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If the coherence width T is calculated by comparing 
R(e) with a Lorentzian form near €=0, the bias and 
variance of the value so obtained may be calculated. 
Near e=0, the assumption is made that the bias in 
R(e) is independent of e. This leads to the formulas 

r (^- l ) (4«-4+iV)n 1 / 2 

and 

Var(r)= (IV/4r2) Var[MR(0)] 

INTRODUCTION 

THE study of forces between charged particles is 
complicated by the presence of the infinite-ranged 

Coulomb force. For a potential which falls off as slowly 
as r~l we cannot apply the usual scattering boundary 
condition to the wave function, viz., 

^(r)-exp(ik-r)+r~1f(fi) exp(ikr) (1) 

since even at very large distances the incident wave is 
distorted. In a practical laboratory scattering experi
ment this problem does not arise, however, because the 
charges are shielded so that the potential vanishes 
beyond some shielding radius R. If the radiation source 
is placed well beyond the shielding radius, an initial state 
approximating a plane wave can be prepared. We shall 
consider the case in which the shielding radius is very 
large and both the source and detector are located very 
far outside that shielding radius. We idealize this to the 
case where R —> <*>, still maintaining the condition that 
the source and detector are located far beyond R. 

L THE SHIELDED COULOMB FIELD 

Let us consider a point charge located at the origin 
shielded by a double layer of charge such that the po
tential energy is given by 

V(r) = za?*/r, r<R 
= 0, r>R. ^ } 

* Work performed under the auspices of the U. S. Atomic 
Energy Commission. 

for the expected value T of the coherence width and 
the variance of the value obtained. 

This paper is a summary of some of the results of a 
report5 which contains plots of further Monte Carlo 
results as well as a fuller treatment of the questions 
considered here. Also treated are questions not con
sidered here, such as the effect of finite sample size on 
the frequency distribution function. 

5 W. R. Gibbs, Los Alamos Scientific Laboratory Report LA 
3266, 1965 (available from Clearing House for Federal Scientific 
and Technical Information, National Bureau of Standards, U. S. 
Department of Commerce, Springfield, Virginia). 

We may treat the scattering problem with the shielded 
Coulomb potential Eq. (1.1) by means of the angular-
momentum expansion. We write 

^(r)=(kr)~^j:lali
l(2l+l)Fl(k)r)Pl(cose). (1.2) 

The radial function Fi(k>r) is a solution of the radial 
equations 

<PFi r 1(1+1) vn 

i?+ii-~-j-°- -<R «•» 
<PFl r 1(1+1)-] 

Here p=kr and r)=zz'e2/hv. The regular solution of 
Eq. (1.3) takes the asymptotic form 

Fi^A sin[£r-/7r/2+<rr-77 ln(2£r)] (1.5) 

for £r»/ , where <n=argr( /+l+*». The solutions of 
Eq. (1.4) take the asymptotic form 

F^sinikr-lw/l+di) (1.6) 

for £r»/ . Thus, if R2>l/k, we may equate the loga
rithmic derivatives of the two solutions at the shielding 
radius R to obtain the result 

cot(kR-lw/2+8i) 
= (l-rj/kR) C0tlkR-lT/2+al~rjln(2kR)']. (1.7) 

The phase shift 8t given by Eq. (1.7) has the form, 

8l=al~rjln(2kR)+yl (1.8) 
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where 

YJ= (ti/2kR) sm2lkR-lT/2+<n-r} In (2**)] 
+Ol(v/2kRn. (1.9) 

We note that y i approaches zero as 17/kR goes to zero. 
For V^>kR, the angular momentum barrier dominates 

and di vanishes. Thus we have 

di=ai-Tiln(2kR)+yi, 
= 0, t»kR. 

