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Third-order elastic constants of NaCl-type and CsCl-type crystals have been calculated using the Born
model of ionic solids. Short-range repulsive interactions have been included up to second-nearest neighbors.
Assuming that the temperature variation of these constants is linear, we have calculated the temperature
coefficients a.gy in the high-temperature limit. In the case of NaCl-type crystals, Cii1, Ci12, and Cies are
negative and Ciaes, Cass, and Cias are positive, whereas all the third-order elastic constants of CsCl-type
crystals are negative. The temperature coefficients aag, are all positive for CsCl-type crystals, whereas
@111, @112, and aie are positive and the others are negative for NaCl-type crystals. The computed values of
the third-order elastic constants have been used to calculate the pressure derivatives of the second-order
elastic constants and a comparison is made with the available experimental data.

I. INTRODUCTION

N recent years considerable attention has been given
to the study of third-order elastic constants*:? of
cubic crystals. Since the classic work of Lazarus?® on the
effect of hydrostatic pressure on the second-order elastic
constants of NaCl and KCl single crystals a number of
measurements have been reported on the pressure
derivatives of the second-order elastic constants of
alkali halide single crystals.4=® For a cubic crystal there
are six independent third-order elastic (T.O.E.) con-
stants and the pressure derivatives of the second-order
elastic constants enable us to obtain three combinations
of the six T.O.E. constants. Recently, Chang” has ex-
perimentally determined two more combinations of the
T.O.E. constants of NaCl and KCl crystals. Nran’yan®
has calculated the T.O.E. constants for some of the
NaCl-type crystals and CsCl-type crystals. He has used
the Born model with nearest-neighbor interactions. We
believe that his values of the electrostatic contribution
to the T.O.E. constants are in error.

In the present article we have used Brugger’s® defini-
tion of the T.0.E. coefficients. The advantage of using
Brugger’s definition should be apparent, later in the
text, from the symmetry of the expressions for the

U=Ux+Us

elastic constants. The T.O.E. constants for 19 alkali
halide crystals have been calculated using the Born
model. For the short-range repulsive interactions we
have used the Born-Mayer type of potential: A4
exp(—7/b). Interactions up to second-nearest neighbors
have been included. For the NaCl-type of crystals we
have used the values of the electrostatic contribution
to T.O.E. constants as given by Blackman.!® The
necessary lattice sums to calculate the electrostatic part
of the T.O.E. constants of CsCl-type crystals have been
evaluated on a computer. The method of calculation of
the lattice sums for CsCl-type crystals is outlined in the
Appendix. The T.O.E. constants are assumed to vary
linearly with temperature. The temperature coefficients
are calculated by expanding the vibrational free energy
up to cubic terms in the strains in the high-temperature
limit by following the procedure developed by Leibfried
and Hahn.!'2 We have calculated the pressure deriva-
tives of the second-order elastic constants at room
temperature.

II. THIRD-ORDER ELASTIC CONSTANTS

The elastic-strain energy density for a cubic crystal
up to cubic terms in strains is written as follows!:

=1C1(n12+ 222+ 1332 + Cro(n1ameet neenss+ n33m11) + 2Caa(n102+ 23240312 + EC 11 (1P + 122+ 133%)
+%C112{ 71112(1722'|- 1733) + 77222(7733+ "711) + 71332<7711+ 1122) } ‘|‘ C123(171177221733)+ 8(/'456("71277237)31)
+ 2C144(771m232+ 772277312+ 773377122)+2C166{77122(7]11+ ﬂ22)+77232(7722+ 7733)+ 11312(‘)733+ 7711)} T (1)
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THIRD-ORDER ELASTIC CONSTANTS

where nqs are the Lagrangian strain components, Cag
are the usual second-order elastic constants, and Cggy
are the T.O.E. constants in Brugger’s® definition.!?

We shall now derive the expressions for the T.O.E.
constants of the alkali halides. This will be carried out
in two steps. First the energy density of the deformed
crystal at 0°K will be calculated. By expanding the
energy density up to cubic terms in strains expressions
for T.O.E. constants Cag,? will be obtained by com-
paring with Eq. (1). The effect of temperature will be
taken into account later. We shall assume that only
central forces are acting and that the lattice is in equi-
librium under vanishing external forces. The zero-point
vibrational energy and its effect on the elastic constants
will be ignored. We note that each atom is a center of
symmetry. The energy density of the undeformed lattice
can be written as follows:

Up=Q2Ve)™! 22: 2 ew(rw™)

v=1 (um) # ()

=QVe) 2 ewlrw™.) (2)
Here ¢,.,(7,,™°) represents the interaction energy between
the »th particle in the zeroth cell and the uth particle in
the mth cell. In our case u, » can take values 1 and 2, m
takes all the values corresponding to the elementary cells
in the crystal, and 3’ denotes the summation over all
lattice points except m=0, u=v. V¢ is the volume of the
elementary cell. When the lattice is subjected to a homo-
geneous deformation the new interatomic distances will
be denoted by R,,™. The Lagrangian strain parameters
Nap are defined by the following equation:

R2—y?=12 Z £abpnas= 2™ . (3)
(R and 7 denote R,,™ and 7,,™ and o, =1, 2, 3.) &, &5
are the Cartesian coordinates of the particle in the un-

deformed state.
The potential-energy density

U=Q2Ve) ' 2 ouw(Ruw™) 4)

can be expanded in a series of ascending powers of
(p‘“mo)'lo,lll

U=Ut+-Us+Us+Us. ()

The condition of equilibrium yields the relation U;=0
and U, contains quadratic terms in the strain com-
ponents. Since we are interested in the T.O.E. constants
we confine our attention to Us:

Us=Q2Ve)™ X' ((0w™)?/3)D* 0,(R) | R=rm0  (6)

=(12Vc)‘12;9 Zﬂ 2 NefNarplarpr
@, a' 7’ (X’,B,/

X2 Eabpbartpbarbp DP0u(R) | R=rm] (7)
where D=R-Y(d/dR).

