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In this paper we examine the lifetime of the normal modes of a system of noninteracting paramagnetic 
spins coupled to phonons. It is found that scattering from spatial fluctuations in the % component of the 
spin density is the most effective means of attenuating the excitations. If the spin-phonon coupling constant 
is sufficiently large, scattering from the spatial fluctuations in Sz may dominate absorption by the direct proc­
ess. A simple argument suggests that the Cr4+ ion may couple to the lattice strongly enough for this to occur. 

I. INTRODUCTION 

IN recent years a number of authors have discussed 
the normal modes of coupled spin-phonon systems. 

Kittel1 has studied the normal modes of a system of 
ferromagnetic spins coupled to phonons, while Jacobsen 
and Stevens2 have examined the properties of noninter­
acting paramagnetic spins which are coupled to the 
lattice motion. 

The elementary excitation spectrum of a spin system 
not coupled to the lattice may be described by a disper­
sion relation oo8(k), where k is the wave vector of the 
excitation and ho)s(k) is the excitation energy. We may 
also describe the phonon spectrum of the lattice by a 
dispersion relation oop(k). In general these dispersion 
relations will intersect for some value of k = kc. From 
Refs. 1 and 2, we find that the coupling between the 
phonons and the spin system leads to new dispersion 
relations which repel each other in the vicinity of kc. 

In Fig. 1 we sketch the dispersion curves which 
describe the normal modes of a system of paramagnetic 

FIG. 1. The dispersion relations for a system of noninteracting 
spins coupled to acoustical phonons. 
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spins coupled to acoustical phonons. We denote the 
Larmor frequency of the spins by coo and the velocity of 
sound by c. In the vicinity of kc, the normal modes 
contain a strong admixture of both spin and lattice 
motion. The dispersion relations of Fig. 1 describe a 
system of noninteracting spins and are, in essence, a 
special case of the more general relations obtained by 
Kittel1 for a system of spins coupled by exchange 
interactions. 

Measurements of the phase velocity3 and the group 
velocity4 of an ultrasonic wave propagating in MgO 
doped with Fe2+ have been performed. The measure­
ments were performed with frequencies in the vicinity 
of the Larmor frequency and at liquid-helium tempera­
tures. The experiments are consistent with the 
theoretical relations derived in Refs. 1 and 2. 

In order to derive the excitation spectrum of Fig. 1, 
it is necessary to neglect fluctuations in the z component 
of the spin density as well as certain nonlinear terms in 
the equations of motion. The fluctuations in the spin 
density and the nonlinear terms will scatter the excita­
tions and a finite mean free path will result. 

In this paper we study the mean free path of the 
normal modes which results from the terms mentioned 
above. We find that scattering from the fluctuations in 
the z component of the spin density is the most effective 
means of damping the excitations. 

If the spin-phonon coupling constant is sufficiently 
large, scattering from fluctuations in Sz may dominate 
absorption by means of the direct process. For a sample 
which contains 1019 spins/cm3, we estimate this may 
occur if the spin-phonon coupling constant G>10~12 

ergs.5 

A crude estimate indicates that the Cr4+ ion may 
couple to the lattice strongly enough for the scattering 
from spatial fluctuations in Sz to dominate the 
attenuation. 

II. THE HAMILTONIAN AND THE 
EQUATIONS OFjMOTION 

We shall employ a spin-phonon interaction which is 
linear in the strain amplitude and the spin variables. 

3 R. Guermeur, J. Joffrin, A. Levelut, and J. Penne, Phys. 
Letters 13, 107 (1964). 

4 N. S. Shiren, Phys. Rev. 128, 2103 (1962). 
5 We employ the notation of C. Kittel, Phys. Rev. Letters 1, 

5 (1958). 
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We expect that our conclusions would not be signifi­
cantly altered if an interaction quadratic in the spin 
variables were employed.6 

We simplify the problem further by neglecting the 
angular dependence in the spin-phonon coupling term, 
and we consider only acoustical phonons with the 
simple dispersion relation cok=ck, where c is the velocity 
of sound. 

