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Yield of secondaries and ratio of variance to yield (Fano factor) are associated with a simple statistical 
model. This model applies almost independently of details of the physics, though introduction in it of re
finements from band structure would be straightforward. The model is described in terminology of an 
equivalent problem which is formulated and called "crazy carpentry." Analytical and Monte Carlo results 
agree well. The statistics are largely determined at secondary energies of just a few ionization thresholds, 
above which yield increases linearly with energy, with an apparent threshold the same as the average final 
energy, or energy of a secondary when first it cannot ionize further. Limiting relative yield, equal to ioniza
tion threshold divided by average energy per electron-hole pair, and Fano factor are given in their depend
ence on losses to optical phonons. The limiting case of given relative energy loss to very many phonons of 
very small energy generally provides close approximations, so that the results apply also whatever kinds 
of phonons are produced. Illustrative simple cases are also treated, including the one-dimensional space
filling problem known as the "parking problem." The theoretical yield is used to fit data of Vavilov on the 
enhanced quantum yield in silicon, and some physical implications are considered. 

1. INTRODUCTION AND DISCUSSION 

H IGH-ENERGY particles incident on a semicon
ductor produce secondary electrons and holes 

through a branching process. With this absorber suf
ficiently thick to stop all the incident particles, the 
yield of secondaries serves to determine initial energy. 
The accuracy of this determination is limited by 
the variance of the yield, or the mean-square departure 
from the mean of yields in repeated measurements.1 

The ratio2 of variance to yield, or Fano factor, equals 
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FIG. 1. Rules for two cases of crazy carpentry, of which more 
formal statements are given in Sees. Al and 2.3. For the semi
conductor case, secondary remainders may be divided in unequal 
ratio; the equal ratio specified represents the simplest assumption. 

1 Observed full linewidth at half-maximum for Gaussian line 
shape is 2.35 times the square root of the variance. 

2 U. Fano, Phys. Rev. 72, 26 (1947). 

A 

unity for the case of the Poisson distribution, which ap
plies if the final ionizations are essentially independent 
events. This independence may in principle come about 
through loss mechanisms in the generation process of a 
type resulting in expected yield that is relatively quite 
small; the Poisson distribution is that for fixed expecta
tion value of an outcome of very small probability in 
very many trials. But loss mechanisms are in practice 
not of this type, and interdependence rather than inde
pendence is the essential stochastic character of the 
ionizations in a thick absorber. Fano factors are accord
ingly less than unity, values less than 0.5 having been 
observed in silicon, for example, by Blankenship and 
Mruk3 and by others. 

Yield, variance, and Fano factor are, indeed, associ
ated with a simple phenomenological statistical model.4 

This model applies almost independently of details of 
the physics. More exact treatment based on band struc
ture would yield only refinement of numerical results 
and may suitably be left as a separate and supplement
ary problem.5 The model is conveniently described in 
the terminology of an equivalent problem which is 
formulated and called "crazy carpentry." I t is shown 
that the crazy-carpentry model accounts for Fano 
factors considerably smaller than unity and is consistent 
with the proportionality of observed yield to incident 
energy over a wide range, independently of the nature 
of the incident particles. I t confirms the surmise that 
yield and Fano factor must both be strongly influenced 
simply by the circumstance that all the energy is ab
sorbed in the semiconductor. That is, when the branch
ing process has continued until most of the secondaries 
have energies of only a few to several times the ioniza-

3 J. L. Blankenship and W. F. Mruk, Bull. Am. Phys. Soc. 9, 
49 (1964). 

4 W. van Roosbroeck, Bull. Am. Phys. Soc. 9, 274 (1964). 
8 Such treatment would entail elaborate calculation to obtain 

certain more exact probability distributions whose introduction 
into the model in place of simple idealized distributions would be 
entirely straightforward. 
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tion threshold, then there is in effect an energy con
straint. This results in appreciable generation of further 
secondaries of energies less than the ionization thresh
old, so that the average yield of secondaries per collision 
drops. Thus, yield and Fano factor are determined 
largely in the final stages of the branching process 
when, moreover, most of the secondaries are generated. 
Most of the separate ionizations must therefore be 
considered as events that are interdependent in a certain 
specific manner. 

Crazy carpentry is explained in Fig. 1. A simple case 
for secondaries of one kind only is considered first. 
Board length L represents incident energy in units of 
the ionization threshold. Boards of unit length are ob
tained by the ultimately wasteful procedure of first 
making a random cut, then cutting a board of unit 
length from the right-hand piece, if this is long enough, 
then making random cuts in the two remainders, and 
so on, discarding all lengths less than unity, until the 
board is used up. The right-hand length represents 
energy absorbed in a collision, namely, a random frac
tion of the incident energy; the left-hand length, or 
primary remainder, represents energy left in the inci
dent particle; the unit length obtained represents ab
sorption of the ionization threshold energy, hence yield 
of a secondary; and the resulting secondary remainder 
represents energy of this secondary. I t is evident that 
for large Z, the waste is negligible in the initial stages, 
and becomes appreciable only when the remainders 
are mostly just a few units in length. 

For semiconductors, this simple case is extended to 
take into account electron and hole secondaries and 
losses to optical phonons. Then, as shown at the bottom 
of the figure, crazy carpentry involves probability r 
that a small piece of length xr is cut off the right-hand 
end. This cut represents generation of an optical phonon, 
xr=ER/Ei being the Raman phonon energy divided by 
the ionization threshold energy. Length unity is removed 
from the right-hand end with probability 1 — r, repre
senting yield of a secondary, and a random cut is made. 
The resulting secondary remainder is now, under the 
simplest assumption, divided in half, representing equal 
energies for the secondary electron and hole. Proba
bility r properly applies, of course, only for lengths 
greater than unity, since it is the probability in a colli
sion of optical phonon generation by an energetic par-
ricle that can produce secondaries. 

Two approaches to the crazy-carpentry problems 
are employed: Analysis based on mathematical formula
tion ; and the Monte Carlo method consisting in having 
a computer do the crazy carpentry itself. With principal 
interest attaching to expected yield and variance, or to 
the first two moments of the distribution of yields, the 
mathematical formulation employing the moment-
generating function—rather than probabilities of the 
various yields for given L—is simplest and most direct. 
Specifically sought are the asymptotic or limiting yield 
and variance which are proportional to L for large L, 

that is, the limiting slopes for yield and variance as 
functions of L. The Fano factor is given by the ratio of 
these slopes. Methods of analysis are devised that pro
vide analytical approximations for these quantities. 
These methods must in general be used, though an 
exact expression is found for the limiting yield in the 
simplest case of Fig. 1. Results from the Monte Carlo 
procedure and from the analysis are in good agreement.6 

In the analysis, it is somewhat more convenient to 
deal with w(L), the expected waste for length L, rather 
than with the expected yield, y(L) = L—w(L). In the 
simplest case, the analysis gives w(L) for L> 1 in terms 
of an integral from zero to L— 1 whose integrand 
contains this function itself as a factor, a relationship 
that follows from a "retarded" first-order differential 
equation for w(L) involving w(L—l). In view of the 
upper limit of the integral, w(L) can in principle be 
obtained analytically for successive unit intervals in 
Z,, starting with what is tantamount to the definition 
of the ionization threshold, namely, w(L) = L in the 
initial interval 0 < Z < 1 . The variance v{L) starts with 
v (L) = 0 in this interval, and the corresponding relation
ship for it has considerably more formal complexity. 
In the semiconductor case, what would otherwise be a 
highly intractable formulation is brought within the 
scope of the methods of approximate analysis by 
derivation of approximate retarded differentio-integral 
relationships f or L> 1 that the first and second moments, 
respectively, satisfy, together with the boundary values 
for L= 1. These relationships apply because the Raman 
phonon energy is small compared to the ionization 
threshold, so that expansion to the first order in the 
ratio xr of these energies provides a good approxima
tion. In these relationships, phonon losses are taken into 
account through a single parameter, K, which is the 
ratio of expected values in a collision of energy given 
up, respectively, to optical phonons and to secondaries. 
Analytical solutions for w(L) and v(L) can in principle 
be obtained for the successive unit intervals in L; each 
of the two relationships generates, in effect, a sequence 
of "nested" differential equations for these intervals 
of which the equation for any specified interval itself 
depends on the solutions for all the preceding intervals. 
The solutions depend on the probability r of phonon 
generation, which enters through the boundary condi
tions, as well as on K; and r and K together determine 
xr- The number N of phonons per ionization is r/{\ — r), 
which is also the ratio of the mean free path for ioniza
tion to that for scattering by the optical phonons. 

