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Third-order elastic constants of NaCl-type and CsCl-type crystals have been calculated using the Born 
model of ionic solids. Short-range repulsive interactions have been included up to second-nearest neighbors. 
Assuming that the temperature variation of these constants is linear, we have calculated the temperature 
coefficients aapy in the high-temperature limit. In the case of NaCl-type crystals, Cm, Cm, and Ci66 are 
negative and Cm, C456, and Ciu are positive, whereas all the third-order elastic constants of CsCl-type 
crystals are negative. The temperature coefficients aapy are all positive for CsCl-type crystals, whereas 
0111, 0112, and di66 are positive and the others are negative for NaCl-type crystals. The computed values of 
the third-order elastic constants have been used to calculate the pressure derivatives of the second-order 
elastic constants and a comparison is made with the available experimental data. 

I. INTRODUCTION 

IN recent years considerable attention has been given 
to the study of third-order elastic constants1,2 of 

cubic crystals. Since the classic work of Lazarus3 on the 
effect of hydrostatic pressure on the second-order elastic 
constants of NaCl and KC1 single crystals a number of 
measurements have been reported on the pressure 
derivatives of the second-order elastic constants of 
alkali halide single crystals.4""6 For a cubic crystal there 
are six independent third-order elastic (T.O.E.) con
stants and the pressure derivatives of the second-order 
elastic constants enable us to obtain three combinations 
of the six T.O.E. constants. Recently, Chang7 has ex
perimentally determined two more combinations of the 
T.O.E. constants of NaCl and KC1 crystals. Nran'yan8 

has calculated the T.O.E. constants for some of the 
NaCl-type crystals and CsCl-type crystals. He has used 
the Born model with nearest-neighbor interactions. We 
believe that his values of the electrostatic contribution 
to the T.O.E. constants are in error. 

In the present article we have used Brugger's9 defini
tion of the T.O.E. coefficients. The advantage of using 
Brugger's definition should be apparent, later in the 
text, from the symmetry of the expressions for the 

elastic constants. The T.O.E. constants for 19 alkali 
halide crystals have been calculated using the Born 
model. For the short-range repulsive interactions we 
have used the Born-Mayer type of potential: A 
exp(—r/b). Interactions up to second-nearest neighbors 
have been included. For the NaCl-type of crystals we 
have used the values of the electrostatic contribution 
to T.O.E. constants as given by Blackman.10 The 
necessary lattice sums to calculate the electrostatic part 
of the T.O.E. constants of CsCl-type crystals have been 
evaluated on a computer. The method of calculation of 
the lattice sums for CsCl-type crystals is outlined in the 
Appendix. The T.O.E. constants are assumed to vary 
linearly with temperature. The temperature coefficients 
are calculated by expanding the vibrational free energy 
up to cubic terms in the strains in the high-temperature 
limit by following the procedure developed by Leibfried 
and Hahn.11'12 We have calculated the pressure deriva
tives of the second-order elastic constants at room 
temperature. 

II. THIRD-ORDER ELASTIC CONSTANTS 

The elastic-strain energy density for a cubic crystal 
up to cubic terms in strains is written as follows1: 

U=Ui+U9 

= iC l l (W+7?22 2 +W) + Cl20?ll?722+^22^33+ 
+ iCll2{W(7722+^33) + W ( ^ 3 3 + W + W ( ^ l l + W } 

+ 2Cl44(?7ll??232+ ??22*7312+ ̂ 33^122) + 2Cl6e{ W ( ? 7 l l + ^22) + ^232(^22+ W + ^312(^33+ W } ' (1) 

* Work supported by the U. S. Atomic Energy Commission and the Advanced Research Projects Agency. 
1 F. Birch, Phys. Rev. 71, 809 (1947). 
2 See the review article by H. B. Huntington, in Solid State Physics, edited by F. Seitz and D. Turnbull (Academic Press Inc., 

New York, 1958), Vol. 7, pp. 213-351. 
3 D. Lazarus, Phys. Rev. 76, 545 (1949). 
4 W. B. Daniels and C. S. Smith, The Physics and Chemistry of High Pressures (Gordon and Breach, Science Publishers Inc., 

New York, 1963), pp. 50-63. 
5 R. A. Miller and C. S. Smith, Bull. Am. Phys. Soc. 9, 687 (1964); J. Phys. Chem. Solids 25, 1279 (1964). 
« P. J. Reddy and A. L. Ruoff, Bull. Am. Phys. Soc. 9, 534 (1964); 9, 727 (1964); private communication. 
7 Z. P. Chang, Ph.D. thesis, Rensselaer Polytechnic Institute, Troy, New York, 1964 (unpublished); private communication. 
8 A. A. Nran'yan, Fiz. Tverd. Tela 5, 177, 1865 (1963) [English transl.: Soviet Phys.—Solid State 5, 129, 1361 (1964)]. 
9 K. Brugger, Phys. Rev. 133, A1611 (1964). 
i° M. Blackman, Proc. Phys. Soc. 84, 371 (1964). 
11 G. Leibfried and H. Hahn, Z. Physik 150, 497 (1958). 
12 See also G. Leibfried and W. Ludwig, in Solid State Physics, edited by F. Seitz and D. Turnbull (Academic Press Inc., New 

York, 1961), Vol. 12, pp. 275-444. 
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where y]ap are the Lagrangian strain components, Cap 
are the usual second-order elastic constants, and Capy 

are the T.O.E. constants in Brugger's9 definition.13 

We shall now derive the expressions for the T.O.E. 
constants of the alkali halides. This will be carried out 
in two steps. First the energy density of the deformed 
crystal at 0°K will be calculated. By expanding the 
energy density up to cubic terms in strains expressions 
for T.O.E. constants Capy° will be obtained by com
paring with Eq. (1). The effect of temperature will be 
taken into account later. We shall assume that only 
central forces are acting and that the lattice is in equi
librium under vanishing external forces. The zero-point 
vibrational energy and its effect on the elastic constants 
will be ignored. We note that each atom is a center of 
symmetry. The energy density of the undeformed lattice 
can be written as follows: 

c7o=(2Fc)-1E E ^ ( V ° ) 

= ( 2 F c ) - 1 E / ^ ( v w 0 . ) (2) 
Here 4v(*>w0) represents the interaction energy between 
the *>th particle in the zeroth cell and the /*th particle in 
the mth cell. In our case n, v can take values 1 and 2, m 
takes all the values corresponding to the elementary cells 
in the crystal, and E ' denotes the summation over all 
lattice points except m—0, [i—v. Vc is the volume of the 
elementary cell. When the lattice is subjected to a homo
geneous deformation the new interatomic distances will 
be denoted by R^™0. The Lagrangian strain parameters 
rjap are defined by the following equation: 

R2-r* = 2 E ia^afi=2piar°. (3) 

(R and r denote R^ and ?>m0 and a, p= 1, 2, 3.) f«, & 
are the Cartesian coordinates of the particle in the un
deformed state. 

