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age d(f>i/dq is zero, and at qo it should be large and 
negative. The two Herman37 values are —-2.1 and —1.2 
times vSa/8. We take the total (dfa/dq)— (v3a/8) to be 
— 2.5v3#/8=— 0.54a, again with at least 30% uncer
tainty. All three effects contribute comparably to the 
linear change of plane-wave coefficient, so this un
certainty carries over in large measure to the final 
results in Table VII. Furthermore, the linear approxima
tion itself should be used only with caution in an inter-
band transition calculation, because of the proximity 
of the branch point connecting LA and LO. 

The convergence and general behavior of the calcula
tion was, on the average, the same as for the work of 
Sec. V. Calculations were made of the quantities in 

I. INTRODUCTION 

IN the standard treatment of the spin-lattice relaxa
tion of a two-level paramagnetic spin system it is 

assumed that the ensemble of spins can be characterized 
by a temperature.1'2 Loosely speaking, a description in 
terms of a spin temperature different from the lattice 
temperature is valid whenever the spin-spin relaxation 
time T% is less than the spin-lattice relaxation time 
7Y3 In this paper we will discuss the transfer of energy 
from the spin system to the lattice for a situation where 
the opposite condition holds, namely Ti<s.T2. 

At zero degrees an isolated spin in the excited level 
has a lifetime Ti0, where Tw is the spin-lattice relaxa
tion time evaluated at T=0. We will show that the 
presence of a neighboring spin may greatly enhance this 
lifetime, provided coherence is maintained between the 
two spins for intervals greater than TIQ. We identify 
this enhancement with the coherent trapping of the 
resonant phonon. Although the situation studied is 

* Work supported in part by the Wisconsin Alumni Research 
Foundation. 

1 J. H. Van Vleck, Phys. Rev. 57, 426 (1940). 
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3 A. Abragam, The Principles of Nuclear Magnetism (Clarendon 

Press, Oxford, England, 1961), Chap. V. 

Table VII for the deformable ion case by assuming that 
no new plane waves were mixed into the interpolating 
function. General behavior of the calculation was as 
bad as in Sec. VI ; in fact, the algebra is essentially 
identical. Moreover, the prefactor to the result includes 
(dcfr/dq) — (V3a/8), which as discussed above, is rather 
uncertain. 
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somewhat artificial there is reason to believe that the 
results of the calculation indicate the conditions under 
which an analogous trapping may be present in a crystal 
with a large number of spins. 

II. THEORY 

In order to discuss this effect in detail we start with 
the Hamiltonian of the two-spin system ( 5 = | ) , 

ae=«oW+5.*)+Eko) J f cakfak+5 a J
iE f c4*c*-« 

X (akt+^-k)+^2Ek^^k-K«kt+«-k). (1) 
The first term in (1) is the Zeeman interaction (h=l), 
the second is the phonon Hamiltonian (#k and #kt 
are the phonon annihilation and creation operators), 
while the third and fourth terms couple the spins to the 
lattice. In the interaction terms, ri and r2 denote the 
locations of the two spins and k is the phonon wave 
vector. The x components of the spins are denoted by 
SJ- and Sx

2, and Ah is a coupling constant inversely 
proportional to the square root of the volume of the 
crystal. We will assume for simplicity that cok=

,vk where 
v is the velocity of sound, and that A % depends only on 
the magnitude of k. Since we are interested in the limit 
T\<£T<z we have omitted the dipolar coupling. The 
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The trapping of a resonant phonon by a pair of paramagnetic ions is studied in the limit of zero temperature 
with the aid of the Heitler damping formalism. The probability amplitudes of the states (spin 1 up, spin 2 
down, no phonon), (spin 1 down, spin 2 up, no phonon), and (spin 1 down, spin 2 down, one phonon) are 
computed. Provided coherence is maintained between the two spins, the transfer of energy to the crystal 
lattice takes place in the time JTIO(1 — sin^o^/^o^) - 1 . Here T^ is the spin-lattice relaxation time for an 
isolated ion at zero degrees, ko is the wave vector of the resonant phonon, and ri2 is the distance between 
the spins. The relation of this result to the general problem of spin-lattice relaxation at low temperature is 
discussed. 
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influence of the spin-spin interaction on the trapping 
will be discussed below. 

In the absence of a spin-phonon interaction the 
eigenstates of the combined spin and lattice systems are 
characterized by the number of phonons present in 
each mode and the eigenvalues of the z components of 
the two spins. We will consider a certain subset of 
these states, namely, the states in which one spin is in 
the upper level, the other in the lower level, and there 
are no phonons present, and the states in which both 
spins are in the lower level and there is one phonon 
present in the kth mode. Since only phonons with 
energies comparable to coo are "on speaking terms" with 
the spins, the neglect of multi-phonon states is a per
missible approximation as long as coo is much greater 
than KT, the typical energy of a thermal phonon. 