I t is not feasible to extend the analytical solutions 
piece wise in this way very far; the calculations rapidly 
become unwieldy, even in the simplest case. But solu
tions for the first few unit intervals themselves indicate, 

6 Crazy-carpentry runs on 200 boards of length 100 provide the 
expected yield or the first moment with good accuracy. A number 
of boards at least 1 order of magnitude greater would be re
quired for second moments of comparable accuracy, especially 
for the range of considerable losses to phonons. 
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and Monte Carlo results verify, that the limiting straight 
lines are quickly approached. Related to this circum
stance is the efficacy of the analytical method by which 
closely approximate determination of the slopes of the 
straight lines may be accomplished. Important for this 
determination are comparatively simple exact relation
ships that the theory provides between slopes and 
intercepts on an axis of the limiting lines for the yield 
and variance. In the semiconductor case, the relation
ship for the line for the yield involves K, while that for 
the line for the variance involves the limiting relative 
yield as well. With these relationships, slope and inter
cept can be found if just one point substantially on a 
limiting line is determined. They are used to make cor
rection for the intercepts in obtaining the limiting 
slopes from Monte Carlo yields and variances. With 
this correction, yields and variances need not be deter
mined for large L; moderate L suffices at which the 
theoretical curves are close to the lines. One of the 
analytical methods for finding the slopes, though not 
the best one, is based directly on these results. 

In advance of formulation and results for the semi
conductor case given in Sec. 2, it may be well to illu
strate the present discussion briefly by results for simpler 
cases, theory for which is given in Sec. A of the Appendix. 
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FIG. 2. Dependence of theoretical and Monte Carlo yields and 
variances on L for the simplest case of crazy carpentry. This case 
corresponds to ionizing secondaries of one kind, random fractions 
of whose entire energies are absorbed in collisions. Length unity 
represents the ionization threshold energy. The curves are theoreti
cal and the points are Monte Carlo. Standard deviations for 
four of the Monte Carlo yields are given roughly by radii of inner 
disks. 

Theoretical curves as well as Monte Carlo points for 
the simplest case of Fig. 1 are shown in Fig. 2. These 
curves and points for yield y(L) and variance v(L) are 
in close agreement. The lower part of the figure is a 
tenfold enlargement of the lower left-hand corner of the 
upper part, and the radii of the inner disks of the points 
for the yield about equal the standard deviations for 
the mean. The quick approach of the curves to the 
limiting straight lines is evident. The limiting yield 
depends in a simple manner on Euler's constant, as 
indicated in the figure, and equals about 56%. In con
junction with the slope of the line for the variance 
obtained from closely approximate analysis, a value 
for the Fano factor of 0.1205 is obtained.6a 

For this case, the waste comes about in part through 
cuts within unit lengths at the right-hand ends. The 
physical implication is that the uniform probability 
distributions include the range below the ionization 
threshold, so that the probability, in effect, of phonon 
production by a secondary of energy above this thresh
old increases in a certain definite manner with decrease 
in this energy. Besides requiring division of the second
are remainders, the rules for the semiconductor case 
give the probability distribution below the ionization 
threshold as a delta function of specified probability 
at the Raman phonon energy. For comparison, it is thus 
well to consider also the modified simple case which 
differs from that of Fig. 2 in that energies absorbed 
on collision less than the ionization threshold are ruled 
out, so that there is always yield of a secondary if 
energy exceeds the ionization threshold. This case is 
clearly the semiconductor case with the probability r 
set equal to zero and with no division of secondary 
remainders, corresponding to no phonon losses and 
secondaries of one kind only. As may readily be verified, 
the rules then turn out to be equivalent to those for a 
certain one-dimensional random space-filling problem7 

which has been called the "parking problem." For 
this, the relative yield for large L is 0.748. This value 
was obtained by numerical integration of a certain 
integral8; the analysis, though rather similar to that 
for the case of Fig. 2, is formally less simple in its results. 
Figure 3 shows theoretical curves and Monte Carlo 

6a Note added in proof. This case applies in the theory of radia
tion damage [E. I. Blount (private communication)]; the yield 
is then that of displaced secondary atoms: See F. Seitz and J. S. 
Koehler, in Solid State Physics, edited by F. Seitz and D. Turnbull 
(Academic Press Inc., New York, 1956), Vol. 2, pp. 380-383. 
The effect of unsharp threshold energy has been considered by 
A. E. Fein, Phys. Rev. 109, 1076 (1958) and by W. S. Snyder and 
J. Neufeld, ibid. 103, 862 (1956). 

7 E. N. Gilbert (private communication); A. Re*nyi, Magyar 
Tud. Akad. Mat. Kut. Int. Kozlemenyek 3, 109 (1958); Math. 
Revs. 21, 577 (1960) [English transl.: TR 64-186 (Bell Telephone 
Laboratories, Inc., 1964) J. Cars of unit length are parked succes
sively along a street of given length, a specified end of each being 
placed at a randomly selected point in the space available for 
parking until no more is left. Relative yield is the expected number 
of cars that can be parked per unit length. 

8 A. Rdnyi, Ref. 7. See also P. E. Ney, Ann. Math. Statistics 
33, 702 (1962). Of some interest for the present context is that the 
generalization of this latter paper to cars of random lengths was 
originally for theory of binary cascades. 
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points for this modified simple case. The points are in 
good agreement with the curves, which involve exact 
and approximate analysis given in Sec. A2. A Fano 
factor of only about 0.05 is found. 

In comparison, results that are presented for the 
semiconductor case show the effect of division of the 
secondary remainders, as for secondaries of two kinds 
but no phonon losses: This gives a moderate decrease 
of limiting relative yield to 0.64, but an appreciable 
increase of Fano factor to about 0.13. Phonon losses 
further reduce yield and increase Fano factor. The 
latter asymptotically approaches unity as phonon 
losses increase indefinitely, but over a fairly wide range 
of moderate phonon losses Fano factors obtain that are 
appreciably smaller than unity. 

The crazy-carpentry model purports to apply in 
principle as long as all incident unreflected energy is 
ultimately accounted for by secondary electrons and 
holes and by phonons, whatever may be the complexity 
of the generation process.9 Energy losses in a thick 
absorber that cannot be so accounted for may be 
obviated through suitable restriction of incident energy. 
Thus, the high-energy incident particles here considered 
are particles, restriction of whose energy to less than, say 
10 or 100 MeV may be necessary to rule out rapid radia
tion damage during a pulse, certain nuclear transforma
tions, knock-on collisions, and related effects. For the 
present context, energy may also be restricted in prac
tice by available absorber thickness, since this thickness 
is to exceed the range of the incident particles in the 
material. 
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FIG. 3. Dependence of theoretical and Monte Carlo yields and 
variances on L for the case of the parking problem. This case 
corresponds to ionizing secondaries of one kind, random fractions 
of whose energies in excess of the ionization threshold energy are 
absorbed in collisions. The theoretical curves here shown only 
up to L= 10 also agree closely with Monte Carlo points for larger 
values given in Table I I I of Sec. A2. Standard deviations for two 
of the Monte Carlo yields are given roughly by radii of inner disks. 

9 For discussion of mechanisms involved see, for example, G. 
Dearnaley and D. C. Northrup, Semiconductor Counters for Nuclear 
Radiations (E. and F. N. Spon, Ltd., London, 1963). 

Incident heavy charged particles generate energetic 
secondary electrons and holes, the so-called delta rays, 
along ionization tracks. However, an appreciable frac
tion of incident energy may go into secondaries of en
ergies only a few to several electron volts that are pro
duced through plasma oscillations.10 The threshold for 
ionization by the heavy particles11 is anisotropic in the 
crystal and considerably larger than that for ionization 
by the secondaries. If the latter is anisotropic, then the 
threshold Ei for the branching process is of course its 
effective value for essentially random directions. 

Incident gamma or x rays produce electron and hole 
secondaries mainly through Compton scattering and 
the photoelectric effect. Incident electrons may ionize 
directly without there being involved radiation that 
produces further secondaries. But if they are sufficiently 
energetic, they may give bremsstrahlung; or they may 
excite electrons from atomic levels below the valence 
band, with radiation then resulting from transitions 
involving empty levels so produced.12 In practice, with 
an absorber thick enough to stop all incident particles, 
there appears generally to be no significant energy loss 
through escape of secondary radiation. 

