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The formalism for the analysis of angular-correlation measurements of the radiative decay of aligned 
nuclei is expressed in a manner such as to simplify computational procedures involved in cases where several 
continuous parameters (multipolarity mixing ratios and population numbers or statistical tensors) and 
their error matrix must be determined from the experimental data. Two specific analysis procedures are 
presented. The discussion is based upon triple-correlation formulas which include the possibility of one or 
more intermediate unobserved radiations in multiple cascades. Parallel developments are presented in terms 
of population parameters and statistical tensors of the aligned states. I t is shown that a statistical-tensor 
representation leads to a more elegant and convenient formulation for general multiple cascades. 

INTRODUCTION 

THE theory of angular correlations of successive 
radiative transitions from isolated, aligned nu

clear states is well developed. Excellent treatments of 
the subject have been given by Biedenharn and Rose,1 

Rose,2 Devons and Goldfarb,3 Litherland and Ferguson,4 

and many others. Attention has recently been concen
trated upon problems of applying the formalism to the 
determination from experimental data of the spins of 
states involved in the decay and the continuous param
eters relating to the emitted radiation. Methods of 
analysis of data have been treated, among others, by 
Ferguson and Rutledge,5 Smith6-7 and Ferguson.8 

The analysis of data on angular correlations of, for 
example, two successive radiations in cascade from a 

XL. C. Biedenharn and M. E. Rose, Rev. Mod. Phys. 25, 729 
(1953). 

2 M. E. Rose, ORNL-2516, Office of Technical Services. U. S. 
Department of Commerce, Washington D. C , 1958 (unpublished). 

3 S. Devons and L. J. B. Goldfarb in Encyclopedia of Physics, 
edited by S. Flttgge (Springer-Verlag, Berlin, 1957), Vol. 42, p. 
362. See also the article of G. R. Satchler, Phys. Rev. 94, 1304 
(1954). 

4 A. E. Litherland and A. J. Ferguson, Can. J. Phys. 39, 788 
(1961). 

6 A. J. Ferguson and A. R. Rutledge, Atomic Energy of Canada, 
Ltd., CRP-615, AECL-420, 1962 (unpublished). 

6 P. B. Smith, in Nuclear Reactions, edited by P. M. Endt and 
P. B. Smith (North-Holland Publishing Company, Amsterdam, 
1962), Vol. II . 

7 P. B. Smith, Can. J. Phys. 42, 1101 (1964). 
8 A. J. Ferguson, Angular Correlation Methods in Gamma-Ray 

Spectroscopy (North-Holland Publishing Company, Amsterdam, 
1965). 

state formed by capture of a nonzero-spin particle is, in 
general, complicated by the nonlinear dependence of the 
correlation upon several continuous angular-momenta 
mixing parameters in addition to the quantized spin 
variables. The formation of a resonance state by capture 
may be characterized by three continuous variables; the 
channel spin-mixing parameter and the parameters re
lating to the mixing of orbital angular momenta in each 
channel. There may also be a multipolarity mixing 
parameter for each of the radiative transitions which 
follow the formation of the resonance giving a total of 
five continuous variables to be extracted from the data. 

The method of Ferguson and Rutledge5 is primarily 
applicable to radiations from states formed by capture 
of a bombarding particle. The method requires that the 
mixing parameters relating both to the formation and 
to the decay of the resonance state be simultaneously 
fitted to the data. In cases where only two mixing 
parameters appear, e.g., when the target nucleus has 
zero spin, contour diagrams have proven very useful 
and unique solutions have been obtained.9 Cases in 
which more than two mixing parameters are required 
are frequently encountered, but few such problems have 
been completely analyzed because of their complexity 
when approached by the usual analytic or graphical 
techniques. 

The introduction by Litherland and Ferguson4 and 
by Smith8 of analysis techniques involving a formula-

9 G. I. Harris and L. W. Seagondollar, Phys. Rev. 131, 787 
(1963). 
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FIG. 1. Decay-
scheme for a double 
gamma-ray cascade 
from an aligned nu-
c lear state. T h e 
quantum numbers 
and parameters of 
Eq. (1) are shown. 

tion in terms of the statistical tensors or population 
numbers of the state formed in the bombardment proc
ess has resulted in a more efficient approach to the 
general problem. The technique consists essentially of 
replacing the, in general, nonlinear parameters related 
to the formation of a state by linear parameters which 
specify the alignment of the state with respect to the 
incoming beam. Two important advantages accrue from 
this formulation: (1) The analysis of correlations of 
radiations emitted by the aligned state can be conducted 
without detailed knowledge of the mechanism of forma
tion of the state. (2) Linear, least-squares computer 
programs can be used to obtain "best values" of the 
population numbers (or statistical tensors) where the 
nonlinear multipolarity mixing ratios for the emitted 
radiations are treated as parameters (see Smith7). These 
techniques have already found extensive use in cases 
where only a primary radiation from the aligned state 
is mixed. At present, only a few cases have been in
vestigated in which both a primary and a secondary 
radiation in cascade are mixed because the entire range 
of both mixing ratios must be searched for possible 
acceptable solutions.7 

The purpose of the present paper is to present the 
triple correlation formulas in a "factored" form which 
provides for a convenient extension to multiple cas
cades, a more efficient tabulation of necessary coeffi
cients, and more efficient and flexible computer analysis 
techniques. The triple correlation formula is presented 
in such a form for double cascades and multiple cas
cades with one or more unobserved radiations, and is 
developed in terms of the population densities (param
eters) and statistical tensors of the aligned state. A 

brief discussion is then given of linear, least-squares 
analysis techniques which utilize the greater efficiency 
of the factored form of the equations. The angular-cor
relation coefficients necessary for the analysis of data 
are being issued in a separate report. There is no claim 
to originality with respect to angular-correlation theory 
except perhaps for the specific manner of factorization 
and its utilization in analysis techniques. The intent is 
to provide a more practical and usable formulation for 
the more difficult situations now consistently being en
countered by the experimentalist. 

TRIPLE-CORRELATION FORMULA 

No Unobserved Radiations 

We shall employ the notation of Smith6'7 for the in
tensity correlation of two successive radiations from an 
aligned state and show how it may be extended to cases 
involving one or more intermediate unobserved radia
tions. The extended form will then serve as the basic 
form in the discussion of analysis. 