K^kR 
(1.10) 

In the range where l<^kR, the interior solution Fi does 
not take on its asymptotic form at r=R so that the 
phase shifts di are not given so simply, although they 
may, of course, be obtained easily by standard methods. 
Once the phase shifts have been found the scattering 
amplitude is given by the familiar relation 

f(d)= (2ik)~1i:i(2l+l)Lexp(2idl)-l']Pi(cose). (1.11) 

At this point we note that the value of yi and the values 
of the phase shifts di in the intermediate region, l^kR, 
depend upon the details of the shielding. Nonetheless 
any model consistent with our boundary conditions will 
yield phase shifts such as are given by Eq. (1.8), with y% 
going to zero as (y/kR) for large R. In order to keep the 
argument as simple as possible, therefore, we choose a 
cutoff of such a form that the phase shifts are given by 

h=<n-A, 1<L 
= 0, 1>L, (1.12) 

where A=rjln(2kR) and1 L=[bkR], with b a constant 
of the order of unity. 

The scattering amplitude corresponding to the phase 
shifts of Eq. (1.12) is then given by Eq. (1.11). We will 
denote this scattering amplitude by /L(0) . We proceed 
in the conventional manner, taking note that A is a 
constant independent of /, so that we can write the 
scattering amplitude, /L(#) as 

h<9> 
exp(— 2iK) L 

2ik 
E (a+i) (**«-
1-0 

•l)Pi(cos$) 

[exp(-2fA)- l ] L 
+ £ (2/+l)P,(cos0). (1.13) 

2ik *=o 

It may be noted that the shielding radius appears 
implicitly in L and in A. 

We digress here briefly to note that the shielding 
implied by the phase shifts of Eq. (1.12) corresponds 
classically to an impact parameter cutoff. In the clas
sical case the potential energy is given by 

7(r) = *sV/r, b<R 
= 0, v>R, (1.14) 

1 The brackets [ ] stand for the "greatest-integer function," i.e., 
[x] is the largest integer less than or equal to x for any real x. 

where b is the impact parameter. The corresponding 
classical differential cross section is 

cr (0) = [r)/2k sin2(\6)J, 6> 2rj/k 

= 0 , e<2i)/k. (1.15) 

Here (rj/k)=tnzz'e*/fP and 6 and b are related by 
2 cot(|0) = (k/rj)b. The integrated cross section is TR2. 

n. THE LIMIT OF AN INFINITELY LARGE 
SHIELDING RADIUS 

In the limit as R and hence L becomes infinite, more 
terms are added to the sums of Eq. (1.13) and the phase 
shift A increases without limit. Let us first consider the 
sum which appears in the second term in Eq. (1.13), 

S L W ( * ) = £ ( 2 Z + 1 ) P I ( * ) , (2.1) 

where x= cos0. A rearrangement of the terms in the sum 
permits us to use the recurrence relation for the 
Legendre polynomials, 

(1+1)PH-I(X)+IP^(X)- (2l+l)xPl(x) = 0, (2.2) 

to sum SL ( 2 )(#) . Straightforward algebraic manipula
tions immediately yield the result 

5Lw (X)= { £ ZQ+DPM+lP^ix) 
1—x 1-0 

- (2 /+ i )xP, (*) ]+a+D[PL(*)-p« . i (*) ]} 

L+l 
£PL(.X)-PW(X)2. (2.3) 

1-s 

We may obtain some insight into the behavior of Eq. 
(2.3) by noting that the Legendre polynomials can be 
approximated uniformly on the interval e<0<ir— e 
where e is arbitrarily small by2 

Pj(cosfl) =v2(7r2 sinO)-1'2 cos[(/+§)0—r/4] 
+0(/-3 '2). (2.4) 

Under this approximation Eq. (2.3) becomes 

-2CL+l)-|i'2 s in[(L+l)0-,r /4] 

sin(i0) 

«<0<7r-e, e>0. (2.5) 

SL*Kx) 
L 7T sin0 •J 

To examine the behavior of Eq. (2.1) at small angles or 
for #=cos0« 1, we expand Pi{x) about x= 1, and obtain 

„ , ' (-D»(/+n)!(l-*)» 
iM*) = E . (2.6) 

n-o («!)2(Z-n)!2» 
2 Gabor Szego, Orthogonal Polynomials (American Mathe

matical Society, New York, 1959), p. 192. 
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Thus, through terms of order 62 we obtain 

L r 1(1+1) -i 
S L < » = 22(21+1) 1 ( 1 - * ) + . . . 