The crazy-carpentry model should constitute a good 
approximation whenever it properly applies. This con
clusion derives in part from the model itself. It might 
first be noted that, consistently with this conclusion, 
the principal idealizations of the model are that no 
distinction is made between electrons and holes, par
ticle energy only being considered, and that uniform 
probability distributions are assumed to obtain for 
energies absorbed in collisions. The distributions for the 
larger energies may exhibit maxima corresponding to 
ionizing secondaries most probably retaining a major 
fraction of their energy.13 Furthermore, since depth of 
the valence band limits energy of mobile holes, the larger 
secondary energies are carried mostly by electrons. In 
principle, there are of course probability distributions, 
which depend on band structure, also for the division 
of energy between the secondary electrons and holes.14 

The statistics should, however, not be much affected 
by these idealizations. In connection with the division 
of energy between electrons and holes, the case of the 
parking problem with Fano factor of 0.05 and the cor-

10 W. M. Gibson, G. L. Miller, and A. G. Chynoweth (private 
communication). 

11 H. E. Schweinler, Natl. Acad. ScL— Natl. Res. Council, Publ. 
871, pp. 91-94. 

12 W. L. Brown, IRE Trans. Nucl. Sci. 8, 2 (1961); G. A. Baraff 
(private communication). 

13 E. O. Kane (private communication). 
14 Simplified calculation of distributions in energy after collision 

for the ionizing electron or hole and its two first-generation 
secondaries would provide qualitative insight. Estimates were 
accordingly sought based on densities of states and relative 
volume in wave-number space under conditions of energy and 
momentum conservation, for equal effective masses, parabolic 
band edges, and energies near these edges. Evaluation of the 
cumbersome multiple integral with two inequalities restricting 
the variables of integration that resulted, even with these simpli
fying assumptions, did not seem justified. 
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responding semiconductor case with no phonon losses 
with Fano factor of 0.13 represent extreme cases of all 
energy to one secondary and of energy equally divided. 
Use of a fixed ratio for the energy division—an arbitrary 
ratio is used in the analytical formulation—is no doubt 
an adequate approximation, and the Fano factor should 
in general not differ very much from the value for 
energies equal. In connection with the energies ab
sorbed in collisions, the proper probability distributions 
depend in part on densities of states, and it seems likely 
that the maxima they may exhibit for the larger ener
gies would extend over several ionization threshold 
energies, while for the smaller energies, the entire 
distributions should be fairly uniform. That is, any 
structure the distributions may exhibit should, like the 
valence band, extend over an energy range large com
pared with the energy range in which the statistics are 
determined. 

Quantitative measures of this range at the end of the 
branching process are readily obtained from the yield 
function y{L). The intercept of the straight-line ap
proximation to y(L) on the L axis represents an appar
ent threshold for ionization, the yield being essentially 
proportional to energy in excess of the corresponding 
apparent threshold in energy. The apparent threshold 
in L is given by a simple expression derived from the 
relationship between slope and intercept. This threshold 
is found to be the same as the average value Lf of 
"final length" or length (less than unit length) of a 
waste piece. In physical terms, if the incident particles 
are electrons, that is, the same as secondaries they pro
duce, then the apparent threshold for ionization is the 
same as the average value of the final energy, or the 
energy of a secondary when first it cannot produce 
further secondaries. The effect of Lf on relative yield 
for at least moderate values of L can readily be speci
fied: The relative yield for an L for which y(L) is sub
stantially on the limiting line is (1 — Lf/L) times the 
limiting relative yield F. Since Lf is less than unity, 
relative yield Y(L)/L then rapidly approaches Y with 
increasing L. For L = 3 , for example, relative yield is 
0.74F for the simplest case of Fig. 2, for which Lf is 0.78, 
and for the parking-problem case of Fig. 3, for which 
Lf is 0.34, it is 0.89F. For L = 4 in the semiconductor 
case with no phonon losses, it is 0.93F from Z,/=0.28, 
and 0.95 Y from the exact solution. Thus, for this semi
conductor case, 95% of the yield from energetic par
ticles is obtainable with particles of energy only four 
ionization thresholds. Reasonable energy losses to 
phonons do not reduce this ratio much: A value of 
about 89% applies for K= 1, that is, if as much energy 
is expended on optical phonons as on ionization. 

These high ratios and rapid approach of relative 
yield to its limiting value result in part from compara
tively small Lf. Figure 4 gives a Monte Carlo frequency 
distribution in final length or energy for the semi
conductor case with no phonon losses. As the figure 
shows, the distribution—whose average agrees with the 

0.2 0.4 0.6 0.8 1.0 
FINAL ENERGY IN UNITS OF E {, 

FIG. 4 

FIG. 4. Monte Carlo frequency distribution in final length 
or relative final energy for the semiconductor case with no phonon 
losses. The results shown are from 200 boards of length 100, and 
the average number of final lengths per board in the respective 
intervals in L of length 0.1 are 44.66, 21.52, 14.88, 11.35, 9.29, 
7.31, 6.06, 5.47, 4.38, and 3.81, whose total is 128.73. This divided 
into the average waste per board of 36.74 gives Lf = 0.285. 

theoretical Lf—is not at all uniform, but is sharply 
peaked towards the origin. The frequency distribution 
and Lf depend of course on phonon losses, but even for 
K of order unity the qualitative behavior that the figure 
illustrates presumably still obtains. I t is evident that 
for very large K the distribution should be peaked 
towards length unity, since if nearly all collisions pro
duce phonons, then the average final energy will nearly 
equal the ionization threshold. 

Rapid approach to limiting relative yield of course 
results in part also from the yield curve going rapidly 
into the limiting straight line. This behavior of the 
curve is properly examined in terms of energies above 
the apparent threshold: The relative yield obtained 
by dividing y{L) by L—Lf rather than by L is very 
nearly the limiting relative yield F for a y(L) very 
nearly on the line. For the simplest case of Fig. 2, 
y(L)/(L-Lf) is 0.88F for L-Lf =0.5 and 1.03F for 
L~Lf— 1.0. For the semiconductor case with no phonon 
losses, y(L)/(L~Lf) is 0.91F for Z = 2 , the smallest 
value of L which it is appropriate to consider, since, as 
is readily evident from the rules, y(L) is unity over the 
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range 1<L<2. Comparatively rapid approach to the 
line still obtains with phonon losses, which round off 
this step in y(L). These results further emphasize the 
preponderant influence of the very final stages of the 
branching process. 

The average energy e required to produce an electron-
hole pair is simply the ionization threshold Ei divided 
by Y. I t is also the sum of three energies15: Ei; KEi, the 
average energy per pair expended on phonon losses; 
and 2LfE{7 twice the average final energy. Thus, Lf is 
simply related to Y and K. I t depends, of course, on K 
alone, and this dependence must be taken into account 
if e is evaluated theoretically from the three energies. 

Results for the semiconductor case are given in detail 
for equal energies to secondary electrons and holes, and 
for an xr that is reasonable for silicon, to facilitate 
comparisons with work on the determination of e and on 
carrier multiplication under high fields in this ma
terial.16-18 I t is found that Y and F in their dependence 
on K and r are changed by no more than 3 % in going 
to the limiting case of negligible xT and correspondingly 
large N, for which r is unity. Thus, F and F depend 
essentially on K, though they would be modified some
what by assuming another ratio for the division of 
energy between electrons and holes. The results are 
therefore not restricted to Raman phonons, but apply 
whatever phonons may be involved, and probably even 
if the losses differ for electrons and for holes. For 
energies of the order of Eg, losses to acoustical phonons 
may in fact be the greater.19 

An illustrative application of the theory is made in 
Sec. 2.2 to the analysis of experimental results of 
Vavilov on quantum yield in silicon at 293 °K from 
photons of energies hv ranging from near the energy 
gap Eg to about 5 eV, in the ultraviolet.17 These results 
show the enhanced quantum yield from impact ioniza
tion up to an energy of about 2Ei, so that the known 
exact theoretical yield for 1 < L < 2 applies. The ap
parent threshold for this enhanced yield in its depend
ence on hv is not the same as the average final energy, 
since photon energy above Eg is (for direct transitions) 
divided between the photoelectron and photohole. I t is 
readily shown to equal Eg+2LfEi however the energy 
hv—Eg may be divided. I t is found that the data are 
fitted well by assuming equal division of energy and 
Eg=lA eV, Ei= 1.0 eV, and e=3.0 eV, from which 

15 W. Shockley, Solid-State Electron. 2, 35 (1961), Czech. J. 
Phys. Bl l , 81 (1961); A. G. Chynoweth, pp. 95-98 in the text of 
Ref. 11. 

16 See P. A. Wolff, Phys. Rev. 95, 1415 (1954); G. A. Baraff, 
ibid. 128, 2507 (1962); C. A. Lee, R. A. Logan, R. L. Batdorf, 
J. J. Kleimack, and W. Wiegmann, ibid. 134, A761 (1964); E. 
Baldinger and W. Czaja, Nucl. Instr. Methods 10, 237 (1961); 
E. Baldinger, W. Czaja, and J. Gutman, Helv. Phys. Acta 35, 
559 (1962) and other references therein and in Ref. 15. 