The intensity correlation expressed as a function of 
the angles $h 62, and <£, where 0i and 02 are the angles 
between the propagation vectors of the incoming beam 
and of the primary and secondary radiations, respec
tively, and where <f> is the azimuth angle between the two 
radiations, is given by6 

KMN 

The decay scheme to which this formulation is applicable 
is shown in Fig. 1. The QK and QM are introduced in 
order to take the finite solid angle of the detectors into 
account. The functions XKMN{BijB2,<f>) are defined by 

f(2M+l)(2K+l)(K-N)l(M~N)\yf2 

(K+N)l(M+N)l 

XPKN(cosdi)PM
N(cos62) cosAty. (2) 

In the population-parameter representation, the expres
sion for AKMN is 

AKMN= E P(m) E h*lh™CKMN, (3) 
ro> 0 LiLi'LiLi' 

where 

CKMN=K-)fJi2ULiLl
fL2L2

r(L1\L1;-11 K0)(L21L2'~11 M0)W(J2L2J2L2'; JZM) 

XYL(~)Jl-m(JmJi-fn\kQ)(K-NMN\kb)-
h 

The factor (--) / determines the phase, where 

f^A-Jt+Lx'-Li+U+M+N, 

fj2 L\ Ji 

Ji L\ J\ 

IM K k. 

(4) 
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and the exponents px and p2 take on the values 0,1, or 2 for pure L, mixed L, L', or pure V radiation, respectively. 
The quantities 5i and 82 are denned to be the ratio of the transition matrix elements for L'-pole to L-pole radia
tion. The quantities in Eq. (4) written with a caret % represent (2g+l)1/2. The population parameters P(m) rep
resent the population of the magnetic substates m and — m taken together. The factor 0 provides for the term 
multiplicity due to the restrictions 2V>0, Li>Lh L2

f>L2. Explicitly, /3= ( 2 - 8N,o)(2— 8LltLl>)(2—8L2,L2')- Stand
ard notations are employed for the Clebsch-Gordan, Racah, and 9-j coefficients. The indices K and M take on 
positive even integral values (and zero), and N takes on both even and odd positive integral values such that N 
does not exceed either K or M. 

We now observe by inspection of Eq. (4) that the CKMN coefficient defined by Smith can be written as 

CKMN (JiJ23zLlL1
fA2A2m) . 

CKMN{JiJ2JzLxLl
fL2L2

fm)= (-)J*{2-8L2,w)Zl{L2J2L2'J2) JZM) , (5) 
( -)^i(A2/2A 2 /2; rzM) 

where the coefficient Z\ denned and tabulated by Ferguson8 is related to the Z\ coefficient tabulated by Sharp 
et al.10 as follows: 

Zi(LbL'b'; cM) = (-)M-^L,-lLLW(LW-l\MO)W(LbLfbf,cM), 
= {-)L'-L-M^Zl{LbLfbf\ cM). (6) 

The ratio CKMN/(—)33ZI is independent of the quantum numbers L2, L2, and /3 . Hence, they are replaced by the 
"dummy indices" A2 and gz in Eq. (5) in order to stress this property of the ratio. A2 and gz can be chosen at will 
provided all triangle conditions which involve them are satisfied. For convenience, we define the quantities EKMN 

and AM, where 

A CKMN(JiJ2SzLiLik2A2m) 

^i(A2/2A2J2; SzM) 

= ( - ) L l ' + ^ K 2 ~ 5 ^ , o ) ( 2 - 5 L l , L l 0 A 2 i 2 ^ ^ i l ^ ~ l | ^ O ) 

XT,(-)Ji-m(JmJi-tn\kO)(K-NMN\kO) 
k 

J2 L\ J\ 

J2 J\ J\ 

IM K kJ 

(7) 

and 

hMiJ^zUL^O^-y*-'* 
X(2-8L2tW)Z1(L2J2L2

fJ2;JzM). (8) 
Hence, 

CKMN{JiJ2JzLiUL2L2'tn) 
= EKM*(JiJ2UUm)hM{J2JzL2U). (9) 

We note that EKMN depends only upon parameters of 
the primary radiation, while HM depends only upon 
parameters of the secondary (or final) radiation. EKMN 

is normalized such that EoQ°=8LltLl>; similarly KM is 
normalized such that h=8L2,L2

f> 
The coefficient AKMN in Eq. (1) may now be written 

as follows: 

AKM
N=ZHm) £ (X+h2)-lh^EKMN(JiJ2LlLl

,m) 
m L\L\' 

X E 0-+h2)-15^hM{J-JzULi'). (10) 
L2L2' 

[The distinction between the Kronecker delta function 
and the symbol for multipolarity mixing ratios should be 
evident in Eqs. (7) and (8) and in those following.] As 
suggested by Smith,7 we have inserted the factors 
l+§i2 and l+5 2

2 into the denominator in order to pro
vide for more elegant programming. 

We now define two new functions GmM and HM as 
follows: 

LiLi' 

X I EKMN(JiJ2LlLl
fm)QKQMXKMN{®), (11) 

KN 

and 

10 W. T. Sharp, J. M. Kennedy, B. J. Sears, and M. G. Hoyle, 
Atomic Energy of Canada, Ltd., CRT-556, AECL-97, 1957 
(unpublished). 

HM{J2Jz82) = Z(l+822)-lS2P2hM(J2JzL2L2'), (12) 
L2L2' 

where © stands for the set of angles 0i, 02, 0. Because of 
the normalization of HM, we have H0(82) = 1. 

The triple correlation formula [Eq. (1)] appears in 
terms of the newly defined quantities GmM and EM as 
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follows: 
W(&)= E P(m)GmM(fii&)HM{l*). (13) 

mM 

Pi(mj)l 
or l -

ALIGNED BY REACTION 

J 2 

Ji-I 

UNOBSERVED 
RADIATION 

Si 
OBSERVED 
RADIATION 

Jj*i 

J,-i 

UNOBSERVED 
RADIATION 

One or more Intermediate Unobserved Radiations 
Recent experience with angular-correlation studies on 

multiple-step gamma-ray cascades following the forma
tion of a resonance state by proton capture has indicated 
the usefulness of measurements in which the intensity 
correlation of any pair of emitted radiations (relative to 
the incoming beam) is observed, rather than to restrict 
measurements to only the first two members of the cas
cade as has usually been done.11'12 The possibility exists 
of having unobserved radiations emitted prior to the 
first of the two observed radiations, or emitted after the 
first but before the second observed radiation. Both 
situations may also, of course, occur in a given problem. 
The emission of unobserved radiations after the last 
observed radiation has no effect on the analysis and, 
thus, is not considered. 