i-o L 2 J 
L (1 — ̂ ) L 

= E ( 2 H - 1 ) L ( 2 / + l ) / ( / + l ) + -
*=o 2 *=o 

= (L+1)2
: [-

i ( i+2) 
(!-*)+• 

= a + i ) 2 [ i - i ( z , + i ) ^ + . . . ] . (2.7) 

From this equation we see that SL(2) is strongly peaked 
in the forward direction, rising to ( L + l ) 2 for angles 
6<^L~l and from Eq. (2.5) we see that the sum oscillates 
rapidly at larger angles, the amplitude going as Lm and 
the period as Z,-1. If we were to look at a differential 
cross section where SL{2) appears in interference with a 
slowly varying term, the individual peaks could not be 
resolved and the contributions from SL in such a term 
would go as Lrin. In the limit as L tends to infinity, 
SiP becomes 

&o»>(*)= Z (2/+l)P«(*) = l i m 2 a ( l - € - * ) , (2.8) 

where the limit e —> 0 is taken after any integrations. 
The sum SL(2)(X) arises from the scattering of the 

incident waves from the shielding charge. The exact 
form depends on the shielding, but the basic properties 
of SL ( 2 ) (#)> peaking in the forward direction and 
oscillating rapidly at larger angles, should be inde
pendent of the details of the shielding. 

Let us now consider the first sum of Eq. (1.13), 

L 

5 L d)= (2ik)-lZ ( 2 / + l ) ( ^ - l ) P * ( c o s 0 ) (2.9) 
1=0 

and its limit as L tends to infinity. For large / the phase 
shifts a i vary slowly with L The sum for L = <x> converges 
only in the sense of a generalized function or distribu
tion ; that is, the infinite sum is well defined only when 
placed under an integral sign.3 The integration is done 
term by term. Though it does not converge to a point 
function when placed under an integral sign, the infinite 
sum 500

(1) can be equivalent to the point function 

tion given in Eq. (2.10) has an essential singularity at 
0 = 0 or x— 1, so we must establish rules for handling the 
function Eq. (2.10) in this region. 

Let us formally expand Eq. (2.10) in the usual way 
giving 

fc(d) = k~^l(2l+l)alPl(x) 
with 

> / ; ai= (fc/2) / fc(x)Pi(x)dx. (2.U) 

Because of the singularity in /<•(#), the limit as e tends 
to zero of the integral 

/ fc(x)Pi(x)dx 

does not exist as a uniform limit. For the moment, how
ever, we will formally define 

>fj ai=~B / (l-xyv+wPiWdx, (2.12) 

where B = r}e?i(ro2irl~1. Now we use the recurrence rela
tion for the Legendre polynomials, which is valid for 
/ > 2 , 

/ [PZ(X) -P Z _! (* ) ] - ( / - 1 ) [ P W ( * ) - P W ( * ) ] 

+ U - * ) { [ i Y ( * ) - i V i ' ( * ) ] 
+ LPi-1'(x)-Pl„2'(x)l}=0. (2.13) 

Multiplying Eq. (2.13) by -B(l-x)-^i+i^ and inte
grating over x and using the definition Eq. (2.12), we 
get 

lAai~(l-l)Aai^-B / (1 — x)~if> { ( 7 Y ( * ) - / V i ' ( * ) ] 

/*(*) = -
-7/ exp[— lit] In sin(^0)+2i<TO] 

2k sin2(|0) 

-(ti/k)<?i**2i*(l-x)-<l+il'), (2.10) 

where o - 0 = a r g r ( l + ^ ) and #=cos0, subject to certain 
other conditions which will be specified later. The func-

3 See, for example, M. J. Lighthill, Fourier Analysis and 
Generalized Functions (Cambridge University Press, Cambridge, 
1958). 

