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Muon Capture and Inelastic Electron Scattering in C12 and 016f 
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Institute of Theoretical Physics, Department of Physics, Stanford University, Stanford, California 
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The dipole (first-forbidden) contribution to the muon-capture matrix elements, My, MA, and Mp, is cal
culated using wave functions computed in the particle-hole theory. I t is found that {MV^D— (MA2)D 
= (MP2)D to within 13%. The assumption that the dipole part of the nuclear matrix element may be ex
pressed as the unretarded dipole matrix element multiplied by the elastic form factor is found to hold to 
about 1%. Calculations of inelastic electron scattering from the 2~, T= 1 states in these nuclei predict large 
cross sections for some of the states at about 100 MeV/c momentum transfer. These "giant-magnetic-
quadrupole states" are identified with observed levels found in recent 180° electron-scattering experiments. 

I. INTRODUCTION 

AN assumption which has often been made in calcu
lations of total-muon capture ratio is that all the 

nuclear matrix elements are equal1; M V2=MA2=Mp2. In 
particular the results of Luyten, Rood, and Tolhoek,2 

and Foldy and Walecka3 rely on this assumption. In ad
dition, Foldy and Walecka assumed the dipole-vector 
matrix element may be written as the unretarded dipole-
vector matrix element multiplied by the ground-state 
elastic form factor evaluated at the resonant neutrino 
momentum; (MV

2)D = (MV
2)UD \ Fei(vTes) |2. Both of these 

assumptions have some theoretical justification. In 
particular, Foldy and Walecka have used the particle-
hole wave functions of Lewis4 for the 0~, 1~, and 2~~, 
T= 1 states of O16 to compute the unretarded dipole5 

contributions of MA2 and Mv2- They found (M^UD 
= (MA2)UD to within 12%. 

In this paper we expand their calculation in the fol
lowing ways: In addition to (MV2)UD and (MA2)UD we 
also compute (MP2)UD, and we have calculated (MV2)D, 
(MA2)D, and (MP2)D. That is, the matrix elements have 
been evaluated at the correct neutrino momenta instead 
of in the long-wavelength limit. Finally, we have also 
carried out these calculations for C12 both with and with
out the inclusion of ground-state correlations. The 
ground-state correlations were included by using the 
random-phase approximation (RPA) as formulated by 
Lewis.4 Since C12 is not a doubly magic nucleus, the 
inclusion of such correlations could be important. The 
wave functions for the 1"", T= 1 states in C12 and O16 

have been computed by Lewis and Walecka.6'7 Using the 
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3 L . L. Foldy and J. D. Walecka, Nuovo Cimento 34, 1026 

(1964). 
4 F . H. Lewis, Jr., thesis, Stanford University, 1964 (unpub

lished) ; and private communication. 
6 By "dipole" we mean first forbidden, that is, the JL= 1 term in 

the multipole expansion of the neutrino wave function. 
6 F. H. Lewis, Jr., and J. D. Walecka, Phys. Rev. 133, B849 

(1964). 
7 F . H. Lewis, Jr., Phys. Rev. 134, B331 (1964); 138, AB5 

(E) (1965). 

B 

formalism of Ref. 6, we have calculated wave functions 
for the 0" and 2r, T= 1 states in C12. This method is 
merely a reformulation of the particle-hole theory de
veloped by Brown and his co-workers.8-10 However, the 
residual two-particle interaction was taken from low-
energy nucleon-nucleon scattering, leaving no adjustable 
parameters in the theory. 

We find that (MV2)D=(MA
2)D=(MP

2)D to within 
13% in all the cases considered. This result is also found 
to hold in the unretarded limit. In fact the ratios 
(M2)D/(M2)UD for M=Mv, MA, and Mp are almost 
equal, with the average ratio being about equal to 
|Fei(^es)|2. For all cases (M2)D=(M2)UD\Fel(vTes)\

2 to 
about 1%. Our calculated results for (MV

2)UD tended to 
be about twice those obtained by Foldy and Walecka 
who found {MV2)UD by integrating over the experi
mental photoabsorption cross section. 

Muon capture takes place predominantly through 
the 0~, 1~, and 2~~, T=\ states. The transverse-electro
magnetic-interaction matrix elements are very similar 
to those used in muon capture. Thus, these states 
(except for 0~) may be used in a similar way to calculate 
photon processes or 180° electron scattering (which in
volves only the transverse matrix elements). The latter 
method is particularly useful since the momentum trans
fer can be varied, and the functional dependence of the 
theory on this parameter can be checked. 