For convenience we assume the system to have unit 
volume and unit density, and we choose units so that 
ft=l. 

Our Hamiltonian has the form 

k 

+iy E HV^yPZat-a-fle*-^.™ 
k , n 

+iy E Ml/2"k)1/2[ak-a-kt>'k-]I'V',) 

k , n 

k , n 

+woI>*(re). (1) 
n 

The position of the spin n is denoted by xn and the 
components of its spin are denoted by Si(n). The phonon 
annihilation and creation operators are denoted by a\ 
and a_kf, respectively. The operators satisfy the usual 
commutation relations 

[>; (n),s/w)]= idn,m€ijkSk(n) and [ak,ak't]=i5kk>. 
We will find it useful to write the Hamiltonian in a 

different form. We follow the procedure of Herring and 
Kittel7 by introducing the spin densities 

&(r)=23„*<»>8(r-r»). 

One may easily show that the spin densities obey com­
mutation relations of the form 

[5<(r),5y(r')]=fe</*5Jb(r)8(r-rf). (2) 

We also introduce the field variables 

7r(r) = i Z k ( K ) 1 7 2 ^ - ^ ] * * - ' . 

The variables <p(r) and 7r(r) satisfy the usual boson 
commutation relations 

and 

[v(r),T(r')] = «8(r-rO. (3) 
6 For example, consider an ion with spin 5 = 1 . If the ion is 

placed in a cubic environment, the states with Sz=±l will be 
split off from the state with 5*2=0 by the spin-orbit coupling in 
zero magnetic field. If we confine our attention to the manifold 
spanned by the states ^ = ± 1 , the quadratic form SiSj may be 
replaced by a linear combination of Pauli matrices. The interaction 
is then linear in the effective spin variables. 

The normal modes of a system of spin-one ions coupled to the 
lattice has been discussed in detail in Ref. 2 for the case when the 
three states Sz = 0, dbl are degenerate in zero magnetic field. 

7 C. Herring and C. Kittel, Phys. Rev. 81, 869 (1951). 

The Hamiltonian of Eq. (1) may now be written 

# = Aj7rt(r)7r(r)+^2V^(r).V^(r)}^r 

+ - E [Tr(T)Si(r)d*T+a>o[s2(t)dh. (4) 
C i=x,y,z J J 

If we employ the Hamiltonian of Eq. (4) and the 
commutation relations of Eqs. (2) and (3), we find the 
following equations of motion: 

d<p/dt=^+(y/c) £ Si] 
i—x,y,z 

dTr/dt=c2V2<p; 

dSx/dt = —o)oSy+ (y/c)Tr(Sz—Sy); 

dSy/dt=+o)QSx+ (y/c)ir(Sx—Ss); 

dSz/dt=(y/cMSySx). (5) 

We rearrange these equations and we find the equa­
tion which describes <p(r,/). After some manipulation 
we obtain 

{(a4/^4)+coo2(^2/^2)-c2(a2/a/2)v2 

-c2coo2V2-272coo(52}V2}^-272coo{5,-(5,}}V2^ 
+y2a>0Sx{ VV+<rV}+y2a>0Sy{ V2<?-<rV} == 0. (6) 

We have neglected some terms of o (yz) in the deriva­
tion of this result. In order to simplify the discussion 
which follows, we write Eq. (6) in the form 

£o<P+£8<P=0, (7) 

where £0 is the linear operator contained in the curly 
brackets of the first part of Eq. (6) and <£s<p denotes the 
nonlinear terms of the remainder. 

Suppose we neglect the terms £s<p for the moment. 
If we assume (p= <p(0) exp[i(k-r—co/)], then we find the 
secular equation 

(co2-co0
2) (co2-^2)+272coo^2{52)=0. (8) 

Equation (7) has the same form as the dispersion 
relations discussed in Refs. 1 and 2. The two branches 
are sketched in Fig. 1. The quantity A indicated in 
Fig. 1 is given by 

A=(( 7 W2. 2 ) | (^ ) | ) 1 / 2 . (9) 

The effect of spin-spin interactions may be included 
in a phenomenological manner by replacing the fre­
quency co in the equations of motion for Sx and Sy by 
o)+iT, where T is the decay rate of the transverse 
components of the spin density. From this procedure2,4 

we find the usual expression for the lifetime from the 
direct process 

l/rd= {iry^k \ {Sz) \ /2^2)g(co-co0) , (10) 

where g(«)= (r/7r)/(co2+r2). 
We recall that {Sz) is the expectation value of the 
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spin density, so that (Sz) = n{sz), where n is the number 
of spins per unit volume. 