Consider the decay scheme depicted in Fig. 2 and m 

suppose that only the radiation corresponding to I , J ^ 2
e ^ ^ 

L{ and Le, LJ is observed. Then according to Satchler,3 0f £q# (14) a r e shown. The first observed transition is taken to be 
the intensity correlation can be written, with a trivial between states (*) and (j) and the second observed transition is 
i • r *• + -A~ „ ~^™^+ „A+\, between states (e) and (/). The degree of alignment of state (1) 

change in normalization to provide agreement with is characterized by the statistical tensors or population parameters 
that of Eq. (13), as follows: of that state. 

L . J L ; 

- J . 

OBSERVED 
RADIATION 

kKM 

X«*(£i_l£*-lV*-l/<,$^0«M(A'A-^^^ ' ' ' UM{Le-lLe-l Je-\Jeje-l) , (14) 

where @ now refers to the set of angles dh 6ej 4>ie. The factors uk or uM for the unobserved radiations are given by 

ViiLJJti+PUiUJJM) 
m(JaJb,8)=-

1+52 
(15) 

where Ui(LJaJb) = (-)J«+J*>-LJaJbW(JaJaJbJb; IL). The factor AM{JJ.Ji) which pertains to the final observed 
radiation is given as follows: 

AM(JJe,Jf)=(l+5e*)-* E 5 ^ < 2 - ^ , L e 0 ^ e i / ( - ) ^ - J - L ^ , + M - K ^ e l ^ / - l | ^ O ) ^ ( Z e / e L / / e ; JfM) 
LeW 

= (Je)-
l(l+8e2)-K-)Jf-J< E (2-dLttW)8e^Z1(LeJeL/Je;JfM) (16) 

We note that HM(JeJfde) has the same form as Eq. (9), but the quantum numbers have been replaced by those of 
the final observed radiation. The factor RUKM which pertains to the first observed, emitted radiation is given by 

RkKMiJJiJjJj)=(JGO-iJJAi+Si*)-1 E (2-8Li,Lif)8^LiL/(-)Li,~1(LiiL/-11ifo) 

[Jj J^i Ji 

J j L>i J{ 

M K k 

(17) 

11 H. Van Rinsvelt and P. B. Smith, Physica 30, 59 (1964). 
12 G. I. Harris, in Proceedings of the Conference on the Structure of Low-Medium Mass Nuclei, University of Kansas, 1964 

(unpublished). 
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The angle function SkKM is related to the XKMN denned in Eq. (2) through 

SkKM(@) = M E (-)N(2-8N,o)(K-NMN\kO)XKM
N(®). W 

N>0 

Finally, the factor A k which relates to the formation of the state labeled by Jh mx by the incoming beam is given by 

Here pko(Ji) is just the zeroth component of the statistical tensor of rank k for the formation of the state Jv For 
convenience, the normalization of Ak has been chosen so that A0=poo= 1. The population parameters are related 
to the statistical tensors by3 

pko(Ji) = Ji JK-V^VmiJi-ml^Piimi). (19a) 

mi 

Now, in order to cast Eq. (14) in the general form of Eq. (13), we define the quantity 

GmiM(8i- • -«*,e) = Ji E ( - ) / l - m i ( A w i / i - w 1 | ^ 0 ) [ ^ ( 5 1 ) - • •**(«<_!)] W f c . © ) , (2°) 
k 

where / x 

TkM(8i,@) = E QKQMRkKM(Si)SkKM(G) • (2 1) 

K 

We find that TkM is related to the GmM defined in Eq. (11) by 

TkM{bi&) = {Ji)-1 E (2-8 m < i o) ( - ) / *- m ' ( / < w«/*-«* |*0)G w i M(^,e ) , (22) 

where account is taken of the fact that k is even. We can now express GmiM in terms of GmiM ' 

OmlM(hr • •,5i,@) = A ( / t ) - 1 L ( ~ ) / l - m i ( / i W i / i - ^ i | ^ 0 ) C ^ ( 5 i ) - • -«*(5i-i)] 
k 

X E (-)'«—'(2-«-,.o)(/*w*/*-w<l*0)G««Jf(«*,©)• (23) 
»»»>0 

The factor HM is defined as follows: 

HM(8h • • • ,5e) = tuM(5j) • • • WM(5e-l)]^M(5e) • (24) 

Equation (14) for the triple correlation may now be written in the same form as Eq. (13) as follows: 
W(@) = E Pi(mdGmiM(*i, • • • ,^-,0)5^(5,., • • • ,5.). (25) 

miM 

Unfortunately, however, the simple appearance of this expression is misleading because of the complexity, in 
general, of the factor GmiM. Equation (25) is, for that reason, very difficult to apply in practice as it stands. 

We shall consider two changes in Eq. (25) which simplify the application to actual problems. The first change is 
to place the emphasis on the population parameters of the state labeled by Ji, nti instead of the state Jh mi (see 
Fig. 2). The second and more fundamental change is to replace the population parameter representation by a 
statistical tensor representation. The latter change will be considered in the following subsection. 

The shift in emphasis from the populations of state Jhmi to those of state /»-,wt- is accomplished by making use 
of Eq. (23) to put Eq. (25) in the following form: 

miM m i > 0 k 

X [«t(*i) • • • utiSt-ODGmtuiti^BitiSi, • • •,«.) • (26) 

By comparison with Eq. (13), we can identify the quantity in the curly brackets with P,-(m<). Hence, we have 

W(@) = E P<bni)Gmtli(6i,e)BM(Bi, • • •,«.), (27) 

where 

J\(md = Wi)-1 E ^ i ( w 1 ) E ( ~ ) ^ w l + A " ^ ( 2 ~ 6 W l , o ) ( / i W i / 1 - w 1 | ^ 0 ) 
w i > 0 k 

X (JimJi- mi\ k0)luk(8i) • • • «*(fc-i)] • (28) 
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Equation (27) will be taken as the standard form of the triple-correlation formula in the population parameter 
representation. The relative simplicity of the factor GmiM as compared with GmiM provides for straightforward 
practical application in complex situations. It can be readily seen that Eq. (27) reduces to the proper form [Eq. (13)] 
for the case of no intermediate unobserved radiations. 

Equation (28), which relates the population of the state /»-,*»»• to those of state /i,wi, could be applied in the 
analysis after the i\(w t) (and their error matrix) have been determined by a least-squares analysis of Eq. (27). 
We prefer, however, to show that Eq. (28) reduces to the more familiar form in which appear the squares of the 
vector-coupling coefficients, and in which is involved a summation only over the magnetic substates and not also 
over the index k. 