Lewis and Walecka,6 and Lewis7 have calculated the 
transverse form factors for inelastic electron scattering 
from 1-, T= 1 states in C12 and O16. In particular, they 
find that the sum of the squared form factors in the 
giant-resonance region agrees quite well with the square 
of the experimental form factor for the giant resonance. 
The experiments were done at 180° scattering angle so 
that only the transverse components contributed. At 
low-momentum transfer such as in photoabsorption the 
contribution of higher multipoles is negligible, but when 
the momentum transfer is about 100 MeV/c we expect 
a fairly sizeable contribution. In particular we are inter-

8 G. E. Brown and M. Bolsterli, Phys. Rev. Letters 3, 472 
(1959). 

9 G. E. Brown, L. Castillejo, and J. A. Evans, Nucl. Phys. 22,1 
(1961). 

10 N. Vinh-Mau and G. E. Brown, Nucl. Phys. 29, 89 (1962). 
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ested in the modifications the 2r, T=* 1 states make to 
the calculations mentioned above. 

The calculations of the form factors for the 2~, T= 1 
states are carried out using the same wave functions 
used for the muon-capture computations. For C12 there 
are three 2~ states, one of them in the giant-resonance 
region. However, the form factor for this state is fairly 
small, leading to a small modification of the results of 
Lewis and Walecka. However, the theory predicts a 
strong 2r state at 20.76 MeV. Since our predicted levels 
tend to be about 1 or 2 MeV high, we identify this with 
an experimental level seen at 19.2 MeV.11-12 At large 
momentum transfers this state becomes quite prominent 
as we predict. Furthermore the q (momentum transfer) 
dependence we predict is consistent with experiment; 
however, our squared form factor is a factor of 2 too 
large. The remaining state is negligible for q less than 
200 MtV/c. 

For O16 the results are similar in that one state has 
most of the strength, at least below 200 MeV/c. How
ever, the state is at 21.34 MeV which is in the giant-
resonance region, producing a large modification of the 
results of Lewis. Recent experiments13 have been able 
to resolve some of the fine structure of the giant reso
nance. A prominent feature in these experiments is a 
state at 20.2 MeV which is quite strong at the higher 
momentum transfers. Identifying this as a 2"~ state, we 
find the g-dependence of the form factor is in good agree
ment with experiment. One of the other 2~ states also 
occurs in the giant resonance at 24.52 MeV having 
approximately one-third the strength of the 21.34-MeV 
state. Of the remaining three 7r states, the one at 13.85 
MeV is the strongest and is identified with the observed 
13-MeV state. In all cases where identification with our 
observed state is possible, the calculated squared form 
factor tends to be a factor of 2 larger than experiment 
but otherwise in fairly good agreement. 

In Sec. II the wave functions are given. Section III 
contains the muon-capture calculation, and in Sec. IV 
the results of the scattering from the 2" states are pre
sented. Section V is a summary and discussion. 

II. WAVE FUNCTIONS 

The excited states of a closed-shell nucleus in the 
particle-hole model are obtained by diagonalizing the 
Hamiltonian between states in which one nucleon is in 
an excited state leaving a hole in a shell. To obtain the 
negative parity states that are considered here, the 
nucleon must be excited to at least the next oscillator 
level which is an energy of about 15 MeV. The matrix 
element of the Hamiltonian may be divided into two 
parts, the first of which, E0, is diagonal. E0 may be 

" J. Goldemberg and W. C. Barber, Phys. Rev. 134, B963 
Q964). 
' **T. deForest, Jr., J. D. Walecka, G. Vanpraet, and W. C. 

Barber, Phys. Letters 16, 311 (1965). 
18 G. Vanpraet (to be published); and private communication. 

identified as the energy of the hole and particle without 
an interaction between them and thus can be calculated 
from the energy levels of the neighboring Adbl nuclei. 
The remaining, nondiagonal, term may be thought of as 
a residual particle-hole interaction. Since the interaction 
potential is attractive, the particle-hole interaction is 
repulsive for T=l states which raises the perturbed 
energy levels several MeV. This allows identification 
of some of the 1~ states with the giant-dipole resonance.8 

A derivation of E0 and the particle-hole interaction 
matrix elements for T=l state has been given by 
Lewis and Walecka.6 

For the internucleon potential we use a nonsingular 
potential that fits low-energy nucleon-nucleon scatter
ing. It has been shown that, at least for doubly magic 
+ 2 nuclei, this is a fairly good approximation.14'15 