The nonlinear terms £s<p of Eq. (7) allow the incident 
wave to interact with the thermal motion of the spin-
lattice system. We shall compute the mean free path 
which results from these terms. 

Since one is generally concerned with excitations of 
wavelength long compared to the mean separation of 
the spins, the field cp and the spin densities may be 
treated as macroscopic continuous fields. We consider 
temperatures sufficiently high that kT>ooo, so the spin 
system may be treated classically. 

We will proceed by finding the Green's function 
G{x,t) which satisfies 

£0G(r,t) = 8(r)5(t). 

The scattered wave cps is then given by 

we find 

<ps(r,t)= / G ( r - r ' ; t-t')£s<p(r',t)dYdt'. (11) 

The integrand of Eq. (11) contains nonlinear terms 
of the form Si(r'/)<p(rf/). We write <p and the S/s as 
a sum 

^ ( r ' / ) = ^(0) e x p [ i ( q . r , - f i O ] + ^ ( t h ) ( r / / ) , 

where <po is the amplitude of the incident wave and 
<p(th) is the amplitude associated with the thermal 
motion. We retain terms linear in the impressed 
amplitudes *><°>, S»<0). 

If we assume £s(p is nonvanishing only over a volume 
Vs of finite spatial extent,8 we will find (ps(t,t)^l/\r\ 
far from the region Vs. We may then compute the 
energy per unit time which flows through a large 
sphere. This rate will be independent of the size of the 
sphere and will be proportional to Vs. We then find the 
mean free path of the incident wave. 

Before we become involved in the details of the 
algebra, it will be useful to discuss qualitatively the 
contribution from various terms of £s<p in order to sort 
out the part which scatters most strongly. For this 
purpose it will be useful to examine the form of the 
Green's function and also the structure of the integral 
of Eq. (11). 

III. THE GREEN'S FUNCTION; COMPUTATION 
OF THE LIFETIME 

We find the function G(r,t) which satisfies 

£0G(r,t) = 8(r)d(t). 

If we write (for a system of unit volume) 

rdQ rdQ 

q J 2ir 

iq-Tp—iQt 

8 The present discussion is patterned after the treatment of 
Rayleigh scattering by L. Landau and E. Lifshitz, Electrodynamics 
of Continuous Media (Addison-Wesley Publishing Company, Inc., 
Reading, Massachusetts, 1960), Chap. XIV. 

S(q,o)=C(ai-fli,(?)Xa,-o«,(?))?-
where £2i(#) and 02(g) are the two branches of the 
dispersion curve. Then 

G(i 
rdil giq-Tg—i&t 

q J 2TT [0 2-Oi 2(g)]p2 2-a2 2(?)] 

Since &i(q) and 122(#) are independent of the direction 
of q in the present model, we may perform the integra­
tion over the direction of q. I t will be convenient to 
write the result in the form 

G(r,0=-A-£ 
/ 

dQ,e~m 

2x|q | 

X-
s in |q | | r | 

l&-QHq)JP-M(a)~\ 
(12) 

In the course of the calculation we shall arrange the 
poles of the integrand so that the scattered wave obeys 
the outgoing wave boundary conditions. 

Suppose we send in a wave of wave vector k0 and 
frequency Qi(ko). The subscript i is a branch index and 
may be either 1 or 2. The general form of £s<p will 
then be 

1 rdQ' 
£s(p= T / —^(k'm^cka+ko.̂ -^w+fio^ 

(vsy* *> J 2w 
(13) 

The part exp[i(k0-r—S2;(&o)0[] occurs because we 
have taken £s<p to be proportional to the amplitude of 
the driving wave. The detailed form of ^(k ' ,^ ' ) may be 
found by consulting the equation of motion Eq. (6). 