It is evident from the form of Eq. (28) that P»(m») can be expressed in terms of the population parameters 
Pt-i(wi-i) of the preceding state in the decay scheme as follows: 

Pt{m,) = ^ i ( 7 , ) - 1 ( 2 - ^ , , 0 ) E P t - _ i K „ i ) E ( - ) ^ - ^ - ^ ^ — < 
wtf-l> 0 k 

X ( / t - iWi- i / i - i -Wi- i | £0) (JifrnJi— Mi | kQ)uk(&i-i), (29) 
or 

Pifai) = (2— 8mi,o) E f(mi-i,tni,8i-i)Pi-i(nii-i), (30) 
m t- i> 0 

where 
/(«H-i,*M«_i) = (l+5l-_i2)-1[^(wi-i,wl-,Z1-_1)+5i_i2FK-_i,^,i:t-_1

/)], (31) 

F(mi-.i,tni,Li-i) = E Vk(mi-i,mijLi_i), (32) 
k 

and 

Vkim^m^L^)=Ji-iiJi)-^-) '^-^-^-^{Ji-mi-iJi-i- m-i \ *0) (J#mJi- mi \ MS) Vr
k(L^J{_XJ\) 

^ ( ^ - L , - ™ - ^ (33) 

Equation (15) and the definition of Uk(LJcJb) have been utilized in defining the above quantities. 
Now consider the quantity F(wi_i,Wi,Z,i_i). We note that the index k in all the preceding equations must be even 

as a result of the assumed definite spin and parity for the decaying state. With the observation that Vk(—a, 0, L) 
= (—)kVk(afi,L), the sum over even k in the definition of F(mi-i,mi,Li_i) can be extended to a sum over all 
(positive) k by writing 

F(m^i,Wi,Z*_i) = £ E [ 1 + ( - yiVkimi-ittniyLi.!) 
all k> 0 

= 2 E [P*(w,-_i,w,-,Z»_i) + Vk(—nti-i, nii, £,_i)]. (34) 

all *> 0 

One can now show, by means of the sum rule,13 

E tf(aaf0+ 81 ca+fi+ 8)(bffd8\ f/3+ 8)W(abcd; ef) = (aab/3\ ea+p)(ea+pd8 \ ca+/3+ 8), (35) 
/ 

that 
E Vkinti-umiyLi^i) = (Li^1mi+ nti-xJi— rm \ /,-_i—nn-i)2, (36) 

a l l * 

and similarly for E Vk{—Mi-i, m*, L^i). We have, thus, 
F(tni-.htni,Li-.i) = K(Li-i™i+™i-iJ »~ *»,• | Ji-mi-i)2+ (L^inn—nn-iJi— mi | /*_i— w*_i)2]. (37) 

A similar expression holds for F(L^i). It now follows that, if in Eq. (30) the sum is extended to all m^\ such that 
~Ji-i<'Mi-.i<Ji-.i, we get 

Fi(mi) = 2s^^)-5(mi,o) £ P,_1(w,_1)/(m l-i^,5,_1), (38) 
all » j - i 

where now, 

/(w;_i,m»,St-_i) = (1+8^i2)~1£(Li_imi+ w»_i/t— rm \ Ji„mn-.1)
2+ 8i-1

2(Li_1'ini+ m^Ji- nn | Ji-im^)2]. (39) 

18 L. J. B. Goldfarb, in Nuclear Reactions, edited by P. M. Endt and M. Demeur (North-Holland Publishing Company 
Amsterdam, 1959), Vol. I. 
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The factor 25(m*-1'0)-5(mi'0) arises from the fact that both P,- and Pt_i are here defined to be the populations of the 
respective positive and negative magnetic substates taken together. 

By induction from Eq. (38), we can now express the populations Pi(m%) in terms of P1O1) as follows: 

PiitHi) = 2" £ Pi(wi)[/(mi,W2,5i) • • • /(nn-i,«Mi-i)] > ( 4 0 ) 

mi—i ,mi—2, • • • , wii 

where n=8mi,o—8mitQ. Equation (40) is a generaliza
tion of equivalent expressions given earlier by one of the 
authors12 and by Nordhagen.14 The physical interpreta
tion of this expression is more evident than that of Eq. 
(29) since the squared vector-coupling coefficients in 
the factors / are just the relative transition probabilities 
between the indicated substates. 

Formulation in Terms of Statistical Tensors 

Two undesirable characteristics of the population-
parameter formulation presented above make it worth
while to present also the parallel formulation in terms of 
the statistical tensors of the aligned states. One un
desirable feature of population parameters is evident 
in Eq. (40). There is not a one-to-one correspondence be
tween the population parameters of successive levels. 
A summation must be performed over the magnetic 
substates of each level independently. This feature would 
also cause difficulty in the general analysis procedure to 
be discussed. Another undesirable feature has been re
ported recently by Nordhagen.15 A more general state
ment of his rule may be given as follows: 

When the spin of the initially formed state (/i) has a 
value larger than L/+LJ (see Fig. 2), the triple cor
relation is independent of those statistical tensors which 
have an order k larger than 2(Z/+Le

/). In this case the 
population parameters of the states labeled by J\y 

Jr", J% cannot be determined by angular correlation 
measurements. In cases where a knowledge of the forma
tion of the initial state, or where a comparison between 
parameters determined by analyzing angular correla
tions of more than one gamma-ray cascade emitted from 
the same level, is required to obtain a unique solution, 
the population-parameter analysis is of little value when 
the situation is governed by the above rule. However, 
the set of statistical tensors which are determined by the 
correlation can be compared with formation theory or 
with those obtained from other cascades. The statistical-
tensor formulation is therefore useful if only to signal 
certain limitations which are not immediately evident 
in the population-parameter formulation. 

The general expression for one or more intermediate 
unobserved radiations given in Devons and Goldfarb3 

14 R. Nordhagen, Proton Capture Formation Tables, Fysisk 
Institutt, Universitetet i Oslo, 1964 (unpublished). 

15 R. Nordhagen, Nucl. Instr. Methods 26, 353 (1964). This 
reference cites a communication from the Chalk River Group which 
indicates that a similar limitation of population parameters has 
been found by G. Kaye. See also R. Nordhagen and A. Tveter, 
[Nucl. Phys. 63, 529 (1965)] for further discussion of this rule 
and an introduction to the application of statistical tensor analysis. 

is actually written in terms of the statistical tensor nota
tion. The term Ak(J,JiJi) in Eq. (14) is just p*0(/i) 
[see Eq. (19)], the zeroth component of the statistical 
tensor for the formation of the state labeled by J\. Now, 
in analogy with the development following Eq. (18), we 
define the quantity TkM, where 

T W V - A - , ® ) 

= £ RkKMiJiJiJjJlfii) 
K 

X [«*(«!)• ' -Ukidi-lWKQMSkKMi®) 

=Luk(8t) • • • «*to-i)]rwf (**,e). (4i) 

The "tensor" quantity TkM is given in terms of pre
viously defined quantities in Eqs. (21) and (22). 