13 The T.O.E. constants (Cag,B!) defined by Birch (Ref. 1) are
related to those (Cug,P") defined by Brugger (Ref. 9) in the fol-
lowing manner:

Ci1Br=6C11,B1 ClsePr =1C 5651
CuPr=2C112B1 Cr44Br =1C144B1
C195%" = C195B1 Cre6®r=3Cre6P1.

4 M. Born and R. D. Misra, Proc. Cambridge Phil. Soc. 36,

466 (1940).
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We can compare the coefficients of nagfargnarg in
Eq. (7) with those in Eq. (1). After going through simple
but somewhat lengthy algebra we get the following
expressions for Ceg,%:

Cin®=(2 Vo)1 EIBDS%W(R) l R=r,,m,
Cu’= (ZVC)“1 Z/ 514522D3§0uv(R) {R=r,“.m0g
Cias®= (2Vo) ' 27 £262E8° D3 01 (R) | R =7 ym0 (8)
— ’
Case®= 2V )1 2 £26:262 D% 0,(R) | R =rym0
Cus= 2V )™ X 6262682 D3 00(R) | R =1, ym
Ce’= 2Ve) 1 X £14622D?0,(R) | R=p 0.
The superscript zero for Cqgy has been introduced to
emphasize the fact that these constants correspond to

0°K. “Cauchy’ relations for the T.O.E. constants follow
from the above expressions.

C12'=Cus?=C144"; C112°=C16¢°. 9)

For a central-force model there are only three inde-
pendent T.O.E. constants.

In the case of alkali halides the potential energy be-
tween two ions y, »(=1, 2) with charges 4-¢ and distance
R apart is assumed to be made up of two parts, Cou-
lombic and the non-Coulombic. Thus

ew(R)= 0w’ (R)+ ow*(R), (10)

with ¢.°(R)==e?/R. The = apply to like and unlike
charges, respectively. The non-Coulombic part of the
energy is assumed to have the form

ow*(R)=A exp(—R/b). (11)

We include the short range interactions up to the
second nearest neighbors. The general expressions for
the short-range interactions up to the second-nearest
neighbors will be of three types:

(a) unlike ions: A4_ exp(—r1/by-),

(b) like positive ions: A exp(—7s/by1),

(c) like negative ions: A__ exp(—rq/b__).
Such a model would require six parameters. To keep the
number of parameters to a minimum we have assumed
that the short-range interactions (a), (b), and (c) can
be approximated by expression of the type (11).

We are neglecting the van der Waal’s forces, and

many-body forces. In this simplified model we can write
the elastic constants Cqg,° as

Capy’= Caﬁvco+ca37Nco .

(12)
A. NaCl-Type Crystals

The expressions for the Coulombic part of C,g, can
be written down using the necessary lattice sums:
Ci1®=—(15/V ¢)(e2/70)S1® ,
Cr1290=—(15/V ¢)(e?/70) SV,
C12390=—(15/V ¢)(e?/7¢) Sy 11V |

Cip6?0=C1230=C144°°; C166°°=C112°,

(13)
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TasLE I. T.O.E. constants and their temperature coefficients. (Cag,® in units of 10! dyne/cm?, ¢.p, in units of
107 dyne/cm? °K; 7o and b in units of 1078 cm.)