The potential-energy density 

c 7 = ( 2 F c ) - 1 E / ^ ( ^ v w 0 ) (4) 
can be expanded in a series of ascending powers of 
Gv™0).10'14 

U=Uo+Ul+U2+Uz. (5) 
The condition of equilibrium yields the relation Ui=0 
and U2 contains quadratic terms in the strain com
ponents. Since we are interested in the T.O.E. constants 
we confine our attention to Uz\ 

c7 3 =(2Fc)- 1 L / (W w 0 ) 3 /3! )^VM^)k-M^ (6) 
= (12VC)~1 E E E V\<x$'na>Vl)a"V> 

a/3 a'/3' a"$" 

X [ E ' U^a>^>^>&>D*<p»v(R)\R=r^ (7) 

where D = Rrl(d/dR). 
13 The T.O.E. constants (Ca(37

Bi) denned by Birch (Ref. 1) are 
related to those (Capy

Br) defined by Brugger (Ref. 9) in the fol
lowing manner: 

CmBr = 6CmBi C456Br = iC456Bi 

Cii2Br = 2Cn2Bi Cu4Br = iCu4Bi 

Cl23
Br = Cl23Bi Cl66Br = iCl66Bi. 

14 M. Born and R. D. Misra, Proc. Cambridge Phil. Soc. 36, 
466 (1940). 

We can compare the coefficients of y]ap'Oci>p'yoc"0" in 
Eq. (7) with those in Eq. (1). After going through simple 
but somewhat lengthy algebra we get the following 
expressions for CapyQ: 

Cm°=(2Fc)-1 E ' Si*D*<Pr(R)\R-r^, 
C112°=(2Fc)-1 E ' £ i V £ ^ ( £ ) U = v o , 
C123°= (2Vc)~l E ' tftftfD*<p»v{R) I*-rM,-, ( 8 ) 

C456° = (2Va)~l E ' W&D^iR) \R=r^o, 
C144°= (2VC)-1 E ' tfh2tfD*<Pr(R) U ^ o , 
C166°= (27c)-1 E ' h'^D^^R) U = ^ o . 

The superscript zero for Capy has been introduced to 
emphasize the fact that these constants correspond to 
0°K. "Cauchy" relations for the T.O.E. constants follow 
from the above expressions. 

Cl230=C456°=Cl440; C 1 1 2 °=Ci 6 6 ° . (9) 

For a central-force model there are only three inde
pendent T.O.E. constants. 

In the case of alkali halides the potential energy be
tween two ions jit, ?(= 1, 2) with charges ±0 and distance 
R apart is assumed to be made up of two parts, Cou-
lombic and the non-Coulombic. Thus 

<Pr(R)=<PrKR)+<Pr"eW, (10) 

with (pfiV
c(R)~zLe2/R. The ± apply to like and unlike 

charges, respectively. The non-Coulombic part of the 
energy is assumed to have the form 

<PvN'(R) = Aexp(-R/b). (11) 

We include the short range interactions up to the 
second nearest neighbors. The general expressions for 
the short-range interactions up to the second-nearest 
neighbors will be of three types: 

(a) unlike ions: A+~ exp(—ri/b+J), 
(b) like positive ions: A++ exp(—r2/b++), 
(c) like negative ions: A exp(—r2/b ) . 

Such a model would require six parameters. To keep the 
number of parameters to a minimum we have assumed 
that the short-range interactions (a), (b), and (c) can 
be approximated by expression of the type (11). 

We are neglecting the van der Waal's forces, and 
many-body forces. In this simplified model we can write 
the elastic constants Cap7° as 

Ca^=Ca^+Ca^\ (12) 

A. NaCl-Type Crystals 

The expressions for the Coulombic part of Capy can 
be written down using the necessary lattice sums: 

Cm
c0=-(15/Fc)(e2Ao)S7

(3) , 
Cmc0= - (15/Vc)(e

2/ro)S7^ , (13) 
C123

c0=-(15/Fc)(e2Ao)^7(1'1'1), 
C456C° = Ci23c0 = C1U

C° J Cl66c0 = Cn 2
c 0 , 
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TABLE I. T.O.E. constants and their temperature coefficients. (Capy0 in units of 1011 dyne/cm2, aapy in units of 
107 dyne/cm2 °K; fo and b in units of 10~8 cm.) 