+ [P i - i / (* ) -Pw / (* ) ]}< fc=0 > (2.14) 

where Aai^ai— a ^ i . If we define Ii to be 

/ , = /" {l-x)-*lPUx)-PU{x)llfa, (2.15) 

and by integrating Eq. (2.15) by parts, we find 

Ii={(l-x)-%Pl(x)-Pl„l(x)-]}^ 

-it) f ( l - j ) - « [ P , ( * ) - P w ( i ) ) f a 

= 21~<i(-iy+(ir}/B)Aal. (2.16) 

With this result, Eq. (2.14) becomes 

lAai— (I— l)Aaz_i— irj(Aai+Aa^i) = 0 , 

or 

&ai= —Aai-x l>2. 
l—irj 

(2.17) 
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This homogeneous recursion relation defines the Aai to 
within a constant. If one is known, say Aai=ai—ao, the 
constant is fixed. But Aai can easily be found without 
any additional assumptions. We note that Pi(x)—P0(x) 
= — (1 — x) so that 

Aai= -B f (l-x)-«+^[Pi(x)-Po(x)~]dx 

= J5 / (l-xY^dx 

r ( l - x ) 1 - t ' , H 1 T)e2iao 

= -B\ — = r . 
L 1 — irj J _ i 1 — irj 

This can be rewritten as 

V T(l+iri) 
Aai = -

l-ir)T(l-ir]) 

(2.18) 

(2.19) 

The Aai are now defined uniquely. We iterate Eq. (2.17) 
and use Eq. (2.19) to get 

A a i = -
l—l+ir)l—2+ir) 1+it) 

I—irj 1—1— irj 

T? r (/+;*) 

-Aai 
-17} 

or 

I—irj T(l—irj) 

-l+irj 
liAdi 

T(l+iV) 

Jr«—A Ll-ir) JT(l—irj) 

(2.20) 

(2.21) 

Since the Aa^ are known, the ai are defined to within an 
additive constant by 

pita i 

a i= 
2% 

-+c= 
" - 1 C" 

1% 2% 
(2.22) 

event we find 

where ai=2iigT(l-\-l+irj), We have chosen to write the 
constant on the right in a rather suggestive manner. 

If we knew one of the a*, say a0, the constant and 
hence all of the a% would be completely defined. To this 
end, let us examine the integral 

A(a) = -B[ 
B 

(l-x)-^^dx= - — ( 1 - a ) - * ' 
it] 

2 t V o _ l \ 

2% 2i 
{ e x p [ - ^ l n | ( l - a ) ] - l } . (2.23) 

The limit of A (a) as a tends to 1 does not exist as a 
uniform limit. I t is possible to choose a discrete sequence 
{an} such that in the limit as n tends to infinity, an^ 1 
and such that as n tends to infinity, the limit of A (an) 
does exist. With such a sequence exp[— irj ln | ( l—a n ) 
+2i<T(T]~exp(2i7) which is of unit amplitude. In this 

e2ial—l c2if— 1 
ai=-

2i 2i 
(2.24) 

Substituting Eq. (2.24) into the expansion Eq. (2.11), 
we find 

= (2ik)-if: (2/+1) (««<"-i)p,(«) 

+ik-1(e2iy-l)8(l-x), (2.25) 

where the delta function is defined in the sense of Eq. 
(2.8). We shall choose the sequence which defines y in 
such a way that the term with the delta function van
ishes. A sequence {<*„} which achieves this end is defined 
by 

xn=an= 1-2 e x p [ - (2mr-2X0)/i?]. (2.26) 

We could have written the variable of integration in 
Eq. (2.12) as 6 instead of x=cos0. In this case a sequence 
is defined by 

On = €n = 2 e x p [ ((To— WK)/1]\ . (2.27) 

We see then that the infinite sum Eq. (2.9) is equivalent 
to the point function Eq. (2.10) in an integrand provided 
that the limits of the integral are handled in the manner 
of Eq. (2.26) or Eq. (2.27). 

We now return to a consideration of the phase A in 
Eq. (1.13). When we take the infinite limit we must do 
so in a nonuniform way so that in this limit exp(— 2i&) 
is mathematically defined. In practice, however, the 
factor exp(— 2iA) is common to all terms in the scat
tering amplitude except the shielding term and so is 
undetectable except in a narrow cone in the forward 
direction. This cone shrinks to zero in the limit as 
R^<x>, i.e., 

}L-L = e-2i^Jc{x)+(ik)-'{e- -1 )5(1-*) . (2.28) 

Thus, in an actual measurement the extra phase and the 
forward delta function are undetectable. 