70 b Cus® am Cu? ans Cizg® Q123 Q456 Q144 Q166
LiF 1.996 0.3333 —65.52 192.9 —27.72 51.71 9.859 —23.04 —10.72 —3.056 44.49
0.280 —146.6 378.6 —26.76 60.57 9.859 —35.84 —10.36 —1.898 44.85
LiCl 2.539 0.3333 —70.59 230.3 —9.997 31.48 3.766 —20.94 —4.976 —0.833 21.55
0.303 —95.03 3124 —9.637 35.07 3.766 —27.53 —4.891 —0.806 20.93
LiBr 2.713 0.3333 —66.81 233.7 —7.499 27.83 2.889 —20.73 —4.029 —0.628 17.41
0.305 —86.38 307.6 —17.196 30.99 2.889 —26.88 —3.968 —0.713 16.67
Lil 2.951 0.3333 —60.88 235.6 —5.152 23.94 2.064 —20.61 —3.087 —0.549 12.99
0.366 —46.39 176.3 —5.367 21.35 2.064 —15.68 —3.136 —0.506 13.52
NaF 2.295 0.3333 —73.27 220.2 —15.46 38.56 5.641 —21.48 —6.866 —1.354 29.60
0.312 —93.90 277.4 —15.16 41.12 5.641 —25.70 —6.777 —1.173 29.39
NaCl 2.789 0.3333 —64.97 234.6 —6.624 26.42 2.586 —20.69 —3.692 —0.607 15.81
0.288 —96.92 364.7 —6.178 32.14 2.586 —31.85 —3.602 —0.797 14.54
NaBr 2.954 0.3333 —60.85 235.6 —5.130 23.90 2.055 —20.60 —3.075 —0.546 12.95
0.308 —75.12 298.4 —4.933 26.66 2.055 —26.04 —3.036 —0.654 12.32
Nal 3.194 0.3333 —54.82 235.4 —3.613 21.08 1.504 —20.55 —2.403 —0.513 9.767
0.341 —51.67 220.1 —3.653 20.38 1.504 —19.20 —2411 —0.488 9.907
KF 2.648 0.3333 —068.32 232.7 —8.328 29.07 3.183 —20.80 —4.353 —0.700 18.82
0.310 —84.92 292.3 —8.077 31.65 3.183 —25.67 —4,297 —0.723 18.29
KCl 3.116  0.3333 —56.73 235.7 —4.,038 21.91 1.660 —20.56 —2.598 —0.519 10.70
0.309 —68.90 294.4 —3.883 24.54 1.660 —25.77 —2.566 —0.638 10.11
KBr 3.262 0.3333 —53.18 235.1 —3.284 20.42 1.382 —20.54 —2.248 —0.512 9.026
0.303 —67.28 309.9 —3.123 23.86 1.382 —27.33 —2.214 —0.669 8.326
KI 3.489 0.3333 —47.99 233.7 —2.423 18.59 1.056 —20.53 —1.819 —0.504 6.991
0.317 —54.18 269.8 —2.359 20.28 1.056 —23.87 —1.803 —0.582 6.663
RbF 2.789 0.3333 —64.97 234.6 —6.624 26.42 2.586 —20.69 —3.692 —0.607 15.81
0.291 —94.37 353.8 —6.211 31.65 2.586 —30.88 —3.608 —0.775 14.65
RbCl 3.259 0.3333 —53.27 235.2 —3.298 20.44 1.387 —20.54 —2.254 —0.511 9.056
0.283 —79.09 376.6 —3.026 27.08 1.387 —33.55 —2.197 —0.807 7.810
RbBr 3.410 0.3333 —49.79 234.3 —2.687 19.17 1.157 —20.53 —1.953 —0.506 7.629
0.298 —65.03 322.9 —2.533 23.35 1.157 —28.73 —1.920 —0.692 6.863
RbI 3.628 0.3333 —32.53 225.9 —1.939 18.47 0.903 —20.97 —2.045 —0.941 6.770
0.293 —60.71 335.0 —1.899 22.71 0.903 —30.24 —1.576 —0.701 5.226
CsCl 2.034 0.3333 —37.20 132.1 —5.598 44.64 —3.913 25.64 15.87 52.42 55.32
0.256 —43.30 192.1 —11.09 89.62 —9.409 64.53 38.67 124.0 126.8
CsBr 2.118 0.3333 —32.41 123.8 —5.323 44.07 —3.891 26.35 16.27 53.19 55.74
0.267 —36.79 169.8 —9.399 79.04 —7.966 56.85 34.08 109.3 111.7
Csl 2.251 0.3333 —26.30 112.2 —4912 43.15 —3.790 27.33 16.77 54.23 56.33
0.263 —30.15 158.4 —8.831 80.33 —7.708 60.76 35.96 115.6 117.6
where Thus we have
1,2m],2n3] 2n3 0 — 2 4
SN(m,ns,M): Z (_ l)lH—lea————————-l ? ’ . (14) C111° - +10.26390(6 /7’0 ) ’
W s (2124 I2) V12 Cr112%0=—1.208625(¢*/7¢%), (16)

Summation is taken over all the lattice points. #1, 79, 13
and N are positive integers and (#14-n24n;) <E(N—1).
In this notation, Madelung’s constant is given by
—S51®=1.74756. Here 7, denotes the nearest-neighbor
distance; hence 27¢® is the volume of the elementary cell.
For NaCl-type crystals the lattice sums are readily
available!?

S§7®=—1.36852,
S§7®D=0.16115,
S; LD = —0,09045.

(15)

C1as®=—40.678375(e2/ro").

Values of Cy56%°, C144°°, and C166°° can be easily obtained.
We list the values of Cag,* obtained by Nran’yan?® for
comparison. His values are multiplied by appropriate
numerical factors to convert from Birch’s! definition of
Capy to that of Brugger.® According to Nran’yan®

C111°=11.00(e?/7¢%),
C11990=— 1.71(62/1’04) ,
C12:°0=0.88(e2/70%).

It is easy to check that Nran’yan’s values of S7®),

17
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S721, and S fail to satisfy the identity™
35, 4185720465, LLD =5, (18)

The final expressions for Cag,® including the terms
due to short-range interactions, are

e’ ¢(70)|— 3 3 1 :I

+—-

1’04 b |..7’02 b?’(] b?

¢(ro\/2)r3ﬁ 6 2V2
~ ],
2 Lr? bro b2

e? gp(rg\/Z—)r‘?\/Z | 6 | 2\/2_]

7’04 4:b Lfoz I b?’o l b2 ’

C123°=0.678375(e%/ro%),

Cus6'=C128°=C144"; C16°=C112°,

C111°=10.2639

(19)
Cia’= —1.208625

where ¢(r)=A4 exp(—r/b).

The values of Cag,° for sixteen NaCl-type crystals
are listed in Table I. We have used the room-tempera-
ture data of the lattice parameter and the coefficient of
thermal expansion'® to extrapolate the value of 7,. The
hardness parameter b for the alkali halides is about
(1/3)X10-8 cm. We have used 5=0.3333X10~8 cm and
the value of the pre-exponential parameter A is cal-
culated from the equilibrium condition.

A=0bZ(e*/1*)[ 6 exp(—ro/b)
+12v2 exp(—rv2/b) T (20)

where Zo=Madelung’s constant for NaCl-type crystal
=1.74756, and e=electronic charge=4.803X107 esu.
We have used this value of 4 to calculate the short-
range repulsive interaction energy ().

Tosi' has shown that different values of 4 result if one
uses different equations of state. We have used the set
of “b” obtained by Tosi®® making use of the Hilder-
brand equation of state. The different values of & for
different crystal systems and the corresponding values
of Cag,? are also listed in Table I. In passing we note
that the contribution of the short-range repulsive inter-
actions to T.O.E. constants is quite predominant as
compared to that of the electrostatic interactions.

B. CsCl-Type Crystals

The expressions for the Cqg,® of CsCl-type crystals
can be easily written down. The elementary cell is
chosen to have a cube edge of 27, and hence of volume
8r¢®. The nearest-neighbor distance is r;=7¢V3. The
necessary lattice sums and the Coulombic part of Cqgy°
are given below.