LiF 

LiCl 

LiBr 

Lil 

NaF 

NaCl 

NaBr 

Nal 

KF 

KC1 

KBr 

KI 

RbF 

RbCl 

RbBr 

Rbl 

CsCl 

CsBr 

Csl 

n 

1.996 

2.539 

2.713 

2.951 

2.295 

2.789 

2.954 

3.194 

2.648 

3.116 

3.262 

3.489 

2.789 

3.259 

3.410 

3.628 

2.034 

2.118 

2.251 

b 

0.3333 
0.280 

0.3333 
0.303 

0.3333 
0.305 

0.3333 
0.366 

0.3333 
0.312 

0.3333 
0.288 

0.3333 
0.308 

0.3333 
0.341 

0.3333 
0.310 

0.3333 
0.309 

0.3333 
0.303 

0.3333 
0.317 

0.3333 
0.291 

0.3333 
0.283 

0.3333 
0.298 

0.3333 
0.293 

0.3333 
0.256 

0.3333 
0.267 

0.3333 
0.263 

Cm0 

-65.52 
-146.6 

-70.59 
-95.03 

-66.81 
-86.38 

-60.88 
-46.39 

-73.27 
-93.90 

-64.97 
-96.92 

-60.85 
-75.12 

-54.82 
-51.67 

-68.32 
-84.92 

-56.73 
-68.90 

-53.18 
-67.28 

-47.99 
-54.18 

-64.97 
-94.37 

-53.27 
-79.09 

-49.79 
-65.03 

-32.53 
-60.71 

-37.20 
-43.30 

-32.41 
-36.79 

-26.30 
-30.15 

0 m 

192.9 
378.6 

230.3 
312.4 

233.7 
307.6 

235.6 
176.3 

220.2 
277.4 
234.6 
364.7 

235.6 
298.4 

235.4 
220.1 

232.7 
292.3 

235.7 
294.4 

235.1 
309.9 

233.7 
269.8 

234.6 
353.8 

235.2 
376.6 

234.3 
322.9 

225.9 
335.0 

132.1 
192.1 

123.8 
169.8 

112.2 
158.4 

Cll2° 

-27.72 
-26.76 

-9.997 
-9.637 

-7.499 
-7.196 

-5.152 
-5.367 

-15.46 
-15.16 

-6.624 
-6.178 

-5.130 
-4.933 

-3.613 
-3.653 

-8.328 
-8.077 

-4.038 
-3.883 

-3.284 
-3.123 

-2.423 
-2.359 

-6.624 
-6.211 

-3.298 
-3.026 

-2.687 
-2.533 

-1.939 
-1.899 

-5.598 
-11.09 

-5.323 
-9.399 

-4.912 
-8.831 

^112 

51.71 
60.57 

31.48 
35.07 

27.83 
30.99 

23.94 
21.35 

38.56 
41.12 

26.42 
32.14 

23.90 
26.66 

21.08 
20.38 

29.07 
31.65 

21.91 
24.54 

20.42 
23.86 

18.59 
20.28 

26.42 
31.65 

20.44 
27.08 

19.17 
23.35 

18.47 
22.71 

44.64 
89.62 

44.07 
79.04 

43.15 
80.33 

Cl23° 

9.859 
9.859 

3.766 
3.766 

2.889 
2.889 

2.064 
2.064 

5.641 
5.641 

2.586 
2.586 

2.055 
2.055 

1.504 
1.504 

3.183 
3.183 

1.660 
1.660 

1.382 
1.382 

1.056 
1.056 

2.586 
2.586 

1.387 
1.387 

1.157 
1.157 

0.903 
0.903 

-3.913 
-9.409 

-3.891 
-7.966 

-3.790 
-7.708 

0123 

-23.04 
-35.84 

-20.94 
-27.53 

-20.73 
-26.88 

-20.61 
-15.68 

-21.48 
-25.70 

-20.69 
-31.85 
-20.60 
-26.04 

-20.55 
-19.20 

-20.80 
-25.67 

-20.56 
-25.77 
-20.54 
-27.33 

-20.53 
-23.87 

-20.69 
-30.88 

-20.54 
-33.55 

-20.53 
-28.73 

-20.97 
-30.24 

25.64 
64.53 

26.35 
56.85 

27.33 
60.76 

0456 

-10.72 
-10.36 

-4.976 
-4.891 

-4.029 
-3.968 

-3.087 
-3.136 

-6.866 
-6.777 

-3.692 
-3.602 

-3.075 
-3.036 

-2.403 
-2.411 

-4.353 
-4.297 

-2.598 
-2.566 

-2.248 
-2.214 

-1.819 
-1.803 

-3.692 
-3.608 

-2.254 
-2.197 

-1.953 
-1.920 

-2.045 
-1.576 

15.87 
38.67 

16.27 
34.08 

16.77 
35.96 

0144 

-3.056 
-1.898 

-0.833 
-0.806 

-0.628 
-0.713 

-0.549 
-0.506 

-1.354 
-1.173 

-0.607 
-0.797 

-0.546 
-0.654 

-0.513 
-0.488 

-0.700 
-0.723 

-0.519 
-0.638 

-0.512 
-0.669 

-0.504 
-0.582 

-0.607 
-0.775 
-0.511 
-0.807 

-0.506 
-0.692 

-0.941 
-0.701 

52.42 
124.0 

53.19 
109.3 

54.23 
115.6 

0166 

44.49 
44.85 

21.55 
20.93 

17.41 
16.67 

12.99 
13.52 

29.60 
29.39 

15.81 
14.54 

12.95 
12.32 

9.767 
9.907 

18.82 
18.29 

10.70 
10.11 

9.026 
8.326 

6.991 
6.663 

15.81 
14.65 

9.056 
7.810 

7.629 
6.863 

6.770 
5.226 

55.32 
126.8 

55.74 
111.7 

56.33 
117.6 

where Thus we have 

£ (-i)*i+fc-H«—:—-—- . (14) 
h.h.h {h2+h2+h2)N}2 

Summation is taken over all the lattice points, m, n%, n$ 
and N are positive integers and (^1+^2+^3)^ JOV— 1). 
In this notation, Madelung's constant is given by 
—5i ( 0 )= 1.74756. Here r0 denotes the nearest-neighbor 
distance; hence 2f0

3 is the volume of the elementary cell. 
For NaCl-type crystals the lattice sums are readily 
available10 

S7
(8> = - 1 . 3 6 8 5 2 , 

S7v>» = 0A6ll5, 

5 7 ( i , i , i )=-0.09045. 

(15) 

Cm c 0 = + 10.26390(^Ao4), 

C112
c0=-1.208625(e2/r0*), 

Ci23c0=+0.678375(e2Ao4). 

(16) 

Values of C456c0, Ci44c0, and Ci66
c0 can be easily obtained. 

We list the values of Capyc0 obtained by Nran'yan8 for 
comparison. His values are multiplied by appropriate 
numerical factors to convert from Birch's1 definition of 
Capy to that of Brugger.9 According to Nran'yan8 

Cm c 0=11.00(^Ao4) , 

Cn2 c 0=-1.71(e2Ao4) , (17) 

Cm
c 0=0.88(e2Ao4) . 

I t is easy to check that Nran'yan's values of S7
(3), 
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S7
(2>1\ and SV1'1'1) fail to satisfy the identity14 

3S7w+18S7v>v+6S7«>1>v = S1w. (18) 

The final expressions for Capy
0, including the terms 

due to short-range interactions, are 

Cm° = 10.2639-
fo4 b 

r3 3 n 
—+—+-

U 2 br0 b2J 

Cn2°= -1.208625 

*>(r0v5)r3\2 6 2v2' 

2b Lr0
2 br0 b2 

e2 <p(r<rfZ)r3y/2 6 2v2i 
i i 

]• 
(19) 

r0
q 

I — + — + — , 
46 L ro2 br0 b2 J 

Ci23°=0.678375(e2Ao4): 

C4 Cl66° = Cl 

where <p(r) = A exp(—r/b). 
The values of Capy° for sixteen NaCl-type crystals 

are listed in Table I. We have used the room-tempera
ture data of the lattice parameter and the coefficient of 
thermal expansion15 to extrapolate the value of r0. The 
hardness parameter b for the alkali halides is about 
(1/3) X10-8 cm. We have used b=0.3333 X10~8 cm and 
the value of the pre-exponential parameter A is cal
culated from the equilibrium condition. 

A = bZo(e2/r0
2)Z6 exp(-rQ/b) 

+ 12v2exp(-r0v2/&)]-1 (20) 

where Zo=Madelung's constant for NaCl-type crystal 
= 1.74756, and e= electronic charge=4.803X10~10 esu. 
We have used this value of A to calculate the short-
range repulsive interaction energy <p(r). 

Tosi15 has shown that different values of b result if one 
uses different equations of state. We have used the set 
of •"&" obtained by Tosi15 making use of the Hilder-
brand equation of state. The different values of b for 
different crystal systems and the corresponding values 
of Capy° are also listed in Table I. In passing we note 
that the contribution of the short-range repulsive inter
actions to T.O.E. constants is quite predominant as 
compared to that of the electrostatic interactions. 

B. CsCl-Type Crystals 

The expressions for the Capy° of CsCl-type crystals 
can be easily written down. The elementary cell is 
chosen to have a cube edge of 2r0 and hence of volume 
8r0

3. The nearest-neighbor distance is ri=f0v5. The 
necessary lattice sums and the Coulombic part of Capy° 
are given below. 

St(o) = -z0=-1.01768, S7<*'1) = -0.09336, ( 2 1 ) 

57(3) = o.5409, S7a.M) = -0.16000, 
15 M. P. Tosi, Solid State Physics, edited by F. Seitz and 

D. Turnbull (Academic Press Inc., New York, 1965), Vol. 16, 
pp. 1-120. 

Cmc0=-1.01419(^Ao4), 
Cn2c0=0.17505(^Ao4), (22) 
Ci23c0=0.30000(e2/ro4). 

Nran'van's8 values are listed below for comparison. 

Cmc0=-2.8520(e2Ao4), 
Cm

c°=+0.4359(e2Ao4), (23) 
C123<o=o.2944(e2Ao4). 