We indicate by bi(t) and 62(0 the wave functions 
of the states in which spins 1 and 2 are in the upper 
level, respectively. The wave function of the one-
phonon state is denoted by gk(0» We are interested in 
the situation where initially one of the spins is in 
the upper level and there are no phonons present. The 
evolution of the wave functions in the presence of the 
interaction and subject to this initial condition is 
described by the Heitler damping equations.4 A straight
forward application of the Heitler formalism leads to 
the following coupled equations for the Fourier-Laplace 
transforms bi(E), b2(E)y and gk(E) of the previously 
defined wave functions: 

(E-cao+^)51(E) = l + | E k ^ k - r ^ ^ k ( £ ) , (2) 

(E-a>o+ieME) = iZ*e-ik'**Akgk(E), (3) 

(E-a>k+ie)gk(E) = iZ*eik'"AME) 
+lY,*e^AME). (4) 

Here we have assumed that at /=0+ , 61= 1, and 

These equations are readily solved with the result6 

(E-w0+ie)b1(E) = l+iZ^k^E-^k+ie)-lb1(E) 
+l^Ak^{E-^+ie)-h^^^UE), (5) 

(E-c,o+ie%(E) = iZkAk^E'-^k+ie)-%(E) 
+iJlkAk^E-c,k+ie)-^'^-^b1(E). (6) 

In order to invert these equations and obtain closed 
expressions for the wave functions we will make the 
approximation of replacing E by coo in the denominators 
of the terms on the right-hand side. This approximation, 
for an isolated spin, leads to the Wigner-Weisskopf 

4 W. Heitler, The Quantum Theory of Radiation (Clarendon 
Press, Oxford, England, 1957), pp. 163-174. 

5 The symbol -\-ie is inserted to indicate that the path of inte
gration in the E plane is taken to be slightly above the real axis. 

6 Equations similar to these but pertaining to the exchange of 
optical photons have been derived in the limit uorn/v^l by 
Barrat [J. P. Barrat, J. Phys. Radium 20, 541 (1959)]. 

expressions for the level shift and radiative lifetime.7 

In the two-spin problem it gives rise to a nonretarded 
interaction between the spins (see below). Upon in
verting (5) and (6) we obtain the equations (t>0) 

« 6 i ( 0 / * = [coo~ (i/2T10)+A^o2bi(f)+f(r1%)b2(f), (7) 

idb2(t)/dt= [coo- (i/2Z\0)+Aco0>2(0+/('u)Si(0 , (8) 

where 
Aco0=i^Ek^it2(w()-co,)-1 (9) 

and 
l/2T1Q=lirZ*Ah*6(<*o-m) (10) 

are the well-known expressions for the level shift and 
width of isolated spins. Also, we have 

f(ru) = \p Z^k*(a>o-o)k)-h
ik-^~^ 

i sin^0^i2 

- — - - — , (ID 
2 i 10 k<fi2 

where &o(=co0/fl) is the wave vector of the resonant 
phonon and ri2= | ri—r2|. In arriving at (9)—(11) we 
have made use of the symbolic identity \/{E-\-ie) 
= p/E—iird(E) where p denotes the principal value. 
We note that the equation for h(f) involves the func
tion b2(t) evaluated at the same instant of time. Strictly 
speaking, the interaction between the spins is retarded 
since the finite velocity of sound imposes a limit on the 
speed with which acoustic signals can propagate be
tween the two sites. As long as the time it takes for a 
phonon to travel from one site to the other, ru/v is 
short compared to 2\o the neglect of retardation is 
probably not a bad approximation.8 

Equations (7) and (8) are easily solved. We find 

h(t) = exp[-~;(co<)+ &o0~-i/2Tio)f\ cosf(rn)t, (12) 

62W = ~ i exp[—i(a)Q+ Acoo—i/2Ti0)f\ smf(ru)t. (13) 

The corresponding probabilities for finding the spins 
in the upper states are given by 

I h(t) 12= [cos2Re(/)/ cosh2Im(/> 
+sin2Re(/)* sinh2Im(/)/>-</:rio, (14) 

I h(t) 12= [cos2Re(/)/ sinh2Im(/)/ 
+sin2Re(/)* cosh2Im(/) />-^°, (15) 

where Re(/) and Im(/) denote the real and imaginary 
parts of the function 7(̂ 12). 

