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The question of bias and error due to finite sample size is considered, and it is suggested that these effects 
may be computed by replacing the excitation function with a number of independent cross sections. I t is 
argued that the effective number of independent cross sections is given by n= (AE/TTO) + 1 as long as the 
energy range AE is not too great. The results of some Monte Carlo calculations are also given. 

THE problem of biases and errors due to finite 
sample size is a major difficulty in the study of 

fluctuating nuclear excitation functions.1-2 If a reliable 
estimate of the effective number of independent points 
involved can be made, the problems of making correc
tions and estimating errors will be partially solved. 
One possible method of making such an estimate is 
described below. 

It has been shown3 that the variance of the average 
cross section is 

r2tan~15 lnU+S 2 ) ! 
Var«ir» = ̂ — — J , 

where a is the ensemble average of the cross section, 
(a) is the average of the cross section over an energy 
span AE, and S is the ratio of energy span to coherence 
width. It is also known that if an average from n 
independent points is computed, the variance of this 
average will be given by 

Var «*» = **/», 

so that it is natural to make the correspondence 
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lated. On this basis, the Monte Carlo method was used 
with n determinations of the cross section each chosen 
from a x2 distribution with IN degrees of freedom. A 
minimum of 5000 such determinations were employed 
for each n. The expectation value of the autocorrelation 
function for zero argument, R(0), was found for small 
N to satisfy 

( » - l ) ( 4 » - 4 + i \ 0 
NR(0)= . 

4w2 

This expression is a good representation of the Monte 
Carlo results within about 1% for w>4 and N=l, 2, 
or 3. For larger N this formula is expected to become 
a poorer approximation as can be seen by comparison 
with the analytic expression obtainable for n=2. 

The numbers obtained for Var[i?(0)] are in reasona
ble agreement with the approximate expression given 
by Hall.4 For iV=l or 2, the variances given by this 
expression are consistently greater than the Monte 
Carlo results, but the difference is less than 20% when 
moderately large (n>20) sample sizes are used. The 
variances calculated for N=l, 2, and 3 are plotted in 
Fig. 1. 

2 tan- 1 S-[ ln( l+S 2 ) ] /S ' 

where n is now the effective number of independent 
energy points in the excitation function. For values of 
S less than about 50 this function is very well approxi
mated by 

n£n(S/ir)+l. 

By using n as the number of independent points, the 
bias and uncertainty of each quantity associated with 
the type of analysis under consideration may be calcu-
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FIG. 1. The variances of i?(0) as calculated by the Monte Carlo 
method described in the text. These curves are estimated to be 
accurate to within 5%. 
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If the coherence width T is calculated by comparing 
R(e) with a Lorentzian form near €=0, the bias and 
variance of the value so obtained may be calculated. 
Near e=0, the assumption is made that the bias in 
R(e) is independent of e. This leads to the formulas 

r (^- l ) (4«-4+iV)n 1 / 2 

and 

Var(r)= (IV/4r2) Var[MR(0)] 

INTRODUCTION 

THE study of forces between charged particles is 
complicated by the presence of the infinite-ranged 

Coulomb force. For a potential which falls off as slowly 
as r~l we cannot apply the usual scattering boundary 
condition to the wave function, viz., 

^(r)-exp(ik-r)+r~1f(fi) exp(ikr) (1) 

since even at very large distances the incident wave is 
distorted. In a practical laboratory scattering experi
ment this problem does not arise, however, because the 
charges are shielded so that the potential vanishes 
beyond some shielding radius R. If the radiation source 
is placed well beyond the shielding radius, an initial state 
approximating a plane wave can be prepared. We shall 
consider the case in which the shielding radius is very 
large and both the source and detector are located very 
far outside that shielding radius. We idealize this to the 
case where R —> <*>, still maintaining the condition that 
the source and detector are located far beyond R. 

L THE SHIELDED COULOMB FIELD 

Let us consider a point charge located at the origin 
shielded by a double layer of charge such that the po
tential energy is given by 

V(r) = za?*/r, r<R 
= 0, r>R. ^ } 

* Work performed under the auspices of the U. S. Atomic 
Energy Commission. 

for the expected value T of the coherence width and 
the variance of the value obtained. 

This paper is a summary of some of the results of a 
report5 which contains plots of further Monte Carlo 
results as well as a fuller treatment of the questions 
considered here. Also treated are questions not con
sidered here, such as the effect of finite sample size on 
the frequency distribution function. 

5 W. R. Gibbs, Los Alamos Scientific Laboratory Report LA 
3266, 1965 (available from Clearing House for Federal Scientific 
and Technical Information, National Bureau of Standards, U. S. 
Department of Commerce, Springfield, Virginia). 

We may treat the scattering problem with the shielded 
Coulomb potential Eq. (1.1) by means of the angular-
momentum expansion. We write 

^(r)=(kr)~^j:lali
l(2l+l)Fl(k)r)Pl(cose). (1.2) 

The radial function Fi(k>r) is a solution of the radial 
equations 

<PFi r 1(1+1) vn 

i?+ii-~-j-°- -<R «•» 
<PFl r 1(1+1)-] 

Here p=kr and r)=zz'e2/hv. The regular solution of 
Eq. (1.3) takes the asymptotic form 

Fi^A sin[£r-/7r/2+<rr-77 ln(2£r)] (1.5) 

for £r»/ , where <n=argr( /+l+*». The solutions of 
Eq. (1.4) take the asymptotic form 

F^sinikr-lw/l+di) (1.6) 

for £r»/ . Thus, if R2>l/k, we may equate the loga
rithmic derivatives of the two solutions at the shielding 
radius R to obtain the result 

cot(kR-lw/2+8i) 
= (l-rj/kR) C0tlkR-lT/2+al~rjln(2kR)']. (1.7) 

The phase shift 8t given by Eq. (1.7) has the form, 

8l=al~rjln(2kR)+yl (1.8) 
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The scattering of charged particles from a shielded Coulomb potential is reviewed. The limit as the 
shielding radius becomes infinite is discussed. A method of determining reaction cross sections, recently 
introduced by the authors is treated in detail and applied to the scattering of protons from He4 and H2 at 
40MeV. 