17 V. S. Vavilov, J. Phys. Chem. Solids 8, 223 (1959). 
18 With a surface-barrier detector made from 21 000 Q-cm n-type 

silicon, differing values of e of 3.79 eV for 365-keV electrons and of 
3.61 eV for 5.477-MeV alpha particles have been found: C. Busso-
lati, A. Fiorentini, and G. Fabri, Phys. Rev. 136, A1756 (1964). 

19 E. M. Conwell, Phys. Rev. 135, A1138 (1964). 

K=\A2 results. Because the ratio Ei/e fixes Lf as well 
as Y and K, the values Et= 1.1 eV and15-17-18 e = 3.6 eV, 
which otherwise seem generally to be good values for 
silicon, give a yield curve that departs from the data 
points by more than the estimated experimental error. 
The data could be fitted reasonably well by assuming 
not quite equal division of energy with Ei equal to or 
slightly larger than Eg, but this elaboration does not 
seem justified in the present context and without more 
detailed evidence. The surface-barrier detector used in 
the experiment involved heavy doping with decreased 
and depth-dependent mobility.17,20 The collection ef
ficiency a could therefore not be calculated, and the 
quantity treated as quantum yield Q{hv) was accord
ingly aQ(hv) normalized to unity over an initial range 
of hv above Eg. I t may well be that there was appreci
able concentration of impurities with deep energy levels 
with which somewhat lowered values of Ei and e are 
associated. 

2. THE SEMICONDUCTOR CASE 

2.1 Results from Theory and from Monte 
Carlo Computation 

For the semiconductor case, numerical results that 
lend themselves to comparatively brief presentation 
are given here in advance of the theory for them given 
in Sec. 2.3. For the dependence on phonon losses, the 
value 0.035 is used for X^ER/E^ This is a good value 
for silicon2\for Ei equal to 1.5Eg. If Ei is smaller, then 
xr is corresponding increased and the average number N 
of phonons per ionizing collision decreased, since the 
dependence on phonon losses is determined essentially 
by the parameter K=Nxr. 

Figure 5 shows theoretical curves and Monte Carlo 
points for yield y(L) and variance v{L) for no phonon 
losses and also for A/r=20, or K=0.7. For the curves, 
exact solutions apply that give w(L) and v(L) for 
1 < L < 2 , w(L) for 2 < L < 3 , and w(L) for N=0 and 
3 < L < 4 . The limiting straight lines, which are given 
by analytical approximations, are quickly approached. 
The curves and associated points are in generally good 
agreement.22 For no phonon losses, Y= § is the theoreti
cal limiting slope for y(L) according to the approxima
tion employed, and this is slightly larger than the Monte 
Carlo value of 0.64, the line for which is shown dashed. 
This limiting slope is reduced to 0.40 by the phonon 
losses for K=0.7. These phonon losses increase the 
theoretical F from 0.117 to 0.22. Such moderate phonon 
losses increase F mainly through the decrease in F , the 
limiting slope of the line for v(L) not changing very 
much.23 While the curves are shown only up to L— 10, 

20 Phosphorus was diffused into ^-type silicon. 
21 C. A. Lee (private communication); see C. A. Lee et al.t 

Ref. 16. 
22 See also Table 1 in Sec. 2.3. 
23 This slope C — YF increases slightly from the value for no 

phonon losses to a maximum near K= 1 and then decreases asymp
totically to zero. See Table II in Sec. 2.3. 
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5 6 7 8 

L , INCIDENT ENERGY IN UNITS OF E*L 

FIG. 5. Dependence of theoretical and Monte Carlo yields and 
variances on L for N = 0 or no phonon losses and for N — 20 in the 
semiconductor case. For iV = 0, the dashed line to the right with 
slope 7=0.64 and intercept L/==0.2S is determined by Monte 
Carlo points given for values of L up to 100 in Table I, Sec. 2.3. 
Some standard deviations for Monte Carlo yields are indicated 
roughly by inner disks and squares. 

their extrapolations are in correspondingly good agree
ment with Monte Carlo results22 up to L= 100. Through 
the equations that correct for the intercepts of the 
lines, the Monte Carlo data provide values22 of Y and F 
essentially independent of L for L in excess of quite 
moderate values. 

Figure 6 shows Y and F in their dependence on phonon 
losses, the curves being obtained from the theory and 
the points from Monte Carlo data. There is good agree
ment, though the values for F exhibit appreciable scatter 
for the larger phonon losses.24 The curves, indicate, 
for example, that for an average energy e per electron-
hole pair of 3.6 eV, as for silicon, the ionization thresh
old Ei, which is eF, would equal 1.65 eV or 1.5 Eg for 
silicon for 7=0.459, hence for K=0.51 and iV=14.5. 

K = N E r / E t , RATIO OF EXPECTED ENERGIES TO 
PHONONS AND TO IONIZATION IN A COLLISION 

10- ' 1 10 10 2 103 

PHONONS PER IONIZING COLLIS ION, N 

FIG. 6. Dependence of theoretical and Monte Carlo limiting 
relative yields and Fano factors on phonon losses. The more 
significant parameter is K, to which N is related by the value of 
0.035 assumed for the relative optical phonon energy xr=En/Ei. 

Or, Ei would equal 1.1 eV, which is Eg for silicon, for 
7=0.31, hence for K= 1.35 and N= 38/1.5-25. 

2.2 Application to Results of Vavilov on 
Enhanced Quantum Yield in Silicon 

Suppose energy hv—Eg of a photon above the energy 
gap is divided so that the photoelectron has energy 
CnQiv—Eg) and the photohole, cp(hp—Eg), with 
Cn+Cp—1. As long as the excess energies are less than 
Ei, the quantum yield is unity. In an initial range of 
enhanced quantum yield, one of the excess energies 
exceeds Ei and the enhanced yield is y(L)=l—r 
Xexp[— (L— l)/iT], in accordance with the solution 
for w(L) for 1<L<2, with L the excess energy divided 
by Ei. If both excess energies exceed Ei and do not 
differ too much, the enhanced yield is the sum of two 
such expressions. In particular, for the case of cn= cp=%, 
the total quantum yield in an initial range of enhanced 
yield is l+2y[^(hv—Eg)/Ef\J with y(L) given as above, 
or28 3-2r exp{-\$(hv-Ett)/Ei-\~]/K). 

In Fig. 7 are shown the results of Vavilov17 fitted by 
this single-threshold formula, with Eg= 1.1 eV, Ei—1.0 
eV, and e=3.0 eV. The last two values determine F. 
Then K=1A2 is determined by the theoretical result 
for the dependence of Y on K and r or by Fig. 6, as 
is #=19.4 and r=N/(N+l) = 0.95. The apparent 
threshold Eg+2LfEi in 1.98 eV, and the limiting line 
for the enhanced yield is shown dashed. The curve 
determined by the otherwise more plausible values, 
Ei=Eg=l.l eV and e=3.6 eV, which does not fit the 
data so well, is also shown. For it, K is 1.35 and the 
apparent threshold 2.11 eV. The initial jump each 
curve exhibits at the enhanced-yield threshold Eg+2Ei 
that corresponds to L= 1 is here of amount 2(l—r) and 
is associated, in effect, with nonzero energy of an optical 
phonon or finite number of phonons per ionization. If 
no phonons were produced, then the total quantum yield 
would be constant and equal to 3 over the initial range 
above the threshold up to L— 2. 

2.3 Theoretical Analysis 

The general semiconductor case is best approached 
by first neglecting phonon losses. The rules for the crazy 
carpentry without these losses, more formally stated 
than*in]Fig. 1, are as follows: If initial length is L, then 
L<1—* zero contribution to y(L),or L>1 —> contribution 
unity to y(L) and three new initial lengths: x,p(L—x—l), 
and y(L—x—l), where x is a random length in the 
interval 0<x<L—l and /3 and y are constants satisfying 
jS+7=i. Repeat from the beginning with new initial 
lengths. (Continue this procedure until there are no 
further initial lengths.) 

Here, x is the primary remainder representing re
maining energy of the initial particle, and L—x—1 
is the secondary remainder. The fractions £ and y 

24 See also Table I I in Sec. 2.3. 
25 This differs from Shockley's expression of Ref. 15 only by 

the factor r that multiplies the exponential. 
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hy(ev) 

FIG. 7. Results of Vavilov on enhanced quantum yield in 
silicon fitted by theoretical curves from the crazy-carpentry model. 
The points are reproduced from Ref. 17, and the two dashed lines 
are the limiting lines for the yields which the respective theoretical 
curves approach asymptotically. 

correspond to electrons and to holes and give the divi
sion of energy between them, the specialization 0=y=J 
being the one that will be considered in detail. 