S10=—2Zy=—1.01768, S;2Y=-0.09336,
S;®=0.5409, S0 =—0.16000,
18M. P. Tosi, Solid State Physics, edited by F. Seitz and

D. Turnbull (Academic Press Inc., New York, 1965), Vol. 16,
pp. 1-120.

(21)
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C111°= —1.01419(e*/7¢%) ,

C112°0=0.17505(¢*/7¢%),

C123°=0.30000(e%/7%) .
Nran’yan’s® values are listed below for comparison.

Cin®=—2.8520(e*/ro%)
C112%=40.4359(e%/ro%) ,
C125°0=0.2944(e?/r04).

The expressions for Cag,? including the contribution of
the short-range repulsive forces are as follows:

e? <p(1'1)|‘\/3_I 3 I\/g]

(22)

(23)

Cin®= —1.01419—— g
rt Ob Lrg bro b2

o(r 2)[' 3 6 4 ]
2b L1’02 b?’o b?

e orprv3d 3 V3
Cru¥=0.17505 T —] , (24)
rot 90 Lrg2 bro, b2
e o(r)frv3d 3 V3
Ci3"=0.30000 ; 'r—] ,
7’04 9b _7’02 bro b2
Cus"=C125°=C144°; C166°=C112°,
where
¢(r1)=A4 exp(—rV3/b)
and (25)

o(r2)=A exp(—2ry/b).

The pre-exponential parameter 4 is obtained from the
equilibrium condition given below :

A= bZo(62/702)[8\/3 exp(—ro\/g/b)
+12 exp(—2r¢/b) 1. (26)

The value of 7y is obtained by extrapolation using the
room-temperature lattice-parameter and thermal-ex-
pansion data.!® The values of Cqp,° for CsCl, CsBr, and
CsI along with those of other NaCl-type halides are
listed in Table I.

III. TEMPERATURE VARIATION OF THE
THIRD-ORDER ELASTIC CONSTANTS

The temperature variation of the T.O.E. constants
is calculated by following the procedure developed by
Leibfried and Hahn!*!? for the temperature variation
of the second-order elastic constants. The free energy of
a crystal containing N cells, with s atoms (s=2 for
alkali halides) per unit cell, can be written as

F=V ,NU+Fvib (27
where
3sN
Fvib=EkT > In2 sinh{%w;/2kT}
i=1
3sN
=ET 3 In{hoi/kT} for hwLkT. (28)

i=1
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It should be emphasized that expression (28) for the
vibrational free energy and hence, the subsequent ex-
pressions for the temperature coefficients of the T.O.E.
constants are valid only in the high-temperature limit.
At this stage one invokes the theorem that the spur of a
matrix is invariant under a coordinate transformation
and hence Y w?=3sN{(w?).y. Following the suggestion
of Born, w; in Eq. (28) is replaced by [{w?)ay ]!/2.2:12

We write down the expression for (w?),y, the average
of the w;?:

<""2>av= (35)_1 Z/(MV)_IA @pv(R,mmO)

m; py

(29)

where Ag,, is the Laplacian of the potential seen by
(Oth atom which results from its interactions with
other atoms and M, is the mass of the vth atom. In the
case of alkali halides, by the use of Poisson’s equation,
the Laplacian of that part of the potential arising from
the electrostatic forces vanishes.!'1?2 With this con-
vient simplification one has to consider only the short-
range interactions in the evaluation of (w?)ay.

At absolute zero the lattice parameter is 7o. At tem-
perature 7°K, 7 changes to 7o+67. For cubic crystals
the thermal expansion is isotropic. If we assume that

P. B. GHATE

the coefficient of thermal expansion is independent of

temperature, then
or=0LkT, (30)

where £ is Boltzmann’s constant and /; is a constant
characteristic of the alkali halide. The thermal strain

408:=67/70, 31)

d:;;=Kronecker delta. We now impose the condition
that the lattice be in equilibrium at this temperature.
This is done by expanding the free energy given by (28)
in powers of thermal strains and setting the linear term
equal to zero. The condition of equilibrium reduces to

Vc Z Cik,jmﬂth-\?skT'yik:O y (32)
jl
where
vir=—%(8 In{w?av/0n:r) (33)

is the generalized Griineisen constant, and Cy,;; are the
second-order elastic coefficients. For cubic crystals
Yik= Biw. Then

or/ro=nuth=(skT/V ) (bulk modulus)ly. (34)

The expressions for /; can now be easily written down.
For NaCl-type crystals

where

For CsCl-type crystals

_ _17 [(2+ 2po—po?) 90(’0)+2\/2—(1+\5P0*po2> ﬁﬁ(fo\/z—)] (35)
2 [(po—2) (r)+2(p0—V2) o(rv2) I (po—2) ¢ (r0)+4(ps—2) (r¥2) ]
po=70/b and o(r)=4 exp(—r/b).
hi=—7o[(8/3)(2p1+2p1*—p1*) o(r1) +3 (2p2+2p2®— pa®) 0(r2) J¥ 1, (36)

where

Y =[(8/3)(p12—2p1) ¢(r1)+35 (02— 2p2) ¢(r2) L (8/3) (p12—2p1) ¢(r1)+2(p22— 2p2) p(72) ]

and

7’127’0\/3, Vo= 27’0, p1=1'1/b,

p2=1’2/b,

and ¢(r)=4 exp(—7r/b).

We now expand the vibrational part of the free energy of the deformed crystal up to cubic terms in the strains

For the T.O.E. constants only f3" is of interest.