A more explicit expression can be written for ZW 
using Eqs. (7), (11), and (22). We obtain, 

Li,W 

X L EKM
N{JiJjLiLi

f,k)QKQMXKM
N{®\ (42) 

KN 

where 

EKMN(JiJ,LiLi',k) = (-)*'+*+! 

X2M<L ' 'L^-*^'°>7«/ iii£/(L*l£< /-l |*0) 

r j j Lii J % j 

X(K-NMN\kO)\ Jj Li% J% 

Uf K ki 

(43) 

The coefficient EKMN plays the same role in the statisti
cal-tensor formulation as does EKMN in the population-
parameter representation. The coefficients are related 
to each other through the transformation 

EKMN(M) = JZ(-y-m(JmJ-™\kO)EKMN(k). (44) 
k 

The counterpart of Eq. (25) in the statistical-tensor 
formulation is 

W(@) = E Pko(Ji)fkM(dh • • • ,ti9B)Buto, •••,*•). (45) 

In analogy with the arguments following Eq. (25), we 
will also find it useful here to place the emphasis on the 
statistical tensors of the state /» instead of the state 
Ji. We thus present the counterpart of Eq. (27) as 
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follows: 

W(@) = £ Pko(JdTkM(BifQ)BM(Bh • • • ,5.). (46) 
kM 

At this point, a nice feature of this representation be
comes clear. Whereas the expression, Eq. (40), relating 
the population parameters of state /*• with those of J\ 
is not very simple and is not easily obtained from Eqs. 
(27) and (28), a relation between the statistical tensors 
of states /,- and J\ is immediately evident from Eqs. 
(41), (45), and (46), and is given by 

P*o(/<) = C«*(«i) • • • «A(«*-I)]P*O(/I) • (47) 

Thus a one-to-one correspondence exists between the 
statistical tensors of successive states in the cascade. 
This feature alone would seem to make the statistical 
tensor representation more desirable than the popula
tion-parameter representation for the analysis of com
plex angular-correlation problems. 

In addition to the limitation reported by Nordhagen 
and extended to multiple cascades at the beginning of 
this subsection, further limitations on the information 
available from triple-correlation measurements are evi
dent upon a closer examination of Eqs. (46) and (47). 
Let /p(min) be the smallest member of the set 
\J\y Jr —, J*t Li+LJ, L / + / j ( m i n ) ] , where / / (min) 
is the smallest member of Q/i,/y+i,* • - / J . Then for 
any state J of the set [ / i , / 2 , • • • ,J%] which has a spin 
7 > / p ( m i n ) , the pko(J) with &>2/p(min) will be in-
determinant. In addition, all population parameters of 
such a state will be indeterminant. 

ANALYSIS OF EXPERIMENTAL DATA 

Summary of Formalism 

In this section we discuss general features of analysis 
techniques which are similar in principle to the method 
discussed in detail by Smith,7 but which take full ad
vantage of the "factored" forms of the generalized 
triple-correlation formulas given in the preceding sec
tion. I t will be assumed here that the correlation has 
been measured at a set consisting of A points over the 
surface of a sphere. The desired size and distribution of 
the set of A points to be sampled has been discussed by 
Smith. The analysis method considered by him is re
stricted to the determination of the spins and one, or 
both, of the unquantized radiation mixing ratios in a 
double gamma-ray cascade following the formation of a 
state characterized by the population numbers P(m). 
The population numbers, which are also determined by 
the analysis, can then be compared with formation 
theory for the complete analysis. 

The method proposed by Smith consists in treating 
the (one or two) mixing ratios as parameters in a least-
squares solution of Eq. (1). In his notation, the sum over 
K, M, Ar, Lh Li, Z2, and L4 of Eq. (1) is called 
Sma(h,?>2), and the resulting set of A equations with P 

(the number of magnetic substates which can be popu
lated in the reaction) unknowns, is given by 

^ = E W . . ( f c , « , (a=l,2,--.,^). (48) 
m 

A computer program calculates the best values of the 
P(m) for assigned values of b\ and/or 52, and the cor
responding values of Q2, defined as 

1 
Q2= E ( P F a - W V ) W , (49) 

A-P-q « 

where the asterisk indicates that the value of a quantity 
has been calculated from Eq. (48) in which the least-
squares solutions for the P(m) have been resubstituted. 
The weight factor wa is the inverse of the standard 
deviation of Wa- If an assumed spin combination is in 
agreement with the data, then a minimum in the neigh
borhood of unity will be found in Q2 as 5i and S2 are 
varied over the range — ° ° < 5 < o o . This minimum is 
referred to as x2- The quantity (A—P—q) in Eq. (49) 
is the number of degress of freedom. The q is the number 
of mixing parameters varied. 

After the correct spin combination and the values of 
the mixing parameters near the minimum of Q2 have 
been found, the program of Smith automatically finds 
the exact minimum under the assumption that Q2 is a 
quadratic function of 5i and 52 in the neighborhood of the 
minimum. If an acceptable value of x2 is found for only 
one spin combination, then the values of 5i, 52, and the 
P{m) represent the solution. The error matrix corre
sponding to these quantities is then determined using 
quantities which are already available. The treatment of 
errors will be discussed below in connection with the 
analysis method based upon the correlation function 
forms used in this paper. 