Denote by X(L) the total length wasted for initial 
length L in one crazy-carpentry procedure carried to 
completion. The superscript notation is suitable be
cause X(L), as a statistical variable, is not a function 
of L in the usual strict sense. The moment-generating 
function26 for this initial length is then 

^ ( L , ^ E ( e x p [ > \ W ] ) , (1) 

where E denotes the expected value. The moments are 
obtained by differentiation with respect to the parameter 
s, the first two, the expected values of X and of X2, 
being given by 

w(L) s E(X) = [WiLd/ds] 18==o, (2) 
and 

u(L) EE E(X2) = [dV0M/6V] | s==0. (3) 

Thus, the mean waste for length L is w(L) and the cor
responding variance is 

v(L) = u(L)-[_w(L)J. 

It is readily seen that the rules give 

0 < L < 1, \p (L,s) = exp (sL), 

since X=L holds for L<1, and also 

\<L, 

(4) 

(5) 

ML ,s)= / ( 
Jo 

( i - 1 ) " 

X E C e x p ^ C X ^ ^ + X ^ ^ ^ ^ + X ^ ^ ^ 1 ) ) ) ] ) ^ , (6) 

\//(x,s) 

or, with Eq. (1), 

1<L, (L-l)*(L,s)=[ 
Jo 

X*(P(L-x-l)9 s)$(y(L-x-l), s)dx. (7) 

Equation" (6) states, in effect, that all the waste comes 
from length L—\ divided into the three new initial 
lengths. Note that for x governed by some probability 
distribution other than the uniform one, the appropriate 
function of x and L would appear as a factor in the 
integrand. If, in addition, /3 or 7= 1—# were not constant 
but a statistical variable, then a double integral with 
the product of two distribution functions in thejnte-
grand would result. 

Differentiations of Eqs. (5) and (7) in accordance 
with Eqs. (2) and (3) give the relationships 

0<i<l, w(L) = L, y(L) = 0, (8) 

and 
1<L, 

(L-l)iv(L)= [ 
Jo 

for the first m o m e n t , and 

*L-1 

{w(x)+w(/3x)-{-w(yx)}dx (9) 

0 < L < 1 , 

and 
1<L, 

(L-l)u(L)~-

u(L) = D, v(L) = 0, 

{ u (x)+u (fix)+u (yx) 

(10) 

+ 2 w (L—x — 1) [w (fix)+w (yx) ]+2w (J3x)w (yx)} dx 

(ID 
for the second moment. 

Losses to optical phonons may now readily be taken 
into account: The rules that apply under L>\ are ex
tended by specifying that L>\ implies probability r 
that the two new initial lengths xr and L—xr result and 
probability \—r that there is contribution unity to y(L) 
and three new^initial lengths result as specified origin
ally. Length xr of course contributes to w(L). The 
moment-generating function is thus given by Eq. (5) 
and by 

1<L, ^(L^) = rE(exp[ j (a? r +X^^) ] )+( l - r ) 

x{ f CL-l^ECexpfXX^ 

+XmL-x-l))+X(y(D-,-l))^dx[ ( 1 2 ) 

or 

26 If this function is known, then the probability distribution 
for X can in principle be found by Fourier transformation. 

t(L,s) = r [exp( i* r )XL-* f , s)+(l-r)(L-l)-i 
r>Lr-\ 

X M*Jf(P(L-x-l)My(L-x-l))dxt (13) i 
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from which follows 

1<L, w{L) = r[xr+w(L-Xr)~\+(l-r)(L--\)-1 

pL-l 

X / {w(x)Jrw(fix)-\-w(yx)}dx (14) 
•̂  o 

for the first moment, and 

1<L, 

u(L) = r^xr
2+2xrw(L—Xr)+u(L—Xr)^]+(l — r)(L—l)~1 

X / {u(x)Jru(l3x)+ii(yx)-\-2w(x)w(j3(L—x— 1)) 
J o 

+ 2w(x)w(y(L—x— l))+2w((3x)w(yx)}dx (15) 

for the second moment. For 0 < Z , < 1 , Eqs. (8) and (10) 
apply. 

With xr<Kl, functional differentio-integral relation
ships that are good approximations for \<L may be 
derived from Eqs. (14) and (15). Expanding to the first 
order in xr gives 

dw (L)/dL+K-hv (L) = 1+K-1 (L-1)-1 

/ . L - l 

X / {w(x)+w(f3x)+w(yx)}dx, \<L (16) 
Jo 

and 

du(L)/dL+Krlu(L) 
/ .Ir-l 

= 2w(L)+K-1(L-l)-1 / {u(x)+u((3x)+u(yx) 
Jo 

+ 2w (L— x— l)[w (8x)-\rw(yx)~] 

+2w{$x)w(yx)}dx, 1<L, (17) 

with K the parameter defined by 

K=rxr/0—r) = rEB/(l-r)Ei. (18) 

Note that K is the ratio of expected values of energy in 
a collision associated, respectively, with optical-phonon 
generation and with ionization. Though xr is small, K 
may be small or large, depending on the value of 

N=r/(l-r) = K/xr, (19) 

the expected number of phonons per ionizing collision. 
The functions w(L) and u(L) are discontinuous at 

Z = l : E q s . (8) and (10) give w ( l - ) = « ( l - ) = l , while 
the correct initial values for Eqs. (16) and (17) may be 
derived from Eqs. (14) and (15), which give 

w ( l + ) = « ( l + ) = r . (20) 

The discontinuities may be attributed to nonzero 
energy of an optical phonon, since r approaches unity 
as Xr approaches zero for given K. 

For large L, limiting linear solutions hold for the 
expected waste and variance, namely 

w(L) = AL+B (21) 
and 

v(L) = CL+D, (22) 

with A, B, C, and D constants. From these equations 
and Eq. (4), the corresponding approximation for u{L) 
is 

u(L)=A2L2+(2AB+C)L+B2+D. (23) 

The Fano factor F is given by 

F=C/Y=C/(1-A).. (24) 

The problem is essentially that of evaluating the 
constants of the limiting linear solutions. The initial 
solutions of Eqs. (8) and (10) used in the integrands of 
Eqs. (16) and (17) give differential equations for 
1 < L < 2 which may be solved for the initial values of 
Eqs. (20). These solutions may then in turn be used 
with the initial solutions in the integrands to give dif
ferential equations for 2<L<3, and so on. I t is especi
ally in connection with Eq. (17) for u(L) that calcula
tions according to this procedure quickly become un
wieldy. Also, in this equation, a contribution to the 
integrand has w(L—x— 1) as a factor. For this contribu
tion, solutions for w(L) over initial ranges in L must be 
considered near the upper limit of the integral as well as 
near the lower, and, for large Z, one factor of this 
contribution is large when the other is small. Since L 
occurs in the integrand, this difficulty cannot be circum
vented by differentiating the equation. Note that Eq. 
(16) for w(L) does not have L in the integrand, so that 
the integral may be eliminated between this equation 
and its derivative. 

Approximate analytical expressions for Y and F whose 
calculation represents a reasonable limit of feasibility 
may, however, be obtained by using the exact solutions 
for the functions in the integrands only up to the value 2 
of their arguments, and the limiting linear solutions 
beyond. Fortunately, with the rapid approach to these 
limiting solutions, the expressions so obtained turn 
out to be reasonably good approximations. 

Though this calculation subsumes them, it appears 
best to derive first certain results pertaining to the 
yield. Consider Eq. (16) in the limit of large L, so that 
Eq. (21) applies. The two equations then give 

(1+K)A-2B = K, (25) 

which holds for any division of energy between electrons 
and holes, as specified by (3 or y. For given K, this equa
tion fixes B in terms of A, thus also fixes the apparent 
threshold Lf in terms of F : 

Ls=B/{\-A) = B/Y=h[Y-i-{l+K)-]. (26) 

Note that LfEi is the average final energy, since Eq. 
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(26) is tantamount to 

e=Ei/Y=(l+K+2Lf)Ei, (27) 

and KEi is the energy loss to phonons per ionization. 
Equations (21) and (25) may be solved simultane

ously for A and B in terms of the coordinates of a point 
on the line, whence follow 

Y=[y{L)+l-]/lL+l(\+K)-] (28) 
and 

Lf= HL- ( l + J O y (£) ] /&>(£)+*] • (29) 

Thus, to obtain both constants of the straight-line 
approximation or both Y and Lf for any given K it 
suffices essentially to determine w(L) or y(L) = L—w(L) 
at a single point on the curve that very nearly lies on 
the line. Though Eq. (28) has its main application in 
obtaining Y from Monte Carlo data that give y(L)y 

later in this section are given illustrative examples of 
approximate expressions so obtained for Y in terms of 
K and r from theoretical values of y{2) and y(3). 