The expressions for Capy° including the contribution of 
the short-range repulsive forces are as follows: 

Cm°=-1.01419-
ro* 

p(ri)n# 3 ^ — - + — + -
9b LrQ

2 br0 b ] 
p W r 3 6 4"i 

—+—+- , 
2b U 2 br0 62J 

Cn2°=0.17505-
e2 *>(ri)rv3 3 V3~-

fo4 9b b-o2 br0 b2. 

e2 *>(fi)nfl 3 V3" 
Ci23°=0.30000 1 + -

r0
4 9b U)2 br0 b2-

C456° = Cl230=Cl440; C 1 6 6 °=Cl l2 0 , 

where 
(p(n) = A exp(—r<?J$/b) 

(24) 

and 
<p(r2) = A exp(— 2rQ/b). 

(25) 

The pre-exponential parameter A is obtained from the 
equilibrium condition given below : 

A =SZ0(e
2Ao2)[8v5 exp(-r0V3/&) 

+ 12exp(-2r0/6)]-1 . (26) 

The value of r0 is obtained by extrapolation using the 
room-temperature lattice-parameter and thermal-ex
pansion data.16 The values of Capy° for CsCl, CsBr, and 
Csl along with those of other NaCl-type halides are 
listed in Table I. 

Ill- TEMPERATURE VARIATION OF THE 
THIRD-ORDER ELASTIC CONSTANTS 

The temperature variation of the T.O.E. constants 
is calculated by following the procedure developed by 
Leibfried and Harm11,12 for the temperature variation 
of the second-order elastic constants. The free energy of 
a crystal containing N cells, with s atoms (s=2 for 
alkali halides) per unit cell, can be written as 

where 
F= vcNU+Fvib 

ZsN 

F*ih=kT £ ln2sinh{W2ifer} 

ZsN 

(27) 

= kT"£ lnffeoi/zfer} for hu&kT. (28) 
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I t should be emphasized that expression (28) for the 
vibrational free energy and hence, the subsequent ex
pressions for the temperature coefficients of the T.O.E. 
constants are valid only in the high-temperature limit. 
At this stage one invokes the theorem that the spur of a 
matrix is invariant under a coordinate transformation 
and hence E coi2=3sN(o)2)av. Following the suggestion 
of Born, an in Eq. (28) is replaced by [(coV]1 '2 .2-12 

We write down the expression for (co2)av, the average 

(co2)av= (3s)'1 Y.f(Mv)-^^v{R^) (29) 

where A<pM„ is the Laplacian of the potential seen by 
(„°)th atom which results from its interactions with 
other atoms and Mv is the mass of the v\h atom. In the 
case of alkali halides, by the use of Poisson's equation, 
the Laplacian of that part of the potential arising from 
the electrostatic forces vanishes.11,12 With this con-
vient simplification one has to consider only the short-
range interactions in the evaluation of (co2)av. 

At absolute zero the lattice parameter is r0. At tem
perature r °K, r0 changes to r0+8r. For cubic crystals 
the thermal expansion is isotropic. If we assume that 

the coefficient of thermal expansion is independent of 
temperature, then 

8r=hkT, (30) 

where k is Boltzmann's constant and h is a constant 
characteristic of the alkali halide. The thermal strain 

Vij^ij^dr/ro, (31) 

5#=Kronecker delta. We now impose the condition 
that the lattice be in equilibrium at this temperature. 
This is done by expanding the free energy given by (28) 
in powers of thermal strains and setting the linear term 
equal to zero. The condition of equilibrium reduces to 

Vc E Cikjm*-3skTyik = 0 , (32) 
il 

where 
7ik= ~h(d hi(co2)av/dr)ik) (33) 

is the generalized Grlineisen constant, and Cikji are the 
second-order elastic coefficients. For cubic crystals 
7ik=8iky. Then 

8r/r0= W h = (skT/V c)(bulk modulus ) -^ . (34) 

The expressions for h can now be easily written down. 
For Na CI-type crystals 

b [(2+2po-po2)^(^o)+2v5(l+V2po-po2)^(^oV2)] 

where 

For Cs CI-type crystals 

where 

and 

2 [ ( p 0 - 2 ) ^ ( r o ) + 2 ( p o - ^ ) ^ ( r o ^ ) ] [ ( p o - 2 ) ^ ( f o ) + 4 ( p o - v 2 ) ^ ( r 0 ^ ) ] 

Po=ro/b and <p(r) = A exp(—r/b). 

/ i=- / 'o[ (8 /3)(2p 1 +2p 1
2 -p 1 3)^(r 1 )+f(2p 2 +2p 2

2 -p 2 ^)^(f 2 ) ]F- 1 , 

F = [ ( 8 / 3 ) ^ ^ ! ) ^ ! ) + ^ 

ri=rQ\/3, r2=2r0, Pi=ri/b, P2=r2/b, and <p(r) = A exp(—r/b). 

(35) 

(36) 

We now expand the vibrational part of the free energy of the deformed crystal up to cubic terms in the strains 
For the T.O.E. constants only / 3

v i b is of interest. 

/3vib=(&r/24u0
2)L E E i7«/w«'/j'i?«''HE E M^U^^^'^'D^A^IR^** 

a/3 a'0' a " / 3 " v=l (M*)^(„o) 

- (2coo2)"1[E E E Mr1Mv-
1U^>'&U>>,&>'D2&<pMR) \R=r»,y^DA<p»v(R) | * - r M , - ] 

+ (18coo4)-1[E E E E M^M^M^^UpU^a^^ 
vv'v" ( ^ ) ^ ( , o ) Ox,™') ^ 0 ) ( M „ « " ) S * ( F » ° ) 

XDAcp^R) [ R - r ^ D A v ^ R ) | R-r„s"DA<p^(R) |*= v „ ^ " o ] } , (37) 

where a>0
2 is the mean-square frequency of the unde- cell. We rearrange the terms as follows: 

formed crystal (co0
2={co2)) and /vib — i 

v£ 4>vi J s* SM' 

ft efinvHviis+V22"+m^)+^fu2vih{Vu2(V22+Vzz) 
+ ^222(^33+^ll) + ^332(^ll+1722)}+etC, (38) '0 £ / ' — t ,, ,, .m"0 

i=a,P,a',P',a",P". where 

Here / v i b corresponds to the vibrational energy per unit /m v i b= ikT{^—§(i2 2 ) (Qi)+(&i) 3 /18} (39) 
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/n2 v i b =i^r{n 2 , i -KOi , i ) ( f i i ) 
- t ( a2) (Qi )+(Oi ) 3 /18} : 

/mTlb=l*r{aMll-i(ai.0(a0+(ai)Vi8}, 
(40) 

(41) 

(42) 

(43) 

(44) 

TABLE II . Third-order elastic constants Capy at 25°C. (Capy are 
expressed in units of 1011 dyn/cm2. b is in units of 10~8 cm.) 