The two basic forms we wish to consider here are Eq. 
(27) (population-parameter representation) and Eq. 
(46) (statistical-tensor representation). For convenience 
of comparison, and for purposes of summary, they are 
presented in a form similar to Eq. (48) as follows: 

Wa= £ Pi(mi)GmiM
a(di)HM(8h• • • ,8e) (50) 

m»Af 

in the population-parameter (PP) representation, and 

Wa= E Pk^Ji)TkM
a{^)RM(bh...,*.) (51) 

kM 

in the statistical-tensor (ST) representation. The nor
malization of these equations is such that, in addition to 
# 0 = 1 , EoQ0=8Li,Li', and EoQ0=8kio8Li,Li

f in the defini
tions of G and T [Eqs. (11) and (42)], we have 
Poo(/;) = Em,-i\-(wt-) = l . Equations (50) and (51), in 
contrast to Eq. (48), are applicable to multiple cascades 
involving one or more intermediate unobserved radia
tions. They also, of course, can be applied to the usual 
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double cascade in which there are no unobserved inter
mediate radiations. In this special case, i = l and 
HM($J, - • • ,5e) becomes HM{&i). H and H are defined by 
Eqs. (12) and (24), respectively. 

The relation between the population parameters of 
successive states in the multiple cascade is given by Eq. 
(40), and the corresponding relation for the statistical 
tensors is given by Eq. (47). The transformation re
lating TkM and GmiM is given by Eq. _(22), and the 
transformation between the coefficients E and E which 
are required for the computation of T and G, respec
tively, is given by Eq. (44). 

The coefficients necessary for analysis based upon 
Eqs. (50) and (51) are tabulated by Watson.16 The 
coefficients EKMN(J\JiL\L{m) and E KM™ (J \J iL\L\1i) 
are tabulated for half-integral 7 i < l l / 2 , 7 2 < 1 5 / 2 ; for 
integral Ji<5, Ji<l\ and for mixed dipole-quadrupole 
or quadrupole-octupole transitions. The coefficients 
hM{JiJ%L%L4)^ Eq. (8), required for the HM and HM 

are tabulated for half-integral / 2 < 1 5 / 2 , J 3 < 2 1 / 2 ; for 
integral Jz<7, ^3^10 ; and for multipolarities through 
octupole. In addition, the coefficient Ui(LJaJb), Eq. 
(15), which refer to the intermediate unobserved radia
tions are tabulated for half-integral / a , / 6 < 2 1 / 2 ; 
integral /<*,/&< 10; and the octupole limitation is 
again employed. The coefficients /(wi?»/,5i), Eq. (39), 
which relate the population parameters of successive 
states in the cascade, may be obtained from the tabula
tions of Nordhagen14 or directly from available tabula
tions of Clebsch-Gordan coefficients. 

Solution of Eqs. (50) and (51) 

In what follows, we present a generalized version of 
procedures which are being employed in this laboratory 
for solving Eqs. (50) and (51). These procedures are 
analogous to the method of Smith reviewed above. 
However, the method given below allows the general 
problem to be treated in "stages," each of which involve 
a search for minima in Q2 for only one (or two) of the 
mixing parameters. If, for an assumed spin combination, 
no acceptable minimum Q2 is obtained in any one of the 
"stages" of analysis, then the assumed combination is 
said not to be in agreement with the data. Further 
analysis based upon that combination is unnecessary. 
The method is found to be very efficient in the case of a 
double cascade where only one stage is required. In 
many cases, an assumed spin combination can be dis
carded after a cursory investigation of the first stage for 
minima in Q2, and the succeeding stages need not be 
considered. The method shares with that of Smith the 
advantage that the possibility of convergence to a 
secondary minimum, or that an equally good minimum 
might exist and not be recognized, is eliminated. There 
is full assurance that all acceptable solutions will be 

16 D. D. Watson and G. I. Harris, to appear in the form of an 
unpublished ARL Technical Documentary Report, Aerospace 
Research Laboratories, Wright-Patterson AFB, Ohio. 

found. An essential feature of these methods is the 
utilization of the variance-covariance (error) matrix8,17 

in order to account for correlation between parameters 
in the successive stages of the analysis and to provide 
errors for the determined quantities consistent with the 
experimental errors of the input data. Two approaches, 
to the solution of Eq. (50) or (51), which are formally 
similar yet sufficiently different in application to justify 
separate discussion, are being used. The first, and more 
general, approach consists of performing separate 
linear analysis for each transition in the cascade. Thus 
we think of one analysis stage for each mixed radiation. 
I t is possible that some assumed spin combinations will 
be eliminated in even the first stage since acceptable Q2 

values may not be attained. The second approach, and 
apparently the more practical for the most common two-
step cascade, is to combine a search for minima in Q2 

over the range of values of the mixing ratios of both ob
served radiations into the first stage of analysis. This 
approach is very similar to the solution of the two-
parameter problem proposed by Smith, but is designed 
for multiple cascades and makes efficient use of the 
factored forms. 

Single-Parameter Method 

The basic step in this approach is effected by com
bining the population parameters (or statistical tensors) 
and the HM into a single parameter IaM defined as 

IaM^j,' ' •,5e) = 7r«fl'Af(5y,' • ' y8e) , (52) 

where wa stands for Pi{mt) in the P P representation, 
and for pko(Ji) in the ST representation. The quantity 
IaM is referred to as the "information parameter" since 
it contains all information about the degree of align
ment of the state /* and the properties of all transitions 
in the cascade below the state Jj (see Fig. 2).18 The basic 
equation to be solved in the first stage of the analysis 
(in either representation) is given by 

TF a =L/aM(5y , . - . , 5 e ) r a M a ( ^ ) , 
aM 

( a = l , 2 , . . - , ^ ) , (53) 
17 A. H. Wapstra, G. J. Nijgh, and R. Van Lieshout, Nuclear 

Spectroscopy Tables (North-Holland Publishing Company, Am
sterdam, 1959). 

18 An example of the information carried by the parameter 
IaM is a simple proof of a theorem reported by Harris and Seagon-
dollar (Ref. 9) and also discovered independently by Van Rinsvelt 
and Smith (Ref. 11); see also Ref. 12. A statement of the theorem 
is as follows: I t is not possible to determine uniquely the mixing 
ratio 5 of the terminal member of a gamma-ray cascade, by means 
of intensity-direction correlation measurements alone, if the spin 
of the state emitting the terminal gamma-ray is less than two. 
From Eqs. (24) and (52), it can be seen that all dependence of the 
angular correlation on the mixing ratio 5* of the terminal member 
is contained in the factor HM(8e). The functional dependence of 
HM upon 5, is given explicitly by Eq. (16) in which appears the 
coefficient Zi(LeJ0Lt'Je; JfM). From the triangle conditions on 
Zi, we find that for Je<2 the index M can assume, at most, the 
values 0 and 2. For M=0, H= 1, and for M = 2y H is quadratic in 
8e. Hence, in this case the dependence of the correlation upon 8e 
is uniquely quadratic. There always exist, therefore, two solutions 
for 5,; unless, of course, both solutions are identical. 
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where rW° stands for GmiM
a or TkM

a in the PP or ST 
representations, respectively. In analogy to the solution 
of Eq. (48) proposed by Smith, a computer program19 

calculates the best values of the Iau of Eq. (53) for 
assigned values of 84 and the corresponding values of Q2 

as denned by Eq. (49). The number of unknowns P in 
Eq. (49) must now be interpreted as the number of 
elements in the set of IaM- The same program also pro
vides the error matrix for the set of quantities deter
mined at the value of 5»- corresponding to a minimum in 
Q2. The diagonal elements correspond to the variances 
in the IaM and 8if and the off-diagonal elements cor
respond to the covariances between these quantities. 