We insert Eqs. (13) and (12) into the expression for 
the amplitude of the scattered wave. After some 
tedious but straightforward integrations, we find for r 
far outside the scattering volume Va 

<Ps(r,t) = 
(Vs) 1/2 

47r2|r| 

00 kV(kr-k0; Qi(k)-Qi(k0)) 

Gi(£)[Gi2(ife)-G22(ife)] 

Sl2(k)[222(k)-til2(k)~] 

•eikre~mi(k)tdk 

eikre~iQ2Wtdk\ 

(14) 

With this expression we can assess the relative 
importance of the various terms of £s<p. 

For definiteness we assume the incident wave k0 is 
on branch 1. We are also most interested in wave 
vectors ko such that k0 is near coo/c. 

If we set the index i= 1 in Eq. (14), we notice that 
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the integrand of the first term contains 

7(W-ko;Oi(A)-Oi(ifeo)) 

while the integrand of the second term contains 

V(kf-koMk)-Vi(ko)). 

From the equation of motion, we see that all of the 
terms which contribute to K(k,o>) are of order y2. Hence 
| F(k,co)|2^74 and the scattering will be weak unless 
we can find a term in V which allows the denominator 
COi2—02

2] to become small over an appreciable solid 
angle. The minimum value [Qi2—02

2] can assume is 
4COOA~Y. A process which allows the denominator to 
become small results in <ps^y and the cross section ^y2. 

We now examine the various scattering terms. Con­
sider first the last two terms of Eq. (6). These terms are 
proportional to Sx(r,f)(p(r}t) and Sy(r,t)(p(t,t), respec­
tively. Since we assume the wave vector of the incident 
wave is near OOQ/C, the wave consists of approximately 
an equal admixture of spin and lattice motion. Let the 
amplitude of the spin motion associated with the 
incident wave be denoted by Sa.(0)expp(ko'X—S2i(&0)0], 
Sy^ expp(ko-x— Q'i(ko)t)2 and let the amplitude of the 
lattice motion be denoted by <pm exppko-x—Oi(&o)0-

The last two terms of the equation of motion then 
lead to contributions to V(k,Q) proportional to 
S,<th)(k,u)«?<°>, ^th>(k,co)Sa<°>, etc. 

Since 6V t h ) (k,co) has an appreciable amplitude only 
for frequencies ~coo, the frequency Q2(k) of the out­
going wave is ^a>0+Oi(&o)~ 2o?o. But then the de­
nominator Q,£(k)—12i2(&) is of order coo2 rather than 
4Aco0. Consequently, terms of the form 5Vth)(k,co)<£>(0) 

or 5yth)(k,co)<p(0) result in only very weak scattering. 
The terms of the form <^>(th)(k,co)6,

a;
(0) also lead to a 

small cross section. There is strong scattering in the 
forward direction into a cone of half-angle ~A/coo 
(for A/coo<3Cl), however since the scattered energy is 
confined to a region of small angular extent, the total 
cross section is not large. A detailed calculation shows 
the cross section from this term is proportional to 73. 

The only remaining term in the equation of motion 
is the term proportional to Sz(t,t) — (Sx) = 5Sz(r,t). Con­
sider the frequency dependence of the Fourier transform 
&Sa(k,co). For a given k, we expect 56'2(k,co) to fall off 
rapidly as CJ becomes larger than the spin-flip frequency 
T which results from spin-spin interactions.9 Because 
T<<CA,10 we may consider Sg(r,t) to be static in time for 
the purpose of evaluating the integrals of Eq. (14). We 
are then examining the scattering from static spatial 
fluctuations in Sz. 

If we employ the above assumptions, only the first 
term of Eq. (6) contributes to <pg. The quantity 
V(kf— k0;fti(&)—Oi(&o)) is proportional to d(Qi(k) 

9 In this argument we neglect spin-spin correlations through 
the phonon field. A simple estimate suggests that such correlations 
would not affect the conclusions of the argument for the systems 
of interest in the present paper. 