/4M T i b =i*r{ai , i . i} > 

/ i 44 T i b =l*r{Oi , i , i - i ( a i .0 (a0}» 

/ i 6 « T l b = i * r { a y . i - i ( a i . i ) ( 0 i ) } , 

and 

08=«o-* E ' M r ' ^ W A ^ U ^ , , - , (45) 

fi2,i=coo-2E'M,-1a4?22^3A^U=,(,^, (46) 

fii,i,i=«><r2E'ifr'tf&Vfl'Ap,,!*.,^, (47) 

O*=tt0-S E ' M , - 1 ! ! 4 / ? ^ ^ | « - , „ - , (48) 

a i , i="o - 2 E ' J f r ^ i V ^ A ^ I u- , , ,^ . , (49) 

fii=co0-
2 E ' A f . - ^ i ^ A ^ l a ^ , , , - . . (50) 

We have evaluated ^3, fla.i, Qi.i.i, 02, fti.i, and 
fli in the approximation of second-nearest-neighbor 
interactions. 

For NaCl-type crystals we get 

03={2¥>(f0)C30po+30po2+9po3-po4-po6]+|^('-oV2) 
X[30p 2+30p 2

2+9p 2
8 -p 24-p 2

s ]}A, (51) 

0».i= Ci^(?-ov2)(30p2+30p2
2+9p2

s-p2
3-p2

6)]A, (52) 

fli.i.i=0, (53) 

fl2= [2^(r0)(—6p0—6p0
2—p0

3+Po4) 
+ ^( f 0 V2)(-6p 2 -6p 2

2 -p 2 '+ P 2 4)]A, (54) 

a i , i = l ^ o v 2 ) [ - 6 p 2 - 6 p 2
2 - p 2

3 + p 2
4 ] A , (55) 

Q!=[2,p(ro)(2po+2po2-po3) 
+2*>(r0v2)(2p2+2p2

2-p2
3)]A, (56) 

where 
A= [>(r.)G»o2- 2P 0 )+ (r0v2)(P 2

2- 2P 2 ) ] - i , (57) 

po=ro/b, p 2=(r 0v2)/6, and <p(r) = A exp(—r/b). (58) 

For CsCl-type crystals 

fi3=[(8^(r1)/81)(30p1+30p1
2+9p1

3-p1^-p1
6) 

+!^(r2)(30P2+30p22+9p23-p24-P26)]Z, (59) 

0».i=i:(8*>(ri)/81) 
X ( 3 0 p i + 3 0 P l

2 + 9 P l
3 - p ^ - P l

5 ) ] Z , (60) 

fli.i.i=Oj.i, (61) 

Q2=[(8/27) v(n){- 6 p i - 6 P i 2 - P l
8 +pi*) 

+ l^ ( ' ' 2 ) ( -6p 2 -6p 2
2 -p 2

3 +P2 4 ) ]Z > (62) 

a i . i = [ ( 8 / 2 7 ) ^ ( f 1 ) ( - 6 p 1 - 6 p i 2 - p i 3 + p i 4 ) ] Z , (63) 

fi1=[(8/9)^(r1)(2p1+2p1
2-p1

3) 
+ i ^ ( r 2 ) ( 2 P 2 + 2 p 2

2 - P 2
3 ) ] Z , (64) 

where 

Z = C(4/9)^(ri)(p1
2-2p1)+i¥>(f2)(p2

2-2p2)]-1 , (65) 

L i F 

LiCl 

L iBr 

L i l 

N a F 

N a C l 

N a B r 

N a l 

K F 

KC1 

K B r 

K I 

R b F 

R b C l 

R b B r 

R b l 

CsCl 

CsBr 

Cs l 

b 

0.3333 
0.280 

N 
0.3333 
0.303 
0.3333 
0.305 
0.3333 
0.366 
0.3333 
0.312 

N 
0.3333 
0.288 

N 
0.3333 
0.308 
0.3333 
0.341 
0.3333 
0.310 
0.3333 
0.309 

N 
0.3333 
0.303 

N 
0.3333 
0.317 

N 
0.3333 
0.291 
0.3333 
0.283 

0.3333 
0.298 
0.3333 
0.293 
0.3333 
0.256 

N 
0.3333 
0.267 

N 
0.3333 
0.263 

N 

Cm 

- 5 9 . 7 7 
- 1 3 5 . 3 
- 2 0 7 . 0 

- 6 3 . 7 2 
- 8 5 . 7 2 
- 5 9 . 8 5 
- 7 7 . 2 1 
- 5 3 . 8 6 
- 4 1 . 1 4 
- 6 6 . 7 1 
- 8 5 . 6 3 
- 7 1 . 4 
- 5 7 . 9 8 
- 8 6 . 0 5 
- 5 4 . 5 4 
- 5 3 . 8 3 
- 6 6 . 2 3 
- 4 7 . 8 1 
- 4 5 . 1 2 
- 6 1 . 3 8 
- 7 6 . 2 2 
- 4 9 . 7 1 
- 6 0 . 1 3 
- 5 0 . 7 0 
- 4 6 . 1 7 
- 5 8 . 0 5 
- 4 6 . 3 8 
- 4 1 . 0 3 
- 4 6 . 1 4 
- 4 7 . 1 0 
- 5 7 . 9 8 
- 8 3 . 8 3 
- 4 6 . 2 6 
- 6 7 . 8 7 

- 4 2 . 8 1 
- 5 5 . 4 0 
- 2 5 . 8 0 
- 5 0 . 7 2 
- 3 3 . 2 6 
- 3 7 . 5 7 
- 2 7 . 1 6 
- 2 8 . 7 3 
- 3 1 . 7 4 
- 3 3 . 2 2 
- 2 2 . 9 6 
- 2 5 . 4 3 
- 1 9 . 0 8 

C112 

- 2 6 . 1 8 
- 2 4 . 9 5 
- 2 5 . 6 

- 9 . 0 5 9 
- 8 . 5 9 2 
- 6 . 6 7 0 
- 6 . 2 7 2 
- 4 . 4 3 9 
- 4 . 7 3 0 

- 1 4 . 3 1 
- 1 3 . 9 4 
- 1 4 . 3 8 

- 5 . 8 3 7 
- 5 . 2 2 0 
- 6 . 8 8 
- 4 . 4 1 8 
- 4 . 1 3 9 
- 2 . 9 8 4 
- 3 . 0 4 5 
- 7 . 4 6 1 
- 7 . 1 3 4 
- 3 . 3 8 6 
- 3 . 1 5 2 
- 4 . 5 8 
- 2 . 6 7 5 
- 2 . 4 1 2 
- 3 . 8 8 
- 1 . 8 6 9 
- 1 . 7 5 4 
- 3 . 1 4 
- 5 . 8 3 7 
- 5 . 2 6 8 
- 2 . 6 8 9 
- 2 . 2 1 9 

- 2 . 1 1 6 
- 1 . 8 3 7 
- 1 . 3 8 9 
- 1 . 2 2 3 
- 4 . 2 6 7 
- 8 . 4 2 2 
- 3 . 7 6 
- 4 . 0 1 0 
- 7 . 0 4 3 
- 3 . 8 8 
- 3 . 6 2 6 
- 6 . 4 3 7 
- 3 . 8 6 

C123 

9.173 
8.791 

11.1 
3.142 
2.945 
2.271 
2.087 
1.449 
1.596 
5.001 
4.875 
6.58 
1.970 
1.637 
2.69 
1.441 
1.279 
0.891 
0.932 
2.563 
2.418 
1.047 
0.892 
1.48 
0.770 
0.568 
1.11 
0.444 
0.345 
0.74 
1.970 
1.666 
0.775 
0.388 