We use a Serber-force Yukawa well with 

i7 0= -46.87 MeV, V=0.8547 F"1 , 
3F 0=-52.13 MeV, 3/z=0.7261 F"1 , 

which is obtained from Ref. 14. We take our single-
particle states to be harmonic oscillator wave func
tions with an oscillator parameter b'=b\/2, where 
b=(h/Ma))112, with ho> the oscillator energy. By fitting 
Coulomb energy differences in mirror nuclei, b is found 
to be 1.6 F for C12 and 1.67 F for O16.16 The values of E0 

are the same as those given in Refs. 6 and 7. 
Our results for the 0~ and 2~ states combined those of 

Lewis and Walecka6 for the 1"~ states in C12, and are 
shown in Table I. We have also computed the wave func
tions for C12 using the random-phase approximation as 
formulated by Lewis.4 These wave functions are not in
cluded here since they gave results which are quite simi
lar to those obtained using the wave functions in Table I 
(for example see Figs. 2 and 3, and Tables III and IV). 
That inclusion of ground-state correlations for these 
states is not very important was first pointed out by 
Vinh-Mau and Brown.10 The wave functions for O16 

calculated by Lewis4 are given in Table II. 

TABLE I. Energies and wave functions for /" , T = l states in Cu. 

E 
J (MeV) 2sl/2(lpm)~i Uw(lpm)-i UwdPi/iT* \Pw(Umy* 

0 

1 

2 

25.66 
35.78 

19.57 
23.26 
25.01 
35.80 

18.91 
20.76 
23.94 

0.977 
0.194 

-0.088 
-0.027 

0.937 
0.342 
0.075 

-0.168 
0.952 
0.252 

-0.044 

-0.349 
0.928 
0.131 

0.931 
0.364 

0.133 
-0.211 

0.933 
0.260 

-0.025 
-0.149 

0.988 

-0.364 
0.931 

-0.016 
0.106 

-0.243 
0.964 

14 J. F. Dawson, I. Talmi, and J. D. Walecka, Ann. Phys. (N. Y.) 
18, 339 (1962). 

15 J. F. Dawson and J. D. Walecka, Ann. Phys. (N. Y.) 22, 133 
(1963). 

16 B. C. Carlson and I. Talmi, Phys. Rev. 96, 436 (1954). 
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TABLE II. Energies and wave functions for /- , T= 1 states in 01*. 

J 

0 

1 

2 

E (MeV) 

14.41 
27.28 

14.61 
18.65 
21.01 
23.89 
26.63 

13.85 
18.69 
20.01 
21.34 
24.52 

2*/i (Ipw)-1 

0.998 
-0.070 

0.991 
-0.051 

0.030 
0.119 
0.012 

25i/2(l^3 /2)-1 

-0.063 
-0.145 

0.942 
0.245 

-0.165 

0.069 
-0.008 

0.730 
0.672 
0.100 

Um{\pl/2)~l 

0.974 
-0.020 

0.086 
-0.178 
-0.110 

1^3/2(1^1/2) x 

-0.011 
0.897 
0.002 
0.322 

-0.301 

-0.025 
0.965 
0.177 

-0.185 
0.042 

Um{\pz/2)-1 

-0.113 
-0.339 
-0.302 

0.881 
-0.072 

0.201 
0.248 

-0.654 
0.673 
0.135 

lig/2 (1^/2) l 

0.070 
0.998 

-0.029 
0.038 
0.143 
0.214 
0.936 

0.076 
-0.077 

0.017 
-0.173 

0.979 

IH. MUON CAPTURE 

With certain assumptions3 the muon capture rate may be written as 

A„c= 0v2( I *, I 2W2TT h\)[Gv Wv2+3Gx 2MA*+ (GP
2- 2GPGA)MP2]+AM</ . (1) 

The G's are effective coupling constants. AMC' contains nucleon recoil corrections, and v^ (tn^/h. In particular 
we are interested in My2, MA2, and MP2 which are denned as follows: 

2 r dP A 
- 1 0 1 E rH( . ) exp[-*va&.x(*)]|<z)|2, 
4T *-I a b \Vft/ J 

IZ'ZC—) f-H0I E r(->(i>(i)exp[-fvo!).x(i)]|a)|S 
a 6 \PU/ J * 4 T t-1 

(2) 

2=Z"L(—) [ ^ | ( * | £ T<-)(i>-«W exp[-ivo 6 .x(i)] |a) |2 , 
4TT t-i 

where v0&=p»/& is the neutrino wave number, and \a) and \b) are the initial and final states of the nucleus, and 
E ' means an average over the states \a). 