III. THE OPTICAL THEOREM 

Total reaction cross sections for cases where many exit 
channels are open are often difficult to measure. We 
here outline a method for determining reaction cross 
sections from elastic scattering data.4 The term "total 
reaction cross section" is taken to include all nonelastic 
processes. 

The optical theorem states 

47r£-1Im/(0) = <77\ (3.1) 

where aT is the total cross section and includes both 

4 J. T. Holdeman and R. M. Thaler, Phys. Rev. Letters 14, 81 
(1965). 
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elastic and inelastic processes. From the partial-wave 
expansion of the scattering amplitude 

f(6)=(2ik)~l E i(2/+l)(e2 i 5^l)P z(cos^), (3.2) 

we obtain the partial-wave expansion of the optical 
theorem, viz., 

4TT&-2 £ I ( 2 H - 1 ) Imf —JP,(1) 

= 4x^-2EK2/+l) 
I 2i I 

+wk-~*Y,i(2l+l)(l-\e*iSi\2), (3.3) 

where the phase shifts di are in general complex. 
We have already considered the scattering of charged 

particles from a shielded Coulomb potential. The 
shielded Coulomb scattering amplitude /z,80^) is given 
by Eq. (1.13). Let us now consider the scattering from 
a nuclear potential plus the shielded Coulomb potential 
above. Later, when we take the limit as the shielding 
radius becomes infinite, we shall take the limit in the 
same way as in Sec. II. In the second case above it will 
be convenient to introduce the residual amplitude f(6) 
defined by f'(p)=f(e)-fL

B0(fi). The amplitude f(6) is 
given by Eq. (1.11) with bt^ai— A+$z, where ti is 
defined to be the additional phase shift due to the 
nuclear potential. The residual amplitude can be ex
panded as 

X[exp(2tf 0 - l]P*(cos0). (3.4) 

This sum contains angular momenta only up to the 
order of k times the nuclear radius. Since only a few 
partial waves contribute to /'(#), the residual amplitude 
is slowly varying at small angles and can be approxi
mated by 

Xsin2(j0)+.... (3.5) 

Applying the optical theorem to the shielded Coulomb 
amplitude, Eq. (1.13), we obtain 

4nk~l Im/x,80 (0) = (TL** . (3.6) 

Applying the optical theorem to the entire shielded 
scattering amplitude, Eq. (3.2), we obtain 

4d&-1Im/(0) = (77,. (3.7) 

Taking the difference of Eq. (3.6) and Eq. (3.7), we find 

47r£~1Im/'(0) = <r', (3.8) 

where <rf is defined by 

<r' = <rr-(TL" (3.9) 

and /'(0) is the residual amplitude evaluated at 0=0. 

The quantity <rf contains both elastic and inelastic 
terms. We now write 

a' = aT+(TGl
f, (3.10) 

where ar is the to ta l react ion cross section and aei is t he 
residual elastic cross section. T h e q u a n t i t y aei is given 
formally b y 

<rei'= j<7f(e)dQ= [[a(e)-<jL«c(d)2(m, (3.11) 

where a (6) is the experimentally measurable differential 
elastic cross section with the nuclear potential present. 
Note that we are using the convention that when a is 
written with an argument as a (8) it is a differential 
cross section. When written otherwise, it is an integrated 
cross section. Using Eqs. (3.8)—(3.11), we find 

<rr=4rirl Im/ ' (0 ) - / la(8)-aL
&c(8)']dQ, 

I = 4rJSr1 m / ' (0 ) - / ael
f(6)dQ. (3.12) 

We can write <re\(8) in terms of the scattering ampli
tudes as 

<r*i'(fi) = a(6)-aL"($) = | / L " ( * ) + / ' ( * ) I 2 - | /L8 C(0) |2 

= \f(e)\*+2ReZf'(d)fL*°*(e)-]. (3.13) 

Since <re\(8) appears in an integrand, if we take the 
limit as R approaches infinity in the manner previously 
indicated, we find 