2
o= (kT/240)E 2 X Naplwsas{l 2 M Eukpbatytarby DPAgu(R)|R=r,m

v=1 (um) # (")

aB a’f’ a’’f’!

e X

v () #(60) (urm’) # (v0)

FUSe (Y ¥

vy’ (um) £ (0) (uom') 7 (370) (urem’’) 5= (v1.10)

XDAﬁpP«V(R) ' R =7uvm°DA¢ll'V'(R) I R =”u'v’"”°DA€0u"V"(R> , R=7u"v""'"°:]} )

where wo? is the mean-square frequency of the unde-
formed crystal (we*= {w?)) and

Eiz Suvimo ) E'i’z Eﬂ’v’im'O ) Ei”: Eu”l’"’imuo )
i=aq,f3, a’a ;3,; Ol”, B”.

Here f7 corresponds to the vibrational energy per unit

Z MV_IMV'_IEaEﬁEa’/gﬂ"ga”,gﬂ"lDZA‘pu’V’(R) l R=’M'V’MI°DA¢F"(‘R) l R="“‘m]

> MMM abgta b e

37

cell. We rearrange the terms as follows:

S5 = % f111" (912> 22’ + 35%) + 5 f112" {9112 (M22F-1ss)
+ 222 (nast111) +n33%(nu1t-m02) } Fete.,  (38)

where

S =R T{Q—5(Q) (Q)+(21)3/18}, (39)
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112" =3 T {Q2,1—3(Q1,1) (1)

—§(Q2)(Q)+(21)%/18},  (40)
123" P =3kT{Q1,1,1—3(Q1,0) (Q)+(21)%/18} (41)
fase"®=3kT{Q1,1,1}, (42)
S =3ET{Q1,1,1—3(Q,0(Q0)}, (43)
Sie6" P =1k T{Qn,1—3(Q1,1)(Q1)}, (44)
and
Q=0 L M6 D A | R=ryom, (45)
Qoi=wo™? 2 My %2 DA o | R =1, ym (46)
Q11=we 2 2 Mv_1512$22$32D3A<Pw| R=ry,m, (47)
Q=wi? X M6 D Agw| Reryym, (48)
Qui=wi? 2 M, 282D A0p | R=ryym (49)
n=wi? 2 My DA | R=r,ym. (50)

We have evaluated @3, Qs1, Q1,1,1, Qs @11, and
2; in the approximation of second-nearest-neighbor
interactions.

For NaCl-type crystals we get

Q3= {2¢(r0)[30po+30p0>+9po® — po*— po® ]+ ¢(73V2)

X [30p2+30p224-9ps® —pot—po° JJA, (51)

Q2,1= 1 (r0V2)(30p2+30p22+9ps' — poP —p2") JA,  (52)

Q1,11=0, (83)
Q2="[2¢(70)(—6po—6p0>— po*+po*)

+ qo(ro\/?)(—6p2—6pz2—923+P24)]A ’ (54)

Q1,1=3 o(reV2)[—6pa— 6pa?— p2*+-pa* A, (55)

Q1= [2¢(70)(2p0+2ps>— po*)
+2¢(rV2) (20242022 —p2*) JA,  (56)

where
A= [ o(ro)(po®— 2p0)+ (r0V2) (p22—2p2) T,

po=70/b, p2=(r¥2)/b, and ¢(r)=A exp(—7/b).
For CsCl-type crystals

5= [(Bo(r)/81)(30p1 30022+ 9pri— pri— pr?)
+3¢(72)(30p2+30p2>+9p2* — p2'—p2*) 12,

Qs,1=[(8¢(r1)/81)

(57
(58)

(59)

X (30p14-30p1*+9p1* — pr*—p1*) 1Z,  (60)

Q1,1,1=0,1, (61)
Qp= [(8/27) ¢’(7’1) (_ 6p1— 6p12‘"P13+P14)

+350(r2) (—6ps—6p2*— p2*+p2) 12,  (62)

1,1=[(8/27) ¢(r1) (—6p1—6p1>—ps*+p1*) 12, (63)

21=[(8/9) ¢(r1) (201t 2p1°— p1*)
+30(re) (2pet-2p22—p2%) 12,  (64)

where

Z=[(4/9) ¢(r1)(ps®—=2p1)+ %5 0(r2) (p22—2p2) I, (65)
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TasLE II. Third-order elastic constants Cgy at 25°C. (Cagy are
expressed in units of 10! dyn/cm?. b is in units of 1078 cm.)

b Cu Cuz Cias Case Ciu Ciss

LiF 0.3333 —59.77 —26.18 9.173 9.540 9.768 —26.40
0.280 ~135.3 —24.95 8.791 9.551 9.803 —25.42

N —207.0 —25.6 11.1 13.2 13.2 —24.2
LiCl 0.3333 —63.72 —9.059 3.142 3.617 3.741 —9.355
0.303 —85.72 —8.592 2.945 3.620 3.742 —9.014
LiBr 0.3333 —59.85 —6.670 2.271 2.769 2.870 —6.980
0.305 —77.21 —6.272 2.087 2.770 2.867 —6.699
LiI 0.3333 —53.86 —4.439 1.449 1.972 2.047 —4.765
0.366 —41.14 —4.730 1.596 1.970 2.048 —4.964

NaF 0.3333 —66.71 —14.31 5.001 5.436 5.601 —14.57
0.312 —85.63 —13.94 4.875 5.439 5.606 —14.29

N —71.4 —14.38 6.58 7.6 7.6 —12.8
NaCl 0.3333 —57.98 —5.837 1.970 2.476 2.568 —6.153
0.288 —86.05 —5.220 1.637 2.479 2.563 —5.744

N —54.54 —6.88 2.69 3.55 3.54 —6.3
NaBr 0.3333 —53.83 —4,418 1.441 1.964 2.039 —4.744
0.308 —66.23 —4.139 1.279 1.965 2.036 —4.566
Nal 0.3333 —47.81 —2.984 0.891 1.432 1.488 —3.322
0.341 —45.12 —3.045 0.932 1.432 1.489 —3.358
KF 0.3333 —61.38 —7.461 2.563 3.053 3.162 —7.767
0.310 —76.22 —7.134 2.418 3.055 3.161 —17.532
KCl 0.3333 —49.71 —3.386 1.047 1.583 1.645 —3.720
0.309 —60.13 —3.152 0.892 1.584 1.641 —3.581

