59) is dominated 

by a single term and is given approximately by15 

<Gav2>- <Gav>
2~ 2(G1)(G2)TM, (62) 

where the inequality 

| Y1-Y2-C(T1-T2)\«C(AG)B)-1~3X10* cm (63) 

has been assumed. The quantity M may be estimated as 

M~ min{ (ATV)-1 , cw~1} ~ 1010 sec"1. (64) 

I t is most convenient to use a gas laser, which can be 
made to operate in a single mode; the intensity from 
such a laser is «10 1 7 photons/sec. From Eq. (41), the 
number of scattered photons per unit solid angle is 
«101 0 sec-1, so that <Gi)«(G2)~108 sec"1, for a solid 
angle of 10~2. The magnitude of (Gu) may be estimated 
from Eqs. (45) and (46) as 2(Gi)(G2), and the signal-
to-noise ratio is 

S/N^2(G1)(G2)T{2(G1)(G2)T/ATr}-112 

«(2r ) 1 / 2 X10 3 . (65) 

As usual, S/N increases as T112. Counting times 
« 5 X 10~5 sec are needed to obtain S/N^ 10. 

A solid-state laser is not suitable for Raman-scatter
ing experiments (although it is more intense than a gas 
laser), because it operates in several frequency modes 
simultaneously. Furthermore, stimulated Raman emis
sion can occur at very high intensities, which would 
completely obliterate any effects of correlated counting 
rates. 

The technique of measuring target correlations with 
scattered beams is applicable, in principle, to many 
different situations. We have shown that a gas laser 
gives practical counting times (the order of 50 /isec) 
for intensity correlations with optical phonons. Meas
urements of photon correlations might also be feasible 
with other scattering mechanisms, such as acoustical 
phonons or spin waves.8 

ACKNOWLEDGMENTS 

I should like to thank K. M. Watson for suggesting 
this problem, and for many important comments. The 
final formulation has benefited from discussions with 
M. Bass, M. L. Cohen, Y. R. Shen, and M. Tinkham. 
I am grateful to R. Loudon for comments on the manu
script, and for the suggestion of GaP as a promising 
material for correlation measurements. 