0.546 
0.301 
0.278 
0.002 

- 3 . 1 5 0 
- 7 . 4 8 6 
- 5 . 5 8 
- 3 . 1 0 5 
- 6 . 2 7 2 
- 5 . 4 7 
- 2 . 9 7 5 
- 5 . 8 9 8 
- 5 . 1 1 

C466 

9.540 
9.551 

13.2 
3.617 
3.620 
2.769 
2.770 
1.972 
1.970 
5.436 
5.439 
7.6 
2.476 
2.479 
3.55 
1.964 
1.965 
1.432 
1.432 
3.053 
3.055 
1.583 
1.584 
2.27 
1.315 
1.316 
1.865 
1.002 
1.002 
1.445 
2.476 
2.479 
1.320 
1.322 

1.099 
1.100 
0.842 
0.856 

- 3 . 4 4 1 
- 8 . 2 5 7 
- 4 . 8 
- 3 . 4 0 6 
- 6 . 9 5 1 
- 4 . 7 
- 3 . 2 9 0 
- 6 . 6 3 7 
- 4 . 3 2 5 

C144 

9.768 
9.803 

13.2 
3.741 
3.742 
2.870 
2.867 
2.047 
2.048 
5.601 
5.606 
7.6 
2.568 
2.563 
3.54 
2.039 
2.036 
1.488 
1.489 
3.162 
3.161 
1.645 
1.641 
2.27 
1.367 
1.362 
1.865 
1.041 
1.039 
1.405 
2.568 
2.563 
1.372 
1.363 

1.142 
1.137 
0.875 
0.882 

- 2 . 3 5 1 
- 5 . 7 1 3 
- 4 . 9 5 
- 2 . 3 0 5 
- 4 . 7 1 0 
- 4 . 9 0 
- 2 . 1 7 4 
- 4 . 2 6 3 
- 4 . 6 

C166 

- 2 6 . 4 0 
- 2 5 . 4 2 
- 2 4 . 2 

- 9 . 3 5 5 
- 9 . 0 1 4 
- 6 . 9 8 0 
- 6 . 6 9 9 
- 4 . 7 6 5 
- 4 . 9 6 4 

- 1 4 . 5 7 
- 1 4 . 2 9 
- 1 2 . 8 

- 6 . 1 5 3 
- 5 . 7 4 4 
- 6 . 3 
- 4 . 7 4 4 
- 4 . 5 6 6 
- 3 . 3 2 2 
- 3 . 3 5 8 
- 7 . 7 6 7 
- 7 . 5 3 2 
- 3 . 7 2 0 
- 3 . 5 8 1 
- 4 . 0 0 
- 3 . 0 1 5 
- 2 . 8 7 5 
- 3 . 2 9 
- 2 . 2 1 4 
- 2 . 1 6 0 
- 2 . 5 6 
- 6 . 1 5 3 
- 5 . 7 7 4 
- 3 . 0 2 8 
- 2 . 7 9 3 

- 2 . 4 6 0 
- 2 . 3 8 2 
- 1 . 7 3 7 
- 1 . 7 4 4 
- 3 . 9 4 9 
- 7 . 3 1 4 
- 3 . 0 6 
- 3 . 6 6 2 
- 6 . 0 6 8 
- 3 . 2 9 5 
- 3 . 2 3 4 
- 5 . 3 2 5 
- 3 . 3 5 

and f 1, r2, pi, p2, and <p(r) have the same meaning as 
denned in Eq. (36). 

The free energy per unit cell for an alkali halide 
crystal can be written as 

(66) 
where 

Fc=VJJ+Fib, 

/ T i b = 3 k T in ( feV> a v /p : r 2 ) . (67) 

The T.O.E. constants at temperature T with lattice 
parameter r=r0+5r can be written as 

Cafiy{T,r) = Ca^(ra)+Br(dCa^/dr)r=ra+fa^
h/Vc, 

(68) 

— Ca$y -JrdaPyT, (69) 

where 
UMdCa^/dr)r=ro+fa^

ib/TV J . (70) 

The values of have been calculated and these are 
listed in Table I. Once the values of aa$y are determined, 
it is easy to calculate the room temperature values of 
Capy and these are listed in Table I I . Nran'yan's8 values 
of Capy are also listed for comparison. 
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TABLE III . Second-order elastic constants of alkali halides 
in units of 1011 dyne/cm2. 

TABLE IV. Pressure derivatives of the second-order elastic con
stants (dCab/dp are dimensionless. b is in units of 10~8 cm). 

LiF 
LiCl 
LiBr 
Lil 
NaF 
NaCl 

NaBr 
Nal 
KF 
KC1 
KBr 
KI 
RbF 

RbCl 
RbBr 
Rbl 
CsCl 
CsBr 
Csl 

Cn 

11.049 
4.94 
3.94 
2.85 
9.450 
4.792 

4.01 
3.03 
6.56 
3.981 
3.357 
2.677 
5.53 

3.63 
3.15 
2.54 
3.64 
3.091 
2.434 

C12 

4.435 
2.28 
1.87 
1.40 
2.129 
1.151 

1.09 
0.88 
1.46 
0.610 
0.457 
0.405 
1.40 

0.62 
0.493 
0.407 
0.92 
0.841 
0.636 

a See Ref. 5. 
b S. Haussiihl , Z. Phys ik 159, 223 (1960). 
« S. Haussiihl , Z. Kris t . 110, 1 (1958). 
d See Ref. 7. 
e R. Dalven and C. W. Gar land . J . Chem. ] 
* R. N . Claythor and B . J. 
g See Ref. 6. 

, Marshal l , Phys . 

fa K. Reini tz , Phys . Rev . 123, 1615 (1961). 
i S. Haussiihl , Acta Cryst . 13, 685 (1960). 
i B . J . Marshal l , Phys . Rev . 121, 72 (1961) 
k K. M . Koliwad (pr ivate communica t ion) . 

Cu 

6.368 
2.46 
1.93 
1.35 
2.822 
1.278 

0.99 
0.74 
1.25 
0.632 
0.508 
0.369 
0.93 

0.47 
0.384 
0.276 
0.80 
0.747 
0.632 

Reference 

a,b 

b 

b 

c 

a,b 

d 

b 

b , e , f 

b 

d 

g 

8 

b 

b 

b , h 

b,h 

i 

h , i , j ,k 

h , i 

Phys. 30, 346 (1959). 
Rev . 120,332 (1960). 

IV. PRESSURE DERIVATIVES OF THE SECOND-

When 
pressure, 

ORDER ELASTIC CONSTANTS 

a cubic crystal is subjected to hydrostatic 
the symmetry of the crystal is preserved. 

Birch1 has calculated the expressions for the effective 
second-order elastic constants Ca 0 that are needed to 
relate the additional stresses with the additional in
finitesimal strains. The expressions for CV. 