N —50.70 —4.58 1.48 2.27 2.27 —4.00
KBr 0.3333 —46.17 —2.675 0.770 1.315 1.367 —3.015
0.303 —58.05 —2.412 0.568 1.316 1.362 —2.875

N —46.38 —3.88 1.11 1.865 1.865 -3.29
KI 0.3333 —41.03 —1.869 0.444 1.002 1.041 —2.214
0.317 —46.14 —1.754 0.345 1.002 1.039 —2.160

N —47.10 -3.14 0.74 1.445 1.405 —2.56
RDF 0.3333 —57.98 —5.837 1.970 2.476 2.568 —6.153
0.291 —83.83 —5.268 1.666 2.479 2.563 —5.774
RbCl 0.3333 —46.26 —2.689 0.775 1.320 1.372 —3.028
0.283 —67.87 —2.219 0.388 1.322 1.363 —2.793
RbBr 0.3333 —42.81 —2.116 0.546 1.099 1.142  —2.460
0.298 —55.40 —1.837 0.301 1.100 1.137 —2.382
RbI 0.3333 —25.80 —1.389 0.278 0.842 0.875 —1.737
0.293 —50.72 —1.223 0.002 0.856 0.882 —1.744
CsCl 0.3333 —33.26 —4.267 -—3.150 -—3.441 -2.351 —3.949
0.256 —37.57 —8.422 —7.486 -—8.257 -—5.713 —7.314

N —-27.16 —3.76 —5.58 —4.8 —4.95 —3.06
CsBr 0.3333 —28.73 —4.010 -3.105 -—3.406 —2.305 —3.662
0.267 —31.74 —7.043 -6.272 —6.951 —4.710 —6.068
N —33.22 -—3.88 —547 —4.7 —4.90 —-3.295
CsI 03333 —22.96 —3.626 —2.975 —3.290 —2.174 —3.234
0.263  —25.43 —6.437 —5.898 —6.637 —4.263 —5.325

N —19.08 —3.86 —5.11 —4.325 —4.6  —3.35

and 71, 72, p1, p2, and ¢(r) have the same meaning as
defined in Eq. (36).

The free energy per unit cell for an alkali halide
crystal can be written as

F=V .U+ f, (66)
where

FYI0= 3BT In(72{e0? v/ R2T).. (67)

The T.O.E. constants at temperature 7" with lattice
parameter r=r,+06r can be written as

Capy(Tyr)= Capy*(r0)+87(3Cap,®/ d7) — apr"®/ Vc(7 )
68

=Capy"+aaps T (69)

where
@apy=[11k(0Capy%/ 87)r=rot fapr"™/TV].  (70)

The values of @5, have been calculated and these are
listed in Table I. Once the values of aqsy are determined,
it is easy to calculate the room temperature values of
Capy and these are listed in Table IT. Nran’yan’s® values
of Cqpy are also listed for comparison.
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TasBLE II1. Second-order elastic constants of alkali halides
in units of 10" dyne/cm?.

TABLE IV. Pressure derivatives of the second-order elastic con-
stants (dCqp/dp are dimensionless. b is in units of 1078 cm).

Cn Cr2 Cu Reference

LiF 11.049 4.435 6.368 a.b
LiCl 4.94 2.28 2.46 b
LiBr 3.94 1.87 1.93 b
Lil 2.85 1.40 1.35 ¢
NaF 9.450 2.129 2.822 a,b
NacCl 4.792 1.151 1.278 d
NaBr 4.01 1.09 0.99 b
Nal 3.03 0.88 0.74 b,e,f
KF 6.56 1.46 1.25 b
KCl1 3.981 0.610 0.632 d
KBr 3.357 0.457 0.508 g
XI 2.677 0.405 0.369 &
RbF 5.53 1.40 0.93 b
RbC1 3.63 0.62 0.47 b
RbBr 3.15 0.493 0.384 b,h
RbI 2.54 0.407 0.276 b
CsCl 3.64 0.92 0.80 i
CsBr 3.091 0.841 0.747 bk
CsI 2.434 0.636 0.632 b,i

a See Ref. 5.

b S, Haussiihl, Z. Physik 159, 223 (1960).

o S, Haussiihl, Z, Krist. 110, 1 (1958).

d See Ref. 7.

e R, Dalven and C. W. Garland, J. Chem. Phys. 30, 346 (1959).
t R. N. Claythor and B. J. Marshall, Phys. Rev. 120, 332 (1960).
¢ See Ref. 6.

b K. Reinitz, Phys. Rev. 123, 1615 (1961).

i8S, Haussiihl, Acta Cryst. 13, 685 (1960).

i B. J. Marshall, Phys. Rev. 121, 72 (1961).

k K. M. Koliwad (private communication).

IV. PRESSURE DERIVATIVES OF THE SECOND-
ORDER ELASTIC CONSTANTS

When a cubic crystal is subjected to hydrostatic
pressure, the symmetry of the crystal is preserved.
Birch! has calculated the expressions for the effective
second-order elastic constants Cog’ that are needed to
relate the additional stresses with the additional in-
finitesimal strains. The expressions for Cyy/, Cyo/, and
C4d are given below. The Cag, are those defined by
Brugger.®

Ci/=Cu+n(2C1u+2C1+C111+2C112) , (71)
C1'=Crotn(—C1i—C12+Cro5+2C110) (72)
Csd =Cat+n(Crt+2C104CastCraa+2C1s6),  (73)

where
n=—p/(Cu1+2C1s).