<rei'(e)=\f(e)\*+2\fmfM\costaM-mi 
-4k-1 Re[VAoc sinAJf(6)8(1-x)2, (3.14) 

where ac(6) is the phase of the Coulomb amplitude and 
<t>(6) is the phase of the residual amplitude. We note that 
Aoo appears only in the last term of Eq. (3.14). Because 
of its form, this last term cannot be evaluated from data 
at finite angles. It may be formally integrated to give 
- (Sw/k) Re[exp(*Aj anABO//(0)]. From Eq. (3.4) we 
may easily obtain the result that 

4T 8TT 4TT 
— Im/'(0)+— Re[VA sinA//(0)]=— Im/'(0), (3.15) 
k k k 

where, of course, /'(0) is the residual amplitude for 
A=0. Thus we see that the forward delta function and 
the phase A^ make no physical difference in any 
measurable quantity. The phase A^ may take on any 
value and so for convenience we will take it to be zero 
in the discussion that follows. With this choice the 
phase of f(6) corresponds to the choice of the Coulomb 
phaseac(0) = — 2t\ In sin(^)+2o-0. 

Using the phase convention of the previous paragraph 
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FIG. 1. p-a elastic scattering at 40 MeV. Plots of the imaginary 
part, magnitude, and phase of the residual amplitude f{6) versus 
sin2(j0) at several angles 8 in the center-of-mass system for the 
scattering of protons from He4. The residual amplitude is given in 
fermis. The solid lines show the extrapolation to the forward 
direction. 

we find 

°*ae)=\f(e)\*+2\f{e)\\fM\ 
Xcos[ac(0)--<K0)]. (3.16) 

At small angles | / ' ( 0 ) | and <t>(6) are slowly varying 
functions of 6, whereas | / c (0) | and ac(6) vary rapidly 
with angle. Thus, in the Coulomb interference region, 
experimental values of a' (6) = a (0)—<rc (0) at neighboring 
angles may be used to obtain / ' (0) . Values of / '(0) so 
obtained may be plotted against sin2(|0) and ex
trapolated to 0 = 0 as in Fig. 1 and Fig. 2 to find /'(()). 

To find aei one formally carries out the integration in 
Eq. (3.11). In practice no experimental data is available 
for angles smaller than some 0O and this small-angle 
region may contribute significantly to the integral. This 
causes no difficulty, however, because we have a 
theoretical expression given by Eq. (3.16), where / '(0) 
is obtained in this region by the extrapolation mentioned 
above. Thus Eq. (3.11) becomes 

/•IT /.0O 

(Tel
, = 2 7r/ <Texpt'(e)$indd6+2<ir \f($)\2 sivBdS 

J $Q JO 

J €n 

+ lim 2?r Re 
«n-H) 

(6) sine d$. (3.17) 

Since we are using the functional form of Eq. (2.10) for 
/c(0), we must use the corresponding limiting process 
(2.27) in evaluating the integral on the right in the 
equation above. If do is small enough that f(6) may be 
approximated by / ' (0 ) , then Eq. (3.17) becomes 

ael=2w I 
J $o 

(6) sin0 dd 

+47r|/ ' (O)|2sin2(i0o)+47r^1Im{/ /(O) 

X [ l - e x p ( 2 ^ In s in ( i0 o ) " -2^ o ) ]} . (3.18) 

Using this result in Eq. (3.12) gives us the final result 
for the reaction cross section5 

ar=±irk-1 Im[ / ' (0) exp(2^ In sm(^e0)-2icro)'] 

-47r | / /(O)|2sin2(i0o) 

-2TT[ Z<T(d)-<rc(0)~]smdd6. (3.19) 

In the limit as the charge goes to zero, Eq. (3.19) 
yields the familiar result that the total reaction cross 
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FIG. 2. p-B elastic scattering at 40 MeV. Plots of the imaginary 
part, magnitude, and phase of the residual amplitude f'(d) versus 
sin2(J0) at several angles 6 in center of mass for the scattering of 
protons from H2. The residual amplitude is given in fermis. The 
solid lines show the extrapolation to the forward direction. 