If, for the assumed spin combination, a §»• is found 
which corresponds to an acceptable minimum in Q2, 
the analysis may proceed to the second stage. The IaM, 
for which numerical values and an error matrix have 
been found in the first stage, are written explicitly us
ing Eqs. (24) and (52) as follows: 

IaM(§j, • * • ,8e) = TaM(8j, * • • 98^I)HM (8e) , (54) 

where 

TaM(8j,' ' • ,5c_i) = TTa[UM{Sj) ' ' ' % ( 8 e - l ) l • (55) 

The same formal procedure used in the first stage is now 
applied to Eq. (54). The best values of the TUM are com
puted for assigned values of 8e. A significant difference, 
however, is that whereas the error matrix [G>0

2]] for the 
first stage is diagonal (the measured values of Wa are 
uncorrelated), that corresponding to the second stage 
is the nondiagonal Iau error matrix. For convenience, 
we denote the index combination aM by /, and the 
elements of the 1% error matrix by (N^w. The quantity 
Q2 appropriate to the correlated variables of the second 
stage is then given by 

Qt='L(.Ii-Ii*KIi-If*)Nw, (56) 

where the asterisk indicates that the value of Ii has 
been calculated from Eq. (54) in which the least-squares 
solutions for the n have been resubstituted. 

Note that in the most common case of a double cas
cade, we would have TaM=Ta and the second stage 
would complete the analysis (except, of course, the 
analysis pertaining to the formation of state /»•). If, 
however, the general situation represented by Eq. (55) 
prevails, the analysis proceeds to the third stage in 
which the values of rau determined in the second stage 
are written explicitly as follows: 

TaM(8j,' • ' y8e-l) = TaM
f{8j, • • • , 5 « _ 2 ) « M ( 5 ^ I ) , (57) 

where 

TaMf(Sj, • • • ,5C_2) = TTa[uM(8j) ' • • UM(8e^)~] • (58) 

19 The IBM-7094 programs for the analysis of Eqs. (53) and (59) 
were written by A. K. Hyder, Jr., and D. D. Watson of this 
Laboratory. 

In analogy to the second stage, the best values of the 
TaM are computed for assigned values of <5e_i along with 
appropriate values of Q2 defined in analogy with Eq. 
(56). The pattern of solution is now clear and is con
tinued until all parameters including the ira are deter
mined along with their corresponding error matrices. 

Smith7 has discussed in considerable detail a pro
cedure which can be applied to the computation of the 
elements of the error matrix required for Eq. (56) of 
our "second stage." In particular, he shows how to 
compute directly the elements of an augmented error 
matrix which includes, in addition to the elements 
(N^ii'y elements which would correspond in the pres
ent formalism to the variances in 8i and the covariances 
between the 5* and the h. The diagonal elements of this 
matrix provide the variances in the /* and of 8{. An 
equivalent procedure has been developed20 which con
sists of augmenting the normal matrix Nw of Eq. (53) 
such that the elements of the inverse of this aug
mented matrix provide the variances and covariances 
of the 8i and the Ii. Similarly, an error matrix can be 
obtained for the third stage of analysis by augmenting 
and inverting the normal matrix of Eq. (54). The same 
procedure also applies to succeeding stages if required. 

Two-Parameter Method 

In this approach to the solution of the correlation 
problem, we begin with a modified version of Eq. (53); 
namely, 

Wa= L TaMTaMa(di)HM(&.) , (59) 
aM 

where raM is given by Eq. (55). A computer program19 

then calculates the best values of the set of TUM of Eq. 
(59) for assigned values of both parameters 5», 8e and 
the corresponding values of Q2 defined by Eq. (49). The 
number of unknowns P now must be interpreted as the 
number of elements of the set of raM. 

The program first computes and stores all HM{8e) for 
points equally spaced between —90° and +90° in the 
variable tan_15e. Then for a fixed value of tan_15t-, say 
— 90°, Q2 and the best least-squares values of the raM 

and corresponding error matrix are computed using the 
stored values of HM(8e) for each 8e. The computer then 
automatically moves to a new value of tan_15» and re
peats the process. In this manner the entire 8i, 8e plane 
is covered by a grid typically as fine as 2° steps in tan-18 
in a few minutes by an IBM 7094 computer. The time 
depends, of course, critically upon the size of the set 
TaM since this determines the size of the matrix which 
must be inverted at each grid point for the least-squares 
solution. A very significant reduction in computational 
time is obtained by the use of the "factored" form, Eq. 
(59). The set of HM(8e) need only be computed once; 
the same values are used for each 5». 

20 D. D. Watson, G. I. Harris, and L. W. Seagondollar (to be 
published). 
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Two output formats for the Q2 values have proved 
useful. The first is simply an array consisting of Q2 

values at each grid point from which contour diagrams 
of Q2 versus Si, 8e are constructed. The location of possible 
solutions in the entire 5», 8e plane are thereby immedi
ately evident. The second output format is somewhat 
more subtle but very useful in practice. For each fixed 
8i, the 8e which corresponds to the minimum Q2 is 
located by the computer. This minimum Q2 and cor
responding 8e are printed out. Thus one obtains a 
"shadow" in the Q2, 5t- plane of the three-dimensional 
Q2 surface. In a similar manner, a shadow plot of the 
surface is obtained in the Q2, 8e plane. The values of 
TaM and their error matrices are also printed out for 
each point of the "shadow plots." A more detailed dis
cussion of this method will be given in a later publica
tion20 in which it will also be shown that errors in 5,-
or be obtained from the "width" of dips in the shadow 
plots properly account for correlations between the two 
mixing ratios. 

Once the 54- and 5e and corresponding values of TUM 
and error matrix have been determined for an acceptable 
minimum Q2, the analysis then proceeds to a second 
stage very similar to the third stage of the single-param
eter method. For this stage the rau are written explicitly 
as in Eq. (57). The analysis then proceeds as discussed 
following Eq. (58). 