Hence the pressure derivatives of the second-order
elastic constants are

aCy/ 2C11+2C 10+ Ci111+2C110

’ (74)
ap Cu+2Cre
dC12/ [_CII—C12+C123+ 2C112:| (75)
dp Cut-2C1 ’

dCun dCiz  dCu aC’ dB
b dp dp dp dp dp Reference
LiF 03333 4.07 295 084 0.56 3.21
0.280 774 2.84 0.74 245 4.27
1.38 3.62 S5.14 Expt. (5)
1141 279 045 431 5.66 N (8)
LiCl 03333 7.10 2.34 0.32 238 3.93
0.303 9.32 2.26 0.24 3.53 4.61
LiBr 03333 8.02 220 0.19 291 4.14
0.305 10.17 2.12 0.12  4.03 4.80
Lil 0.3333  9.60 2.07 0.09 3.77 4.58
0.366 745 2.14 0.16 2.65 3.91
NaF 0.3333 5.26 2.57 0.51 135 3.47
0.312 6.59 2.52 047 2.03 3.88
0.205 4.79 5.18 Expt. (5)
5.62 2.46 0.11 1.58 3.51 N (8)
NaCl 0.3333 814 221 0.19 297 4.18
0.288 1193 2.08 0.08 4.93 5.36
12.18 2.25 0.19 497 5.56 Expt. (3)
7.98 240 022 278 425 N (8)
NaBr 0.3333 848 2.02 0.043 323 4.17
0.308 10.39 2.09 —0.013 4.15 4.83
Nal 03333 9.59 1.8 —0.08 386 4.45
0.341 9.06 189 —0.06 3.58 4.35
KTF 0.3333  6.36 2.15 0.17 211 3.56
0.310 7.85 2.10 0.12 288 4.02
KCl 03333 9.29 198 —0.01 3.65 442
0.309 11.01 192 —0.06 4.54 4.95
12.52 138 —0.38 557 5.09 Expt. (3)
9.74 236 —0.02 3.69 482 N (8
KBr 03333 10.28 197 —0.03 4.16 4.74
0303 1294 190 —0.09 557 591
12,96 1.591 —0.328 Expt. (6)
10.89 2.45 —0.014 423 526 N (8)
KI 0.3333 10.73 1.78 —0.16 4.48 4.76
0317 12,09 174 —0.19 518 5.19
13.66 2.096 —0.241 Expt. (6)
13.14 240 —-0.07 537 598 N (8)
RbF 0.3333 6.70 2.00 0.06 235 3.56
0.291 9.66 190 —0.03 3.88 4.49
RbCl 0.3333 8.86 1.82 —0.13 3.52 4.16
0.283 13.10 1.70 —0.23 5.70 5.50
RbBr 03333 9.61 1.77 —0.18 3.92 4.39
0.298 12.52 1.70 —0.22 541 531
RbI 03333 6.54 1.59 —0.33 247 3.57
0293 13.66 1.58 —0.33 6.04 5.60
CsCl 0.3333 596 2.96 0.72 1.50 3.96
0.256 8.27 5.27 2.57 1.50 6.27
4.66 3.22 087 072 3.70 N (8)
CsBr 0.3333 6.05 3.15 0.86 145 4.12
0.267 7.95 5.09 237 143 6.04
6.94 3.60 125 1.67 471 N (8)
Csl 0.3333  6.50 3.59 1.16 146 4.57
0.263 8.68 5.89 285 139 6.82
5.57 4.29 1.88 0.64 472 N (8)

dCad Cut2C19+CaatCraat2Crs6

dp Cu+2Cre

dC'_ [3C11+3C124+C111—Cras]
4 2ACut2Cu]

dB_ C111+6C112+2C123

a4 3(Cut2Cw)

b

»  (76)

an

(78)
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TasLE V. Theoretical values of T.0O.E. constants and the experimental values of C,g, determined by Chang (Ref. 7)
for NaCl and KCl crystals. (Cagy are in units of 101 dyne/cm?.)

NaCl KCl1
Theory Theory

5=0.33334 b=0.2884 Expt. 5=0.33334 5=0.3104 Expt.
Ci1+2Cne —69.65 —96.49 —99.1 —56.48 —066.43 —74.4
Ci1—Chas —59.95 —87.69 —91.0 —50.76 —61.02 —-71.5
Cuse 2.48 2.48 2,71 1.58 1.58 1.18
Cras 2.57 2.56 2.58 1.65 1.64 1.27
Cies —6.15 —5.74 —06.11 —-3.72 —3.58 —2.45

where a166>0, and a3, aase, and @144<O0 for NaCl-type

C'=3(Ci/—C1/) and B=3%(Ciu/+2Cy).

The room-temperature and atmospheric-pressure data
on the second-order elastic constants are listed in
Table III. The values of Cypy given in Table II and the
second-order elastic constants given in Table III have
been used to calculate the pressure derivatives of the
second-order elastic constants for different alkali halides
and these are listed in Table IV. Pressure derivatives
calculated by using Nran’yan’s® values of Cqgy are listed
in Table IV for comparison.

In Table V we have listed the experimental values of
Chang” of Cggy for NaCl and KCI crystals and the
calculated values of C,g, for these crystals.

V. DISCUSSION

We have calculated the third-order elastic (T.0.E.)
constants of the alkali halide crystals in the framework
of the Born model. We have included the short-range
repulsive interactions up to second nearest neighbors.
The temperature variation of these constants is calcu-
lated by following the procedure developed by Leibfried
and Hahn.'*!2 We find that Cias, Csse, and C144>0, and
C111, C11e, and C16<0 for NaCl-type crystals whereas
all the six T.O.E. constants for CsCl-type crystals are
negative. It isinteresting to note that theratio | C11|/Cu1
varies roughly from 5 to 15 as one passes from fluorides
to iodides. The absolute values of the rest of the T.O.E.
constants are of the same order of magnitude as that
of Cyy for those crystals. Tables I and II show that the
values of the Cyg,® and a,gy are sensitive to the value of
the repulsive parameter . Within the framework of
our model, for NaCl-type crystals C125° does not depend
on the short-range interactions at all, whereas Cy11° is
very sensitive to the value of 5. For CsCl-type crystals,
C112° and Cye5° are more sensitive to the value of & as
compared to Ci11°.