Cu are 

Bruggerv 

Cn' 

Cl2 

Cu 

where 

given below 

) 

. The Capy 

= Cn+i}(2Cii+2Ci2+Ci 

= Ci2+)?(— Cu— C12+C] 

. CV, and 
are those defined by 

LH+2C112), 

123+2C112), 

= C44+ i?(CiiH- 2C12+C44+C144+ 2C 

*7= 

Hence the pressure 

elastic constants are 

dCv! 2Ci 

dp 

dCW T -

dp 

-p/(Cn+2Ci2). 

derivatives 

(71) 

(72) 

166), (73) 

of the second-order 

1 + 2 C 1 2 + C i n + 2C112 

Cn+2Ci2 

Cu—C12+C1 

Cu+2C 

[23+2C112] 

12 

(74) 

(75) 

LiF 

LiCl 

LiBr 

Lil 

NaF 

NaCl 

NaBr 

Nal 

KF 

KC1 

KBr 

KI 

RbF 

RbCl 

RbBr 

Rbl 

CsCl 

CsBr 

Csl 

b 

0.3333 
0.280 

0.3333 
0.303 
0.3333 
0.305 
0.3333 
0.366 
0.3333 
0.312 

0.3333 
0.288 

0.3333 
0.308 
0.3333 
0.341 
0.3333 
0.310 
0.3333 
0.309 

0.3333 
0.303 

0.3333 
0.317 

0.3333 
0.291 
0.3333 
0.283 
0.3333 
0.298 
0.3333 
0.293 
0.3333 
0.256 

0.3333 
0.267 

0.3333 
0.263 

dCu 

dp 

dC 

dp 

dB 
— 
dp 

dCn 

dp 

4.07 
7.74 

11.41 
7.10 
9.32 
8.02 

10.17 
9.60 
7.45 
5.26 
6.59 

5.62 
8.14 

11.93 
12.18 
7.98 
8.48 

10.39 
9.59 
9.06 
6.36 
7.85 
9.29 

11.01 
12.52 
9.74 

10.28 
12.94 
12.96 
10.89 
10.73 
12.09 
13.66 
13.14 
6.70 
9.66 
8.86 

13.10 
9.61 

12.52 
6.54 

13.66 
5.96 
8.27 
4.66 
6.05 
7.95 
6.94 
6.50 
8.68 
5.57 

dCu 

dp 

2.95 
2.84 

2.79 
2.34 
2.26 
2.20 
2.12 
2.07 
2.14 
2.57 
2.52 

2.46 
2.21 
2.08 
2.25 
2.40 
2.02 
2.09 
1.88 
1.89 
2.15 
2.10 
1.98 
1.92 
1.38 
2.36 
1.97 
1.90 
1.591 
2.45 
1.78 
1.74 
2.096 
2.40 
2.00 
1.90 
1.82 
1.70 
1.77 
1.70 
1.59 
1.58 
2.96 
5.27 
3.22 
3.15 
5.09 
3.60 
3.59 
5.89 
4.29 

dCu 

dp 

0.84 
0.74 
1.38 
0.45 
0.32 
0.24 
0.19 
0.12 
0.09 
0.16 
0.51 
0.47 
0.205 
0.11 
0.19 
0.08 
0.19 
0.22 
0.043 

-0.013 
-0 .08 
-0 .06 

0.17 
0.12 

-0 .01 
-0 .06 
-0 .38 
-0 .02 
-0 .03 
-0 .09 
-0.328 
-0.014 
-0 .16 
-0 .19 
-0.241 
-0 .07 

0.06 
—0.03 
-0 .13 
-0 .23 
-0 .18 
-0 .22 
-0 .33 
-0 .33 

0.72 
2.57 
0.87 
0.86 
2.37 
1.25 
1.16 
2.85 
1.88 

C11+2C12+C44-
__ 

dC 

dp 

0.56 
2.45 
3.62 
4.31 
2.38 
3.53 
2.91 
4.03 
3.77 
2.65 
1.35 
2.03 
4.79 
1.58 
2.97 
4.93 
4.97 
2.78 
3.23 
4.15 
3.86 
3.58 
2.11 
2.88 
3.65 
4.54 
5.57 
3.69 
4.16 
5.57 

4.23 
4.48 
5.18 

5.37 
2.35 
3.88 
3.52 
5.70 
3.92 
5.41 
2.47 
6.04 
1.50 
1.50 
0.72 
1.45 
1.43 
1.67 
1.46 
1.39 
0.64 

\-Ciu 

C n + 2 C i 2 

[ 3 C n + 3 C i 2 + C 

C 
— 

dB 

dp 

3.21 
4.27 
5.14 
5.66 
3.93 
4.61 
4.14 
4.80 
4.58 
3.91 
3.47 
3.88 
5.18 
3.51 
4.18 
5.36 
5.56 
4.25 
4.17 
4.83 
4.45 
4.35 
3.56 
4.02 
4.42 
4.95 
5.09 
4.82 
4.74 
5.91 

5.26 
4.76 
5.19 

5.98 
3.56 
4.49 
4.16 
5.50 
4.39 
5.31 
3.57 
5.60 
3.96 
6.27 
3.70 
4.12 
6.04 
4.71 
4.57 
6.82 
4.72 

Refere 

Expt. 
NQS) 

Expt. 
N (8) 

Expt. 
N (8) 

Expt. 
N (8) 

Expt. 
N (8) 

Expt. 
N (8) 

N (8) 

N (8) 

N (8) 

+ 2Ci66 

111—C123J 

2 [Cn+2Ci 2 ] 

111+6C112+2C123 

3(Cu+2Ci2) 
? 

> 

nee 

(5) 

(5) 

(3) 

(3) 

(6) 

(6) 

(76) 

(77) 

(78) 

file:///-Ciu
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TABLE V. Theoretical values of T.O.E. constants and the experimental values of Capy determined by Chang (Ref. 7) 
for NaCl and KC1 crystals. (Capy are in units of 1011 dyne/cm2.) 

C111+2C112 
C m — C123 
C456 
Cl44 
C166 

Theory 
6 = 0.3333,4 b 

-69.65 
-59.95 

2.48 
2.57 

-6 .15 

NaCl 

= 0.288,4 

-96.49 
-87.69 

2.48 
2.56 

-5 .74 

Expt. 

-99 .1 
-91.0 

2.71 
2.58 

-6 .11 

KC1 
Theory 

6=0.33334 6 = 0.3104 

-56.48 -66.43 
-50.76 -61.02 

1.58 1.58 
1.65 1.64 

-3.72 -3 .58 

Expt. 

-74 .4 
-71 .5 

1.18 
1.27 

-2 .45 

where 

C'=UCii'-C12') and 5 = J ( C u , + 2 C 1 2 ' ) . 

The room-temperature and atmospheric-pressure data 
on the second-order elastic constants are listed in 
Table I I I . The values of Capy given in Table I I and the 
second-order elastic constants given in Table I I I have 
been used to calculate the pressure derivatives of the 
second-order elastic constants for different alkali halides 
and these are listed in Table IV. Pressure derivatives 
calculated by using Nran'van's8 values of Capy are listed 
in Table IV for comparison. 

In Table V we have listed the experimental values of 
Chang7 of Capy for NaCl and KC1 crystals and the 
calculated values of Capy for these crystals. 