Although for general multiple cascades the only 
significant formal difference between the two analysis 
methods outlined above consists in combining the first 
two stages of the single-parameter approach into the 
first stage of the two-parameter approach, experience 
has shown that some important practical advantages 
are gained from the latter method in most problems 
encountered to date. One must, for example, in either 
method measure the intensity correlation at a set of 
angles over the sphere which sufficiently overdetermines 
the unknowns Iau or raM- However, in the common 
case of a double cascade in which the raM become simply 
7Ta, this condition becomes in the two-parameter method 
of much less importance since there are fewer ira than 
IaM to be determined. A somewhat more serious problem 
shared by both methods in the application to general 
multiple cascades is the existence of nonlinear con
straints upon the solutions IUM (or T0M) which are un
accounted for in the linear analysis techniques discussed. 
To see this, we recall that IaM—^<MM from Eq. (52). 
As a condition for an acceptable solution, one has the 
set of equations 

IaM/IaO —la'Af/1 a'O (60) 

for all ay£d and M^O. Similar relations must hold 
between the T«M. Because of the nonlinear nature of 
these "auxiliary" equations, they are not included 
in the linear least-squares analysis. In the few cases 
where the single-parameter method has been used, these 
relations have simply been treated as auxiliary condi

tions to be checked when otherwise acceptable Q2 values 
are obtained. Their rigorous inclusion in the analysis 
will almost certainly require iterative techniques. It 
appears that the presence of these nonlinear conditions 
will always cause some difficulty in general multiple-
cascade problems. They also appear in the standard 
double cascade if the single-parameter method is 
applied. However, in this standard problem the diffi
culty is circumvented by the two-parameter method 
since the only relations between the ira are those which 
arise from the mechanism of formation of the state /». 
It has always been standard practice to consider such 
relations as auxiliary conditions on the entire problem. 

Formation of the State /»• 

In the above section, we have outlined a procedure 
for determining the population parameters or statistical 
tensors of the state / t of Fig. 2 and the multipolarity 
mixing ratios of transitions following the formation of 
that state. For purposes of discussion of the methods 
considered in this paper, we adopt a viewpoint in which 
the mixing ratios of unobserved gamma radiations 
emitted prior to the first observed radiation of the 
cascade are considered as formation parameters. Thus, 
in the case of proton capture, these multipolarity mixing 
ratios are considered as formation parameters along 
with the channel spin and orbital angular-momenta 
mixing ratios which relate to the formation of state J\ 
by proton bombardment. Although such a viewpoint 
is not essential, it is found to be most convenient if the 
PP representation is employed because of the rather 
inelegant relationship, Eq. (40), between the population 
parameters of states /» and J\. The analysis procedure 
discussed above does not lend itself to be extended in a 
natural way to the determination of the parameters 
8i,- • -,5i_i in the PP representation. 

The situation is considerably different in the ST rep
resentation. In this case the statistical tensors of state 
Ji are related to those of state /1 through Eq. (47) which 
does allow a natural extension of the "stage" analysis 
to the determination of the parameters 6i,---,5t_i. 
Specifically, if there do appear unobserved radiations 
prior to the first observed radiation, the procedure em
ployed is to use Eq. (47) to write Eq. (53) in the form, 

Wa=Z IkM(8h• • • ,8i-.h8h• • • ,8e)TkM
a(8i), (61) 

kM 

where now, 

hM=Pko(Ji)£uk(81)- - -ffoto-Olffirto,- • -A) . (62) 

It is then evident that, in principle, the analysis pro
cedure following Eq. (53) can now be continued until 
the pko(Ji) are finally determined. At this point, the 
Pko(Ji) can be either converted to population param
eters using Eq. (19a) or compared directly with forma-
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tion theory as discussed for proton capture by 
Nordhagen.14 Smith7 has considered in detail the 
problem of error analysis when the population param
eters Pi(tni) are compared with proton-capture forma
tion theory. 

SUMMARY AND CONCLUSION 

A parallel development of the intensity direction 
("triple") correlation of cascade radiations from aligned 
states, where the degree of alignment is specified by 
either the population numbers of the magnetic substates 
or by the statistical tensors of the state, has been pre
sented. In addition, the usual double-cascade formula
tion has been extended to apply to cases where one or 
more intermediate unobserved radiations may be pres
ent. The equations are written in a "factored" form 
which allows the computational problem of data analysis 
to be undertaken in discreet stages. Two analysis pro
cedures are presented and compared. The first involves 
a linear least-squares analysis for each transition of a 
multiple cascade, and the second involves a two 
parameter, least-squares analysis for the two observed 
radiations of the cascade and single parameter analysis 
for unobserved radiations. For a standard double cas
cade problem, the second method has been found more 
practical because of the smaller number of unknowns 
which must be determined and the absence of nonlinear 
auxiliary conditions which would have to be satisfied. 
For a general multiple cascade, however, there appears 
to be little advantage of one method over the other. 
Iterative techniques will be required in either case for 
the rigorous inclusion of the auxiliary equations. The 
suggested analysis procedures assure that all acceptable 
solutions will be found. 

It has been found that the form of the equations are 
such that the necessary coefficients can be tabulated in 
a more efficient manner than in existing standard, 

triple-correlation-coefficient tabulations. For example, 
Watson16 has tabulated the necessary coefficients for 
both the statistical-tensor and population-parameter 
representations of this paper in a volume considerably 
smaller than the tables of Smith.6 Furthermore, whereas 
the table of Smith applies only to double cascades and 
is limited to dipole and quadrupole radiations, that of 
Watson can be used for multiple cascades and for radia
tions through octupole. (However, the present tables 
provide for the mixing of only two multipolarities in 
each transition.) 

It is shown in the development that, owing to the 
simpler relation between statistical tensors of successive 
states in a cascade, a more elegant and more easily 
applied formalism is obtained using statistical tensors 
than if population parameters are employed. Even in the 
standard double-cascade case, it has been found by 
Nordhagen15 that the statistical tensors are more useful 
when the spin of the aligned state is greater than the 
sum of the highest multipolarities of the two cascade 
radiations. A generalized version of his rule has been 
presented for multiple cascades. It thus seems more 
appropriate, even though both are presented, to use the 
statistical tensor rather then the population parameter 
formulation in the analysis of triple-correlation data. 
This is especially true when the more complex situations 
considered in this paper prevail. 
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