For the central force model chosen for the alkali
halides, the Cauchy relations for the T.O.E. constants
(C112°=C1rg6°; C1230=C5°=C14¢°) are satisfied at 0°K.
The failure of the Cauchy relations at a finite tempera-
ture 7" is due to the vibrational part of the energy. The
temperature coefficients aqgy of the T.O.E. constants are
all positive for CsCl-type crystals, whereas @111, @112, and

crystals. Our calculations indicate that, for NaCl-type
crystals, C1a is most sensitive to temperature followed
by Ci2 and other Casy. For a temperature difference
of 300°K, C1s3 changes by about 309, and Cy1s changes
by about 109,. For the CsCl-type crystals we find that
C144 is most sensitive to temperature followed by Cigs,
Ci2, and other Cqpy. For a temperature change of
300°K, there is a change in the value of C14 of about
40%,. For the same temperature difference the other
T.O.E. constants change by about 209,. Our conclusions
differ from those arrived at by Nran’yan.® He finds that
a1z and aig3 are negative and that the other aq.pz, are
positive for the CsCl-type crystals, contrary to our
results, namely, that all a.g, are positive for the CsCl-
type crystals. His values of Css6 and Cra4 for NaCl-type
crystals are in error because of an error in the sign of
@456 and @14, At the present time no experimental data
are available to compare our conclusions with on the
temperature variation of these T.O.E. constants. We
have compared the experimental values of Chang” with
our calculated values of Cygy for NaCl and KCl crystals
The numerical agreement is considered to be satisfactory.

It is gratifying to note however that the pressure
derivatives calculated using the values of T.O.E. con-
stants from Table II, compare fairly well with the
experiments. We note that (dCy1/dp) and (dC1e/dp) are
positive whereas (dCas/dp) is positive or negative de-
pending on the crystal system. Our calculations indicate
that Cy increases with hydrostatic pressure for the
CsCl-type crystals and for LiF to NaCl crystals. The
experiments on LiF, NaF, and NaCl support our con-
clusions. For NaBr we find that (dCa/dp)>0 for
5=0.3333 4 and (dC4s/dp)<0 for 5=0.308 A. For Nal
(dCu/dp)<0. For KF, Cu increases with pressure.
From KCl to Rbl, Cs decreases with pressure. RbF
is another exception for which (dCu/dp)>0 for
b=3333 4 and (dC1s/dp)<0 for 5=0.291 4. We believe
that the second set of values of the repulsive parameter
b, used from Tosi’s'® paper, has to be weighed heavily
as compared to the flat value of 5=0.3333 4. If this
premise is accepted, then we conclude that for NaBr to
RbI, with the exception of KF, Cs decreases with
pressure. These conclusions are consistent with the
available experimental data on KCIl, KBr, and KI
crystals. The inclusion of the second-nearest-neighbor
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interactions has improved the agreement between theory
and experiment. (Compare Nran’yan’s values. He has
included the nearest-neighbor interactions only.) It is
true, however, that the agreement between the theo-
retical and experimental values of (dC.g/dp) falls short
of something that is desired. This is not considered to
be too serious because we have used only two parameters
b and 7y to calculate the T.O.E. constants and have
neglected the polarizability of the ions, van der Waal’s
forces, and many-body forces.
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APPENDIX

A convenient elementary cell for CsCl structure is a
cubic cell of edge length 27y. The positive (or negative)
ionislocated at the center of the cube and eight negative
(or positive) ions are located at the corners. To calculate
the Madelung constant and other lattice sums by
Evjen’s method, the choice of a larger neutral cube turns
out to be an inconvenient one. An appropriate choice of
a cell, for such calculations, is a parallelepiped whose
adjacent edges are lines joining the center of the cubic
cell to any three adjacent corners of the cube, i.e., the
lines joining the origin (0,0,0) to points (1,1,1), (1,1,1),
and (1,1,1). Distances are measured in units of #,. For
a further discussion on the choice of such a cell, the

GHATE

reader may refer to the articles by Krishnan and Roy'®
and Roy.'7 Lattice sums of the following type are of
interest:

Symnnng) =

l1,12,13

l 2nllz2n2132n3
(Wl 1)V 12

where #1, ns, n3, and N are positive integers and
nitnet+n;<3(N—1); Iy, I, and I3 form an unmixed set
of all possible (positive or negative) integers. In this
notation Madelung’s constant= —.51®, To calculate the
lattice sums, we proceed as follows. We consider a larger
neutral parallelepiped, with N3 elementary parallele-
pipeds, with a positive ion at the center. We calculate
the sum of this series. We choose a successively larger
parallelepiped by increasing NV in steps of 1. We find
that the series converges fairly rapidly. We list below
the lattice sums obtained in this manner for N=11,
The sums are reliable up to 0.001%,.

S, =—1.017678 S5 =—0.346708
S3©® = —0.642941 S, LD = —0.144684
S50 = —0.298164 Seh = —0.053174
S0 =—0.119704 S7&D=—0.093356
Se©® = —0.044633 Se® 1 = —0,044368

(_ 1) litiatis

Ss®=0.354190 Sy = —0.009950
S:®=0.075054 S =—0.049974
Se®=0.006960 SyhD = —0.159996
S:® = 0.540001 Sy = —0.055948.
S¢®=0.163790

Sy®=0.640849

16 K. S. Krishnan and S. K. Roy, Phys. Rev. 87, 581 (1952).
17S. K. Roy, Can. J. Phys. 32, 509 (1954).