10 For example, for Fe2+, A^IO9 rad/sec for a concentration of 
1019 cm"3, while r may be 106 or 107 sec"1. 

—^i(^o)) and the integral over k may be performed. 
We find 

(vsyi2 

4TT2 

X . 
Oi(*o)[Oi2(*o)-W(*o)](dOi/d*)(*o) | r | 

From the equation of motion we find 

F(q) = 27
2co0^o2^(q)^o. 

Then 

(vsyi2 

y2ccokQ
dS2 (k0f— k 0 ) <po 

X 
Q1(ko)(dtt1/dk)(ko)\yi2(kQ)-ti22(k)~] 

eiko\T\ 

X er*°i<*o)«. (15) 
| r | 

We may now compute the total energy/unit time 
which flows through a large sphere of radius R. From 
the Hamiltonian of Eq. (4) we know the energy density, 
and the group velocity of the outgoing wave is dQi/dk. 
To find the lifetime, we divide by the energy stored in 
the volume Vs. This procedure yields the following 
expression for the lifetime : 

1 1 yWh*f | Sz (fee/- k0) |2 (<ffl (r)/47r) 

r 7T3 O1
2(fe0)(^i/afe)(feo)[0i2(feo)-^22(feo)]2 ' 

To complete the computation, we need an expression 
for |5 , (q) | 2 . Now 

^ ( r ) = E n ^ ( ^ ( r - r . ) = [ l / ( F s ) 1 / 2 ] E q ^ ( q ) ^ q - r . 

From this we find 

sz(a)=CV(FS)1/2] £ n s,™*-**"*, 
so that 

\Sz(q) \2= ( 1 / 7 . ) Z n , m ^ > * 2 ( - V > ( r - - r „ ) . ( 1 6 ) 

We average Eq. (16) over an ensemble of systems 
and we assume no correlation between neighboring 
spins. This should be a valid procedure for our para­
magnetic spin system if the temperature is sufficiently 
high. Then (s,<»Wm)) = s*6nm and ( |5 2 (q) | 2 ) a v = (s2/Vs) 
X l ] n l = ns2, where n is the number of spins per unit 
volume. 

Our expression for the lifetime becomes 

1 1 yWh6ns2 

_ = . (17) 

r Tr3Q1
2(k0)(dn1/dk)(ko)Z^i2(ko)-222(ko)J 

We apply Eq. (17) to an excitation of wave vector 
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m/c, Then 
1 1 7W/W2 

We recall that A2= (y2no>Q\ (sM)\)/(2c2). 
The lifetime of Eq. (18) has the peculiar feature that 

it is independent of impurity concentration for ko= 0)0/c. 
As we increase the impurity concentration we increase 
the strength of the scattering potential. At the same 
time the gap A increases, so the denominator becomes 
larger. The lifetime is rigorously independent of 
concentration only at the special point k = uo/c; how­
ever, the lifetime will be approximately concentration-
independent for11 I k— (coo/c) I < (A/c). 

IV. NUMERICAL ESTIMATES 

We estimate the order of magnitude of the lifetime 
of Eq. (18). We rewrite Eq. (18) in the form 

_ 8 7 r 3 / ^ 3 \ / c c 0 \ 2 | ( ^ ) | 2 

a > o W / \ A / S2 

We now estimate r with the Cr4+ ion in mind. For 
this ion we are concerned with the Sz= ± 1 levels. Since 
the measured g value12 does not differ greatly from 2, 
we have wo^3X 1011 rad/sec for H0= 104 G. We assume 
n=1019 cm - 3 and C ~ 5 X 1 0 5 cm/sec. We suppose the 
spin-phonon coupling is sufficiently strong that 
A/coo~0.1. We shall see that this may not be an un­
reasonable assumption for Cr4+. If we employ these 
numbers we find 

r ^ 2 X l O - 6 | ( ^ ) | 2 A 2 s e c . (19) 

Thus, for the numbers stated above, this process may 
lead to a mean free path of the order of a millimeter. 