Calculation of the approximate analytical expression 
for Y involves use of the solution27 

1 < L < 2 , w(L) = L-l+rexp£-(L-i)/Kl, (30) 

which follows from Eqs. (16) and (20). Then, Eq. (16) 
is written for the case / 3 = Y = | and large L is assumed 
so that the linear approximation of Eq. (21) is used in it 
except where the exact solutions of Eqs. (8) and (30) 
are used for the functions in the integrand for values 
less than 2 of their arguments. Integrating and multi
plying both sides by K(L—1) then gives an equation 
formally a quadratic in L; but the terms in L2 cancel 
identically. Requiring that the terms in L also cancel 
gives the relationship between A and B of Eq. (25). 
The condition that the constant term vanish gives 

{9-K)A+\2B=S-K+SrK[\~txY>{-l/K)~], (31) 

whence, with Eq. (25), follows the result 

Y=l~A=(2-J)/(3+K), (32) 
with 

/ = r ^ [ l - e x p ( - l / i T ) ] . (33) 

The parameters r, 7, K, and N are of course inter
related: From Eqs. (18), (19), and (33) it is evident 
that all start for no phonon losses together at zero, and 
as K and N increase indefinitely, r=K/(K+xr) 
= N/(N+1) and J both approach unity. Thus, Y ac
cording to the approximation of Eq. (32) is § for no 
phonon losses and approximtely (3+i£)~1 for large K. 

In calculation of the corresponding expression for F, 
use is made also of the solution 

1 < L < 2 , u(L)=(2L-l)rexpl~(L-l)/K~] 

+{L-\)\ (34) 
27 Note that w{L) for L<2 does not depend on /3 or y, which 

may be expected, since then L—Kl. That is, if a pair of second
aries is produced, neither secondary will be energetic enough to 
produce further secondaries. 

which follows from Eqs. (17) and (20). Then, Eq. (17) 
is also written for the case / 3 = Y = | , and large L is as
sumed so that the approximations of Eqs. (21) and (23) 
are used in it except where the exact solutions of Eqs. 
(8), (10), (30), and (34) are used for the functions in 
the integrand for values less than 2 of their arguments. 
I t may suffice simply to point out that the function 
u(x) gives rise to three distinct integrals between 
respective limits 0, 1, 2, and L— 1; the two functions of 
\x each give three integrals between limits 0, 2, 4, and 
L—l ; and Aw(\x)w(L—x— 1) gives five integrals be
tween limits 0, 2, 4, L—3, L— 2, and L—l. Evaluating 
the integrals and multiplying both sides by K(L—1) 
gives an equation formally a cubic in L, but in which the 
terms in D cancel identically. Requiring that the terms 
in L2 cancel gives Eq. (25). Requiring that the terms in 
L cancel gives 

(l+K)C-2D=2{5-K+5rK[l-exp(-l/K)2}A 
+ 2KB+(2K~17)A2-2(K+15)AB+8B2. (35) 

The condition that the constant term vanish gives 

(9-K)C+12D=6+rK{i5+18K2Zl-exp(-l/K)'l 

- 1 8 e x p ( - l / i r ) } + 2 r 2 i T [ l - e x p ( - 2 / ^ ) ] 

- { 3 1 + 2 r Z ( [ 1 4 + 9 i n [ l - e x p ( - 1 / 2 0 ] 

-9exp(-l/K))}A 

+ {l2-2K+l2rKZl-exp(-l/K)~]}B 

+4:3A2+2(l+K)AB-50B2. (36) 

The left-hand members of these equations are 
formally the same as those of Eqs. (25) and (31), A 
and B being replaced, respectively, by C and D. In
vestigation of what other properties the pairs of equa
tions may have in common reveals that the right-hand 
member of Eq. (35) vanishes with Ky which is the 
right-hand member of Eq. (25). Thus, D=\C holds, as 
does B = \A, for no phonon losses. Indeed, Eq. (35) 
simplifies to 

(l+K)C-2D=K2(l-A)2=K2Y2 (37) 

upon eliminating the exponential from it by use of 
Eq. (31) and then eliminating B by use of Eq. (25). 
With this equation, y(L) and v(L) very nearly on their 
limiting lines determine F in accordance with 

F= [y{L)+±K2Y2yiy{L)+U (38) 

a result analogous to Eq. (28) for F. 
I t appears that Eqs. (25) and (37) and their conse

quences, Eqs. (28) and (38), hold quite generally, even 
though Eqs. (37) and (38) have been derived in connec
tion with a particular approximation. Equation (25) 
holds as well for a somewhat different crazy-carpentry 
model—not treated here—which is a more direct formal 
extension of the simplest case than is the semiconductor 
case for secondaries of two kinds and phonon losses. 
Also, for secondaries of one kind only, equations similar 
to Eqs. (25) and (37) but with coefficients of B and D 
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TABLE I. Dependence of Monte-Carlo yields, variances, and 
Fano factors for the semiconductor case on L. 

N 

0 

20 
(£ = 0.7) 

L 

2 
5 
10 
20 
50 
100 
2 
5 
10 
20 
50 
100 

y(L) 

1.000 
3.060 
6.070 
12.486 
31.595 
63.88 
0.7200 
1.7800 
3.865 
7.905 

19.810 
39.75 

y(L)/L 

0.5000 
0.6120 
0.6070 
0.6243 
0.6319 
0.6388 
0.3600 
0.3560 
0.3865 
0.3953 
0.3962 
0.3975 

HL)/y(L) 

0 
0.18183 
0.13923 
0.13053 
0.10554 
0.12660 
0.2800 
0.2312 
0.2036 
0.17152 
0.19707 
0.18068 

F 

0.6473 
0.6257 
0.6335 
0.6355 
0.6406 
0.4281 
0.3897 
0.4023 
0.4032 
0.3994 
0.3991 

F 

0.15629 
0.12863 
0.12550 
0.10380 
0.12561 
0.2020 
0.19684 
0.18932 
0.16179 
0.19414 
0.17940 

unity should obtain, A = B and C=D being shown to 
hold in Sec. Al for the simplest case and in Sec. A2 for 
the parking-problem case. 

The Fano factor may now be obtained in accordance 
with Eq. (24) by solving Eqs. (36) and (37) for C. In 
view of the form of Eq. (37), it is advantageous, by use 
of Eqs. (25), (32), and (33), first to express A, B, and 
the exponentials in Eq. (36) in terms of Y and the param

eters K and r. The result for F may be written as 

F = ( 7 / 6 0 ) ( l - | / ) - i ( l + K ) - 2 

X [ l - ( l / 7 ) ( 1 2 / / i r - 5 0 - 2 4 r + 6 7 / ) 7 
+ (2/21) ( 9 - 108H-1297+78;-/- 10U2)K 
+ ( l /21)(49-72r+24/+44r/-35/ 2 )Z 2 ] . (39) 

In accordance with this result, F equals 7/60 for no 
phonon losses and, as may be expected, approaches 
unity as K increases indefinitely. For the limiting case of 
zero xr, probability r of a phonon-producing collision 
may be set equal to unity, since an indefinitely large 
number N of phonons per ionizing collision is then re
quired to realize any given value of K. 

Table I gives Monte Carlo yields and variances in 
their dependence on L for N=0 and N= 20. These ap
pear in part as the points in Fig. 5. Included also are 
Y and F obtained from these data by means of Eqs. 
(28) and (38). The Monte Carlo values on each line of 
Tables I and II represent crazy carpentry on 200 boards, 
of length 100 for Table II, which gives the dependence 
of Y and F on K obtained from Monte Carlo results 
together with corresponding values entirely from theory. 
The Monte Carlo Y and F appear as the points in Fig. 6. 
The theoretical values for xr= 0.035 are from Eqs. (32), 

TABLE I I . Dependence of limiting relative yield and Fano factor on phonon losses. 