With the typical values co0=l cm-1 and fl=4X105 

cm/sec, we have &0=5X105/cm, so that the inequality 
&ofi2<̂ l holds as long as the separation between the 
spins is less than 10~6 cm. Assuming this to be the case 

7 V. Weisskopf and E. Wigner, Z. Physik 63, 54 (1930); 65, 
18 (1930). 

8 The effect of retardation on the exchange of resonant photons 
has been investigated by Hamilton [J. Hamilton, Proc. Phys. Soc. 
(London) 62, 12 (1949)]. 
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we infer the asymptotic behavior 

\h(t)\^\b2(t)\
2 

r t / sin*o^i2\"| 

~ i e x p \-TV—h—) • (16) 

L T1Q\ k0ri2 / J 
This is to be compared with the probability of finding 
an isolated spin in the upper state, | biB0(t) |

2 : 
\biso(t)\

2=e~^K (17) 

III. DISCUSSION 

In the two-spin system the lifetime of either spin in 
the upper level is given by JTIO[1—sin(^0^12)Ao^]"1. 
This lifetime is much greater than the lifetime of an 
isolated spin provided &0ri2<Cl. We attribute the en
hancement of the lifetime to the coherent trapping of 
the phonon by the two spins. A phonon emitted by one 
spin is captured by the other, raising it to the excited 
level. The second spin then emits a phonon which is 
recaptured by the spin that was initially excited. The 
exchange of excitation by the two spins leads to a de
crease in the probability of a phonon "escaping" from 
the locality of the spins. 

In this simplified picture it can be seen how the 
presence of dipolar coupling tends to inhibit the phonon 
trapping. The dipolar interaction contains terms of the 
form AijiS^SJ+SJS+i) which transfer excitation 
from one site to another. Through the action of these 
terms the excitation can diffuse out of the region in 
which it was initially trapped.9 The energy "leak" is 
expected to be particularly important when the spin-
spin interaction is strong enough to lead to spin waves 
capable of long-range energy transfer. I t should be 
noted that thermal phonons of energy co0 can also 
destroy the trapping. The spin in the lower state could 
absorb a thermal phonon, thus bringing the exchange 
to a halt. Alternately, one can view the action of the 
thermal vibrations as destroying the coherence between 
the spins and thus effectively isolating them from one 
another. When this happens the transfer of excitation 
from the spin system to the lattice takes place in a time 
characteristic of the relaxation time of an isolated spin. 

The discussion we have given here has been limited 
to two spins. In a many-spin system we expect an 

9 There are paramagnetic salts (e.g., dysprosium ethyl sulphate) 
where the matrix elements of the angular-momentum ladder 
operators vanish within the ground doublet. The absence of first-
order flip-flop processes makes these salts especially attractive 
candidates for coherent phonon trapping. 

analogous trapping involving not only pairs but also 
triples, quartets, etc., of coherently precessing spins. 
From the preceeding analysis we can draw several 
conclusions about the conditions that must hold when 
the coherent trapping is present: 

(1) The spin-spin interactions must be sufficiently 
weak so that energy transfer via the spin-spin inter
action is not important. 

(2) The temperature of the crystal must be well 
below aio/K in order that the influence of thermal 
phonons can be neglected. 

(3) The wavelength of the trapped phonons must be 
considerably greater than the typical separation be
tween the spins (&ofi2<3Cl). 

The stipulated conditions are extreme, but they may 
not be impossible to obtain with fast relaxing ions in 
dilute concentrations. The trapping phenomenon might 
be reflected in a spin-lattice "relaxation time" which 
rapidly increased as the temperature of the crystal 
fell below aio/K. 

I t should be pointed out that the trapping also 
affects the conditions necessary for a phonon bottle
neck.10 In the case of a bottlenecked spin system, the 
populations of the lattice modes on speaking terms with 
the spin system are greatly enhanced over their equi
librium values. Because of this, relaxation of the spin 
system is governed by the phonon-bath relaxation rate. 
The phonon trapping delays the transfer of excitation 
from the spin system to the lattice and thus may give 
the phonon-bath coupling sufficient leeway to maintain 
a state of thermal equilibrium in the lattice. 

Finally we note that the trapping considered in this 
paper is analogous to the imprisonment of resonance 
radiation in macroscopic volumes of gas.11-12 However, 
in the gas problem, as treated in Ref. 11, no assumption 
is made about coherence being maintained between the 
emitting and absorbing atoms. A resonant photon is 
emitted from a region of the sample, propagates some 
distance, and is absorbed. In the situation discussed 
here the radiation is trapped by adjacent atoms and 
thus escapes from the emitting region at a much slower 
rate than if only one atom were involved. In a certain 
sense coherent trapping is imprisonment on a micro
scopic scale in that it involves only a small number of 
atoms. 

10 J. H. Van Vleck, Phys. Rev. 59, 724 (1941). 
11 T. Holstein, Phys. Rev. 72, 1212 (1947). 
12 P. W. Anderson, Phys. Rev. 114, 1002 (1959). 