We compare the lifetime of Eq. (19) with the lifetime 
from direct absorption given by Eq. (10). For our 
excitation of wave vector coo/c, we have Ui(ko)—o)o^>T 
since A/coo~0.1. Thus 

1 y2a>on\(sz)\ 

—^ r=r. 
Td 2c2A2 

Hence for T= 106 sec -1, 
T/T&2\(S,)\*/S*. 

If we assume a two-level spin system with a Larmor 
frequency of 3X1011 rad/sec, then (sz)/s^ J and r/rd^i 
forjT=4°K. 

Thus our estimate suggests that scattering from 
fluctuations in Sz may dominate the direct absorption 
for a system described by the parameters employed 
above. 

11 Notice that the right-hand side of this inequality vanishes 
as the concentration n —•> 0. Hence the lifetime of an excitation 
with kr^ko will vanish as n —> 0, since the volume of phase space 
over which the concentration-independent behavior occurs 
shrinks to zero. 

12 R. H. Hoskins and B. H. Softer, Phys. Rev. 133, A490 (1964). 

We now examine the assumption A/coo^O.l. In the 
present work, all of the calculations have been per­
formed with a spin-phonon coupling linear in the spin 
variables. In Ref. 2 the dispersion relation for a spin-1 
ion coupled to phonons by means of a coupling term 
quadratic in the spin variables. For frequencies in the 
vicinity of coo, the dispersion relations are similar to the 
expressions employed in the present paper, with 

A= (G2a>Qn(s*)/Shpc2yt2. (20) 

We have introduced h and the density p of the crystal 
explicitly. We employ the spin-phonon coupling con­
stant G defined as in Ref. 5. 

We use Eq. (20) and the values of coo, n, and c intro­
duced earlier and we find the value of G for which 
A/coo-0.1. If p = 2 gm/cm3, we obtain G^(1X10~ 1 2) / 
(sz)

112. This is a very large value for the coupling 
constant. 

The largest value of the spin-phonon coupling con­
stant known to the present author is that of Fe2+ placed 
in MgO for which G~2X10~1 3 ergs.13-14 We present a 
simple argument which indicates that Cr4+ may couple 
to the lattice more strongly than Fe2+. We denote the 
spin-phonon coupling constant of Cr4+ by Gc and the 
spin-phonon coupling constant of Fe2+ by GF> We 
estimate the ratio GC/GF, and it is assumed that both 
ions are placed in a cubic environment. 

If we expand the crystal field in terms of the normal 
coordinates of the nearest neighbors 

V=i:«VaQaj 

then it may be shown that the spin-phonon coupling 
constant is given by an expression of the form15 

(01 Li\n)(n\ Lj| m){m\ Va | 0)+permutations 

XE'' . 
»-m (En—Eo) (Em—Eo) 

In the last equation, X is the spin-orbit coupling 
parameter, L{, Lj are orbital angular-momentum 
operators and |0) is the orbital wave function of the 
ground state. 

The orbital ground state of both the Cr4+ ion (a d2 

configuration) and Fe2+ (a d6 configuration) are triply 
degenerate in a perfect cubic field.16 This degeneracy 
will be lifted by a Jahn-Teller distortion. Then the 
main contribution to G will come from matrix elements 
between the ground-state singlet and the two states 

13 G. D. Watkins and E. Feher, Bull. Am. Phys. Soc. 7, 29 
(1962). 

14 N. S. Shiren, Magnetic and Electric Resonance and Relaxation, 
edited by J. Smidt (Interscience Publishers, Inc., New York, 
1963). 

16 R. D. Mattuck and M. W. P. Strandberg, Phys. Rev. 119, 
1204 (1960). 

16 See S. A. Al'tshuler, B. I. Kochelaev, and A. M. Leushin, 
Usp. Fiz. Nauk (U.S.S.R.) 75, 459 (1962) [English transl.: Soviet 
Phys.—Usp. 4, 880 (1962)]. 
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split off by the Jahn-Teller distortion. The matrix 
elements (j\ V\0) will be proportional to r2, where r is 
the mean radius of the orbit.17 Then 

G~XV2/52. 