V. DISCUSSION 

We have calculated the third-order elastic (T.O.E.) 
constants of the alkali halide crystals in the framework 
of the Born model. We have included the short-range 
repulsive interactions up to second nearest neighbors. 
The temperature variation of these constants is calcu
lated by following the procedure developed by Leibfried 
and Hahn.11,12 We find that Cm, C456, and C144X), and 
Cm, C112, and Ci66<0 for NaCl-type crystals whereas 
all the six T.O.E. constants for CsCl-type crystals are 
negative. I t is interesting to note that the ratio [ Cm (/Cn 
varies roughly from 5 to 15 as one passes from fluorides 
to iodides. The absolute values of the rest of the T.O.E. 
constants are of the same order of magnitude as that 
of Cn for those crystals. Tables I and I I show that the 
values of the Ca^y° and aapy are sensitive to the value of 
the repulsive parameter 6. Within the framework of 
our model, for NaCl-type crystals Cm0 does not depend 
on the short-range interactions at all, whereas Cm0 is 
very sensitive to the value of 6. For CsCl-type crystals, 
C1120 and C1230 are more sensitive to the value of b as 
compared to Cm0 . 

For the central force model chosen for the alkali 
halides, the Cauchy relations for the T.O.E. constants 
(Cii20=Ci66°; Ci230=C456°=Ci440) are satisfied at 0°K. 
The failure of the Cauchy relations at a finite tempera
ture T is due to the vibrational part of the energy. The 
temperature coefficients aa&y of the T.O.E. constants are 
all positive for CsCl-type crystals, whereas am, #m, and 

#166 > 0 , and <2i23, #456, and #144 < 0 for NaCl-type 
crystals. Our calculations indicate that, for NaCl-type 
crystals, C123 is most sensitive to temperature followed 
by C112 and other C«^7. For a temperature difference 
of 300°K, C123 changes by about 30% and Cm changes 
by about 10%. For the CsCl-type crystals we find that 
C144 is most sensitive to temperature followed by C166, 
C112, and other Ca$y. For a temperature change of 
300°K, there is a change in the value of C144 of about 
40%. For the same temperature difference the other 
T.O.E. constants change by about 20%. Our conclusions 
differ from those arrived at by Nran'yan.8 He finds that 
#112 and #123 are negative and that the other aapy are 
positive for the CsCl-type crystals, contrary to our 
results, namely, that all #«/?7 are positive for the CsCl-
type crystals. His values of C456 and C144 for NaCl-type 
crystals are in error because of an error in the sign of 
#456 and #144. At the present time no experimental data 
are available to compare our conclusions with on the 
temperature variation of these T.O.E. constants. We 
have compared the experimental values of Chang7 with 
our calculated values of Capy for NaCl and KC1 crystals 
The numerical agreement is considered to be satisfactory. 

I t is gratifying to note however that the pressure 
derivatives calculated using the values of T.O.E. con
stants from Table I I , compare fairly well with the 
experiments. We note that (dCu/dp) and (dCn/dp) are 
positive whereas (dCu/dp) is positive or negative de
pending on the crystal system. Our calculations indicate 
that C44 increases with hydrostatic pressure for the 
CsCl-type crystals and for LiF to NaCl crystals. The 
experiments on LiF, NaF, and NaCl support our con
clusions. For NaBr we find that (dCu/dp)>0 for 
b=0.3333 A and (dCu/dp)<0 for 6 = 0.308 A. For Na l 
(dCu/dp)<0. For KF, C44 increases with pressure. 
From K G to Rbl , C44 decreases with pressure. RbF 
is another exception for which (dCu/dp)>0 for 
6 = 3333 A and (dCu/dp)<0 for 6 = 0.291 A. We believe 
that the second set of values of the repulsive parameter 
b, used from Tosi's15 paper, has to be weighed heavily 
as compared to the flat value of 6=0.3333^4. If this 
premise is accepted, then we conclude that for NaBr to 
Rbl , with the exception of KF, C44 decreases with 
pressure. These conclusions are consistent with the 
available experimental data on KC1, KBr, and KI 
crystals. The inclusion of the second-nearest-neighbor 
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interactions has improved the agreement between theory 
and experiment. (Compare Nran'yan's values. He has 
included the nearest-neighbor interactions only.) I t is 
true, however, that the agreement between the theo
retical and experimental values of (dCap/dp) falls short 
of something that is desired. This is not considered to 
be too serious because we have used only two parameters 
b and r0 to calculate the T.O.E. constants and have 
neglected the polarizability of the ions, van der Waal's 
forces, and many-body forces. 
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APPENDIX 

A convenient elementary cell for CsCl structure is a 
cubic cell of edge length 2r0. The positive (or negative) 
ion is located at the center of the cube and eight negative 
(or positive) ions are located at the corners. To calculate 
the Madelung constant and other lattice sums by 
Evjen's method, the choice of a larger neutral cube turns 
out to be an inconvenient one. An appropriate choice of 
a cell, for such calculations, is a parallelepiped whose 
adjacent edges are lines joining the center of the cubic 
cell to any three adjacent corners of the cube, i.e., the 
lines joining the origin (0,0,0) to points (1,1,1), (1,1,1), 
and (1,1,1). Distances are measured in units of rQ. For 
a further discussion on the choice of such a cell, the 

reader may refer to the articles by Krishnan and Roy16 

and Roy.17 Lattice sums of the following type are of 
interest: 

h2nH2
2n*h2n3 

ll.h.h (h2 + h2 + h2)Nl2' 

where m, n^ n$, and N are positive integers and 
ni-\-fi2+ns<^(N—l); h, h, and k form an unmixed set 
of all possible (positive or negative) integers. In this 
notation Madelung's constant = ~ 5 i ( 0 ) . To calculate the 
lattice sums, we proceed as follows. We consider a larger 
neutral parallelepiped, with Nz elementary parallele
pipeds, with a positive ion at the center. We calculate 
the sum of this series. We choose a successively larger 
parallelepiped by increasing N in steps of 1. We find 
that the series converges fairly rapidly. We list below 
the lattice sums obtained in this manner for i V = l l . 
The sums are reliable up to 0.001%. 

£ 5 ( M ) = -0.346708 

S7a.D = -0.144684 

£9u.i) = -0.053174 

^ V 2 - 1 ^ - 0 . 0 9 3 3 5 6 

S9cu> = -0.044368 

59(2.2)=_ 0.009950 

S9(3,D = -0.049974 

S7(i,i,i) = _0.l59996 

^(1,1,1) = - 0 . 0 5 5 9 4 8 . 

16 K. S. Krishnan and S. K. Roy, Phys. Rev. 87, 581 (1952). 
17 S. K. Roy, Can. J. Phys. 32, 509 (1954). 

Si<°> = 

s 3
( 0 ) = 

6V0) = -

s 7 < 0 ) =-
s 9

( 0 ) = -
s 5

( 2 ) = 
S7™ = 

s^= 
S7w = 

s 9
( 3 ) = 

s 9
( 4 ) = 

-1.017678 

-0.642941 

-0.298164 

-0.119704 

-0.044633 

0.354190 

0.075054 

0.006960 

0.540901 

0.163790 

0.640849 