N 

0 
0.10 
0.15 
0.2 
0.3 
0.5 
0.7 
1.0 
1.5 
2 
3 
5 
7 
10 
15 
20 
20 
30 
50 
70 
100 
150 
180 
200 
300 
500 
700 
900 
1000 
1200 
1500 
1800 
2000 

y(L)/L 

0.6388 
0.6382 
0.6339 
0.6337 
0.6285 
0.6230 
0.6300 
0.6197 
0.6069 
0.5944 
0.5798 
0.5483 
0.5230 
0.4855 
0.4366 
0.3985 
0.3975 
0.3412 
0.2667 
0.2216 
0.17601 
0.13056 
0.11461 
0.10741 
0.07896 
0.04956 
0.03587 
0.02956 
0.02591 
0.02176 
0.018863 
0.016213 
0.014663 

Monte Carlo 

v(L)/y(L) 

0.12660 
0.14947 
0.13502 
0.15156 
0.13490 
0.14141 
0.12319 
0.14233 
0.12930 
0.13286 
0.10884 
0.12740 
0.13002 
0.14045 
0.14718 
0.18194 
0.18072 
0.2488 
0.3204 
0.3820 
0.3780 
0.4661 
0.5176 
0.6793 
0.6660 
0.6753 
0.7467 
1.0482 
0.7513 
0.8541 
1.1491 
0.9695 
0.8488 

F 

0.6406 
0.6400 
0.6357 
0.6355 
0.6303 
0.6248 
0.6318 
0.6215 
0.6087 
0.5962 
0.5816 
0.5501 
0.5247 
0.4872 
0.4383 
0.4001 
0.3991 
0.3427 
0.2680 
0.2228 
0.17703 
0.13145 
0.11540 
0.10809 
0.07939 
0.04994 
0.03625 
0.02973 
0.02619 
0.02202 
0.018827 
0.016070 
0.014511 

F 

0.12562 
0.14831 
0.13397 
0.15037 
0.13384 
0.14029 
0.12222 
0.14119 
0.12825 
0.13177 
0.10794 
0.12633 
0.12895 
0.13931 
0.14611 
0.18066 
0.17944 
0.2471 
0.3186 
0.3801 
0.3782 
0.4665 
0.5181 
0.6745 
0.6677 
0.6834 
0.7518 
1.0234 
0.7657 
0.8544 
1.1130 
0.9826 
0.8953 

Xr = 

Y 

0.6667 
0.6658 

0.6647 

0.6609 

0.6532 

0.6363 

0.5841 

0.5075 

0.4035 

0.2638 

0.17520 

0.10728 

0.05024 

0.02671 

0.013803 

Theoretical 

; 0.035 

F 

0.11667 
0.11666 

0.11652 

0.11583 

0.11472 

0.11424 

0.12631 

0.16467 

0.2242 

0.3206 

0.4365 

0.5899 

0.7793 

0.8760 

0.9340 

r = 

F 

0.6677 
0.6647 

0.6628 

0.6570 

0.6474 

0.6287 

0.5750 

0.4985 

0.3967 

0.2607 

0.17387 

0.10681 

0.05015 

0.02669 

0.013796 

= 1 

F 

0.11667 
0.11638 

0.11612 

0.11549 

0.11496 

0.11569 

0.12979 

0.16774 

0.2232 

0.3143 

0.4296 

0.5844 

0.7762 

0.8743 

0.9331 

K 

0 
0.0035 

0.0070 

0.0175 

0.035 

0.070 

0.175 

0.35 

0.70 

1.75 

3.50 

7.0 

17.5 

35 

70 
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(33), and (39) and are represented by the curves in this 
figure. The table includes theoretical values for the 
limiting case of r = 1. That these are within 3% of the 
values for # r= 0.035 attests to the applicability of the 
approximate differento-integral relationships, Eqs. (16) 
and (17), since these hold exactly in the limit of r = 1. 

With Eq. (26), theoretical values of Lf that corre
spond to ones of Y in Table II are \ for 2V=0, 0.3102 
for N=10, 0.3892 for 7V = 20, 0.6607 for i\T=200, and 
0.7240 for N=2000; Lf approaches unity as N and K 
increase indefinitely. 

The tabulated theoretical values of Y from Eqs. (32) 
and (33) are appreciably better than result from setting 
L to equal to 2 in Eq. (28) and evaluating y(2) by use of 
Eq. (30). This procedure gives F = [ 3 - 2 r e x p ( - l / Z ) ] / 
(5+K), and hence 7 equal to f for N=Q and 0.448 for 
iV=20.£The similar procedure with L—3 makes use of 
the solution 

2 < L < 3 , 

»TO-["P(-^)]{'*PQ+«PQ 

-fln(7.-l)exj/-) , (40) 

where 
fU 

Ei(u) = I u~l exp(u)du (41) 

is the exponential integral. The result is 

7 = (7+K)-1\5-2r expf J-2 exp(—j 

-ir+ih(-2/K){mQ-EiQ] 
+2(ln2>exp( j l . (42) 

This approximation is less simple in form and not quite 
so good as the tabulated one. Note that it gives Y equal 
to 4/7-0.5714 for N=0, 0.4044 for N= 20, 0.10880 for 
N= 200, and 0.02675 for N= 1000. 

For no phonon losses, Eq. (40) simplifies consider
ably, the yield being given by y(L) = 2—(L—l)~l for 
2 < Z < 3 , as may also more readily be shown directly. 
For 3<Z,<4, the exact yield y(L) = S-[l+\n(L-2)]/ 
(L— 1) obtains for this case. 
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APPENDIX 

Al. The Simplest Case of Crazy Carpentry 

The rules for the case illustrated in Fig. 1, stated 
more formally than in this figure, are: 7/ initial length 
is L, then L<l—*zero contribution to y(L) or L>1-+ 
new initial length x, where x is a random length in the 
interval 0<x<L; then L—x<l —> second new initial 
length L—x or L—x> 1 —> contribution unity to y(L) 
and second new initial length L—x—1. Repeat from the 
beginning with new^Jnitial lengths. (Continue this pro
cedure until there are no further initial lengths.) 

With X(L) the total length wasted in the crazy carpen
try on a single board of initial length Z, the moment-
generating function of Eq. (1) is given by Eq. (5) and by 

^(L,s)= \ L~1E(exp[^(X^>+X(i>-a;-1>)])^ 
Jo 

I L-1E(expts(\W+L-x)1)dx, (43) 
J L-l 

/.L-l 

1<L, L\[/(L}s)— j \l/(x,s)\p(L—x—-lyS)dx 
Jo 

+ / $(%>$) exp[s(L—x)~]dx. (44) 

With Eq. (2), differentiation of Eqs. (5) and (44) with 
respect to s gives Eq. (8) and 

rL f>lr—\ 

1<L, Lw(L)= w(x)dx+ / w(x)dx+%. (45) 
Jo Jo 

Differentiating this equation with respect to L and 
integrating again, using w(l)= 1, results in 

+ 
or 

1<L, 
L~1 w (x)dx r2j~1w{, 

w(L) = l+ — 
JO X' +1 

(46) 
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With Eq. (3), differentiation twice with respect to s 
gives Eq. (10) and 

/• L n L—1 

1 < L , Lu(L)= I u(x)dx+ I u(x)dx 
J o Jo 

r-L-l 

+ 2 / w(x)w(L—x— l)dx 

+2 (L-x)w(x)dx+\. (47) 
J L-l 

These results are due to E. N. Gilbert, as is also the 
derivation that follows of the asymptotic dependence of 
w(L) on L for large L. 

Write 

q(L) = w(L)-L-l. 
Then 

Ldq(L)/dL = 0, 0 < L < 1 

= <Z(L-1), \<L. 

Laplace transformation of this equation, with 

gives 

(48) 

(49) 

Q{p)=\ g(L)exp(-pL)dL, 

pdQ(P)/dp+O-+exp(-p)JQ(p) = 0. 

The solution for Q(p) is 

Q(p)=-p-1exp x~~l exp(—x)dx 

(50) 

(51) 

(52) 

note that Q(p) asymptotically (~p~l) for large p follows 
directly from Eq. (50), since q(L)= — l holds for 
0 < L < 1. For small values of p, the integral in Eq. (52) 
is approximately \n(l/p) — c, where c^0.5772 is Euler's 
constant. Hence Q(p) is approximately — exp(—<;)• p~2 

for small p and q(L) for large L is asymptotic 
to the transform of this, and thus approximately 
[—exp(—c)~]L. I t follows that w(L) for large L is 
approximately [1 — exp(—c)~]L, and the limiting rela
tive yield Y is exp(—c) ̂ 0.5618. This result was also 
obtained by H. O. Pollack. 

Comparison might be made with the value of Y from 
the method of approximation employed in Sec. 2.3 for 
the semiconductor case, and this method then used also 
to determine F. Equations (46) and (47) are written 
for large L and exact solutions are used in integrands 
up to the value 2 of the arguments of the functions and 
the approximations for large L of Eqs. (21) and (23) 
beyond. Besides Eqs. (8) and (10), the exact solutions 

and28 

1 < L < 2 , u(L) = L2+lnL-2LlnL. (54) 

Equation (46) then gives 

A = B (55) 

from the requirement that the terms in InL cancel, and, 
with this result, 

1 / r2 hue \ 
Y=l-A=- l + l n 3 + dx - 0 . 5613 . 

4\ A x+1 J 
(56) 

This Y is close to the exact theoretical value, being only 
about 0 .1% smaller. Note that an apparent threshold 
Lf^0.78 results, and this is presumably the average 
final length. 