5 Equation (16) of Ref. 4 contains a typographical error. The 
result is given correctly here in Eq. (3.19). 
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section is the total cross section, as given by the optical 
theorem, minus the total elastic cross section. However, 
for the scattering of uncharged particles, the amplitude 
/ ' (0) cannot, in general, be determined from the elastic-
scattering data. For charged-particle scattering, /'(0) 
can be determined, and hence Eq. (3.19) can be used to 
obtain the reaction cross section from the elastic-
scattering data. 

The derivations presented have been for spinless 
charged particles. These results, however, also apply to 
particles with spin. 

IV. DETERMINATION OF REACTION CROSS 
SECTIONS FROM DATA 

The results of Sec. I l l provide us with a way of de
termining reaction cross sections provided the prescrip
tions given there can be carried out. We have determined 
the reaction cross section in two cases in which high-
precision small-angle data were available. The differen
tial elastic scattering cross sections for protons scattered 
from He4 and from H2 at 40 MeV have been measured 
by Brussel and Williams6'7 in the angular region 
4°<0cm<14O°. Particular attention was given by 
Brussel and Williams to the angular region between 4 
and 25°. This data has been analyzed to find the residual 
amplitude as a function of angle. The results are plotted 
in Fig. 1 and Fig. 2 with extrapolations to 0=0. These 
extrapolations were used in Eq. (3.16) to calculate the 
reaction cross sections. The results are summed up in 
Table I. The rather large uncertainties quoted (^25% 
and 10%, respectively) are the result of two large 
quantities almost canceling. This cancellation is not 

TABLE I. Results of data analysis at 40 MeV. Lengths are given in 
fermis and angles in degrees. 

Experiment 

He4(A£)He4 

H*(*,*)H* 

i / ' (0) | 
(F) 

5.28 
2.69 

0(0) 

49.6° 
51.3° 

Im/'(0) 
(F) 

4.07 
2.11 

<Tel ' 

(F2) 

38.9 
17.8 

<rr 

(F2) 

7.7±2 
10.8=1=1 

6 M. K. Brussel and J. H. Williams, Phys. Rev. 106, 286 (1957). 
7 J. H. Williams and M. K. Brussel, Phys. Rev. 110,136 (1958). 

TABLE II . Comparison of present work with complex-phase-shift 
analyses for p-a scattering at 40 MeV. 

Author 

Present work 
GT 
SY 

(F) 

5.28 
5.48 
5.46 

0(0) 

49.6° 
53.2° 
56° 

Im/'(0) 
(F) 

4.07 
4.39 
4.52 

<r.i' 
(F2) 

38.9 
4fl.2 

(F2) 

7.7=±=2 
10.3 
11.6 

always expected to occur so that the large uncertainties 
are not necessarily characteristic of the method. 

There are no direct measurements of these reaction 
cross sections which could be used for comparison. In 
the pa scattering case, there are complex phase shift 
analyses of the experimental data by Suwa and 
Yokosawa (SY)8 and Giamati and Thaler (GT).9 The 
reaction cross sections determined from these complex 
phase shifts are compared with the present work in 
Table II. The phase shifts of SY and GT fit the elastic 
cross section data equally well except at small angles 
(8 to 12°), where the GT fit is slightly better. This small 
angle region is of great importance however in de
termining the reaction cross section. 

To investigate the sensitivity of the method to ex
perimental error we used an optical-model code to 
generate "experimental data." The code also gave us the 
quantities mentioned in the headings of the columns of 
Table II for comparison. Varying the differential cross 
section from the optical-model calculations gave us the 
effect of "experimental error." The reaction cross 
section calculated is very sensitive to experimental error 
at small angles as one might expect, so that these small-
angle measurements of a (6) must be made with con
siderable care. 

ACKNOWLEDGMENTS 

The authors would like to thank Dr. Howard Volkin 
of the N.A.S.A. Lewis Research Center for providing us 
with the optical-model calculations mentioned in 
Sec. IV. 

8 S. Suwa and A. Yokosawa, Phys. Letters 5, 351 (1963). 
9 C. C. Giamati and R. M. Thaler, Nucl. Phys. 59,159 (1964). 