The Jahn-Teller splitting 5 is proportional to f4. Then 

Gc A C \ V F 6 

GF \ X F ' re* 

If the ^-electron wave functions lie mostly outside 
the closed inner shells, we may imagine the d electrons 
move in a Coulomb field of some effective charge Zeff. 
Then f 2 ^ l /Z e f f 2 ~ l /7 , where / is the ionization 
potential. We then estimate 

Gc^fXc\2(Ic\Z 

GF WF* \IF' 
17 Reference 16. 

INTRODUCTION 

IN MgO crystals, a predominant intrinsic defect 
which may be induced by ionizing radiation is the 

hole trapped adjacent to a positive ion vacancy1 (i.e., 
the Vi center proposed by Seitz but not observed in 
the alkali halides). Uniform derealization of the trap­
ped hole over the six oxygen atoms surrounding the 
vacancy would give an isotropic ESR spectrum, whereas 
the spectrum observed has pure tetragonal symmetry. 
We have tended to regard the hole as strongly localized. 
However, Dr. T. E. Feuchtwang points out that there 
may be derealization such that the hole density on the 
four oxygens girdling the vacancy and the axis is dif-

*This research was sponsored by the Air Force Office of 
Scientific Research, Office of Aerospace Research, U. S. Air 
Force, under grant No. AF-AFOSR 200-63. 

1 J. E. Wertz, P. Auzins, J. H. E. Griffiths, and J. W. Orton, 
Disc. Faraday Soc. 28, 136 (1959). 

We employ the free-ion values for the ionization po­
tential and the spin-orbit coupling parameter. From 
spectroscopic data18 we find A C / A F ~ 1 . 5 and 
/ C / / F ~ 2 . 3 . 1 9 

This yields GC/GF~ 18 or 

£ C ~4X10- I 2 e rgs . 

This estimate indicates that Cr4+ should couple to 
the lattice strongly enough for the lifetime of the 
normal modes to be determined by scattering from 
fluctuations in Sz. 
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19 If our assumption that the d electron moves in a field of an 
effective charge Zeu is meaningful, then we should find \^Zeff, 
or (\CM~(IC/IF)1/2. This relation is well satisfied. 

ferent from that of atoms on the axis.2 In some MgO 
crystals there are "satellite" lines about but not centered 
upon the principal lines of the V\ spectrum; it can 
easily be shown that these are not a part of the same 
line system. One group of three hyperfine doublets was 
recently shown by an electron-nuclear-double-resonance 
(ENDOR) study3 to arise from a Fi-type center (FOH) 
with the array: - 0 + - [ = ] - H + 0 along [001], [010], 
or [100]. (Only deviations from normal site charge are 
shown.) The infrared spectrum shows that the O-H 
stretching frequency is shifted from 3296 to 3323 cm - 1 

when a positive hole is trapped on the oxygen atom on 
the opposite side of the positive ion vacancy. The 
hyperfine splitting for FOH is given by the expression 
a + H 3 cos 2 0- l ) , where a -0 .016 G and 6=0.848 G. 

2 Dr. T. E. Feuchtwang (private communication). 
3 P. W. Kirklin, P. Auzins, and J. E. Wertz, J. Phys. Chem. 
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An intrinsic defect center readily induced in MgO by ionizing radiation is the positive hole localized on an 
oxygen atom adjacent to a positive ion vacancy (Vi center). This has a tetragonal symmetry axis along 
[001] or equivalent directions. A similar ESR spectrum but with each line a hyperfine doublet was identified 
earlier as arising from the center 0+— [ = ]—H+0 (Von center). This paper describes a similar ESR spectrum 
of a trapped hole center ( F F ) with smaller (anisotropic) hyperfine splitting than FOH. It is best observed 
in single crystals, but it may be induced in powdered MgO by fluorine doping and heating J i t thus appears 
that fluorine is the nucleus responsible for hyperfine splitting. The contact and dipolar splitting constants 
are, respectively: a=0.08 G, &=0.33 G. The proposed model for the F F center is 0+— [ = ] — F + (only 
deviations from normal site symmetry are shown). 