For the corresponding calculation of F, write 

/

L rL—1 

u(x)dx-\- I u(x)dx 
rHL-l) 

+ 4 / w(x)w(L—x— \)dx 
Jo 

+ 2 / (L—x)w(x)dx, (57) 
J L-l 

which follows readily from Eqs. (10) and (47). Note that 
w(L—x— 1) may now be written as A(L—x—1)+2?, 
since x does not exceed i(L— 1) in the integral in which 
this function occurs. An equation formally cubic in L 
results, but with cubic terms that cancel identically. 
The requirement that the quadratic terms cancel gives 
Eq. (55), while the linear terms cancel if 

C-D=(13-S\n2)A-17A2 (58) 

holds, and the constant terms vanish if 

| C + 5 P = 4 ( 5 / 3 - l n 2 ) ( l - 2 ^ ) + | v 4 2 (59) 
holds. 

The right-hand member of Eq. (58) very nearly 
vanishes for the A of Eq. (56); this gives (—0.0014) for 
C—D. I t is thus a substantially consistent approxima
tion to assume 

C=D (60) 

which, moreover, probably holds exactly for secondaries 
of one kind only.29 Equations (58) and (60) imply 
A= (1 /17)(13-8 ln2)~0.4385, a value even closer to 
the exact theoretical one of about 0.4382 than is the 
value 0.4387 of Eq. (56). With Eq. (60) and the 
corresponding value of A, Eq. (59) gives 

C-0 .0674 , F = C / ( 1 - ^ ) = 0.12048. (61) 

1 < £ < 2 , w(L) = L—InL, (53) 

28 This was first derived by Miss Li-Ying Fan. 
29 That this does not follow precisely with the present approxi

mation is related to the explicit dependence of the integrand in 
Eq.^(46) on x as well as on w(x). 
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In Fig. 2, the limiting slope of the theoretical curve for 
v(L) corresponds to these values. 

With Eqs. (55) and (60), F and F may be obtained 
from Monte Carlo y{L) and v(L) that are very nearly 
on the limiting lines by use of 

and 
Y= £y(L)+ l ] / ( £ + l ) 

F=v(L)/[y(L)+l2-

(62) 

(63) 

A Monte Carlo run in addition to those of the points of 
Fig. 2 was made for 200 boards of initial length 1000, 
and this gave Y= 0.5614 and F- 0.1375. 

A2. The Case of the Parking Problem 

The rules for this case are: If initial length is L, then 
L<1 —> zero contribution to y(L) or L> 1 —> contribution 
unity to y(L) and new initial lengths x and L—x—1, 
where x is a random length in the interval 0<x<L—l. 
Repeat from the beginning with new initial lengths. {Con
tinue until there are no further initial lengths.) 

The moment-generating function for this case is 
given by Eq. (5) and by 

1 < L , f(L,s)- ( L - l ) -

XE(exp[*( \<*>+X<^^; ]>fo (64) 
or 

I<L, a-D*(L,*)= \p(x,s) 

Xf(L-x-l,s)dx. (65) 

Equations (5) and (65) give Eq. (8), 

1 < L , w(L) = 2(L-l)-1 w(x)dx, (66) 
J Q 

Eq. (10), and 

1<L, 

u(L) = 2(L-l)-1 

rL-l 

X / [u(x)+w(x)w(L—x— \)~]dx. (67) 
«/o 

Equation (66) may be written as an equation in y(L), 
namely 

y(L) = 1 + 2 (L-l)~i y(x)dx, (68) 1 < L , 

and in this form in readily seen to agree with the 
equation given by Renyi.7 

Treating the parking-problem case by the method of 
approximation employed in Sees. 2.3 and Al involves 
the exact solutions 

which are readily derived. Then, Eq. (66) gives 

A = B=\, Y=l (70) 

a value of Y that is quite close to the exact result of 
Renyi, namely, 

r ° f r ' l — exp(— u) 1 
Y= exp - 2 / du\dt~0M8, (71) 

Jo I Jo u J 

which was obtained by solving the retarded differential 
equation that is equivalent to Eq. (68) by Laplace 
transformation. Note that Eq. (70) results in Lf=\. 

The method applied to Eq. (67) gives 

C=D+4cA(l~AA) = D 
and 

(72) 

3C+5Z>= ( 4 / 3 ) - (26/3)A+AB+ (37/3)A2 

+ 4 , 4 5 - 1 5 £ 2 , (73) 
whence 

C = l / 3 2 , F = C / ( 1 - 4 ) = 1 / 2 4 ~ 0 . 0 4 1 6 7 . (74) 

The approximate theoretical values of F, Lf, and F 
are in good agreement with Monte Carlo results shown 
in Fig. 3 and given in Table I I I ; the respective averages 
of the values of F and F in the table are 0.7458 and 
0.04838. Equations (62) and (63) apply also for the 
present case, and the Monte Carlo F and F were ob
tained from y(L) and v(L) by use of these equations. 

The method employed would of course give closer 
approximations if exact solutions were used in the inte
grands up to larger arguments. For the next stage of 
approximation, the required solutions are 

2 < Z , < 3 , w(L)=l- ( Z - 2 ) ( 3 - L ) / ( L ~ 1), 

^ ( Z ) = l - ( Z - 2 ) 2 ( 3 - Z ) / ( L - l ) . 
(75) 

As may be seen from Eqs. (66) and (67) and the forms 
of these solutions, F and F calculated to the next ap
proximation are not rational fractions, but involve 
logarithms as well. Similarly, the exact solutions for the 
next interval, 3 < £ < 4 , contain terms in ln(L— 2) and 
the corresponding further approximation gives equa
tions that are not simply quadratic or cubic in L but 
which contain logarithmic terms. Requirements that 
terms in respective powers of L cancel and that coef
ficients of logarithmic terms vanish should, however, be 
consistent. 

TABLE III. Dependence of Monte Carlo yields, variances, and 
Fano factors for the parking-problem case on L. 

KL<2, w(L) = L-l, u(L)=(L~-iy, (69) 

L 

2 
5 
10 
20 
50 
100 

y(L) 

1.0000 
3.450 
7.220 
14.740 
36.90 
74.48 

y(L)/L 

0.5000 
0.6900 
0.7220 
0.7370 
0.7379 
0.7448 

v(L)/y(L) 

0 
0.07174 
0.05147 
0.04969 
0.04564 
0.05075 

Y 

0.7417 
0.7473 
0.7495 
0.7430 
0.7473 

F 

0.05562 
0.04521 
0.04653 
0.04444 
0.05008 
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Equations (4) and (75) give 

2<Z,<3, v(L) = 2(L-2)(3-L)/(L-l)2, (76) 

namely, a variance that vanishes at each end of the 
interval, where w(L) and u(L) both equal unity. This 
result is readily verified. Yield y{L) unity and v(L) 
zero for all L in the interval 1<L<2 follow from Eqs. 
(69) and is otherwise evident from the rules. It is readily 
seen that the rules also imply that if L=3, then y{L) 
is exactly 2 with v(JL) zero: After initial contribution to 
yield of unity, the random cut results in two new initial 
lengths just one of which provides a further and final 
contribution of unity. If L is slightly less than 3, then 
nonzero variance obtains, yields being 2 most of the 
time and unity a small part of the time, with y(L) 

slightly less than 2. Similarly, if L is slightly greater 
than 3, then yields are 2 most of the time and 3 a small 
part of the time, with y(L) slightly greater than 2 and 
variance nonzero. 

With Eq. (62), the theoretical 3/(4) furnishes F quite 
accurately. The readily obtained solution 

3 < L < 4 , y(L)=(L-l)~l[7L-n-A\n(L-2)'] (77) 

gives 3/(4) = 2.7425, whence follows F=0.7485, which 
agrees with the three significant figures of Renyi's 
result of Eq. (71). A similar procedure based on Eq. (63) 
could be used to obtain F, but for specified accuracy it 
would be necessary to calculate u(L) for an L appreci
ably larger than the L for which y(L) would have to be 
calculated to give F with the same accuracy. 

ANNOUNCEMENT: ZIP Code Information 

THE U. S. Post Office Department has announced that the use of ZIP Codes will be 
mandatory on all domestic addresses for subscriptions and other mailings by 

1 January 1967. Accordingly, the American Institute of Physics has established a procedure 
for obtaining the necessary information. You are requested to follow this procedure exactly. 

First, do not submit a change of address request consisting merely of the addition of your 
ZIP Code. Second, if your address changes in any other way, do include the ZIP Code of 
the new address. Third, and most important, be sure to furnish your ZIP Code in accordance 
with instructions included with all renewal invoices and renewal orders which will be sent 
out by the AIP in September 1965. 

Failure to conform to this procedure may result in delays. 