Provided isotopic spin is a good quantum number and the initial state has T=0, we may change r ( _ ) to r(3) by-
substituting 

T(±>(i) = Ti[r±)T<a>(i)], 
where 

(3) 

Mv2, for example, becomes 

M F
2 = i E ' E (—) / - (^ |ZT( 3 >( t )exppv a & . x ( i ) ] | n 

a &&'&"\J>M/ J 4cT * - l 

X(J'1r+ |6)(ft |r_|i ')(*'l E r<3>(*) exp[-iva&.x(i)]|a) (4) 

/Vab\2 f dP A 
^ i E ' E I - J / - | ( ^ | E r ^ ( i ) e x p [ i v a 5 . x ( i ) ] | a ) | 2 ; 

*=1 

V is the r 3 = 0 component of the excited T= 1 state of which b is the T3= — 1 component. Since &' and a refer to the 
same nucleus we can use our wave functions for C12 and O16 to calculate the muon capture in these nuclei. 
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TABLE III . Squared matrix elements for muon capture to individual states. 

/ ; 
0 

1 

2 

Ei 
(MeV) 

25.66 
35.78 

19.57 
23.26 
25.01 
35.80 

18.91 
20.76 
23.94 

C12 

(Jfy*)z><» 

0.023 
0.472 
0.000 
0.072 

(J4V)z>(*> 

0.091 
0.001 

0.013 
0.017 
0.197 
0.010 

0.011 
0.210 
0.059 

(Mp%(i> 

0.273 
0.004 

0.013 
0.251 
0.071 

Ji 

0 

1 

2 

Ei 
(MeV) 

25.53 
35.37 

19.76 
23.08 
24.95 
35.61 

18.90 
20.67 
23.92 

C u (RPA) 

{Mv*)D™ 

0.021 
0.424 
0.002 
0.059 

(MA*)D™ 

0.087 
0.002 

0.012 
0.026 
0.173 
0.015 

0.010 
0.190 
0.053 

(MP>)D^ 

0.260 
0.006 

0.012 
0.228 
0.064 

Ji 

0 

1 

2 

Ei 
(MeV) 

14.41 
27.28 

14.63 
18.65 
21.01 
23.89 
26.63 

13.85 
18.69 
20.01 
21.34 
24.52 

QI« 

(MV*)D^ 

0.016 
0.016 
0.002 
0.638 
0.184 

(MA*)D™ 

0.013 
0.077 

0.024 
0.040 
0.021 
0.060 
0.147 

0.144 
0.000 
0.020 
0.302 
0.092 

(Mp*)D
{i) 

0.039 
0.230 

0.173 
0.000 
0.024 
0.362 
0.110 

We make a multipole expansion of the matrix elements. With a 0+ ground state we have17 

Mv
i=2*Y.{va>M2\{b'Jv, T=l\\t r^(i)JjA"<-ixi)YjA^i)\\^, T=0)\>, 

v i-i 

MA>=- z w ^ l ^ . T=i\\t r<»(0iL(»'.»«*)8/l.Li(o«)-a(j)||o<-f r=o)|», 
3 b'L i-1 

MP*=2T z (—) (2L+i)[ ) \q>'jv, r = i | E r«>(i)yt(^^i(fi*.)-<K*)l|o+ r = 

(5) 

0)|» 

The most important contribution of these matrix elements is the first forbidden or dipole. The allowed terms are 
small. They vanish in the unretarded limit for O16 which has doubly closed shells in the ground state. For C12 

Foldy and Walecka3 estimate the allowed term contributes 20% of the capture rate. The contribution of the in
dividual levels to the dipole matrix elements is found to be 

(MV2)D (0 = 
iiCO 

y* 

where 

r6 r2 

£ ffi(i)(«W(nr _ ( 2 / + l ) ( 2 / ' + l ) ( 2 i + l ) ( 2 i / + l ) 
n'Vi'\nlj L47T J 

(V 1 / \ 
X( KnTlMpa^lnlX-l)^!* 

\0 0 0/ 1.7 / 1 
, (6) 

j CO 

WDJW--

and 

r3 i1 / 2 

£ a(i)(^V)(nW- _ (2 /+ l ) (2 / '+2 ) (2 i+ l ) (2 /+ l ) 
n'l'S'tnlj L4x J 

(V \ l\ [VI 
X( )(nr\j1(vab^r)\nl)V6(-l)lf(2J+l)^ H J 

\0 0 0/ I jf j 

(n'l'lJ.Mlni)^ f Rnn'*(r)jx(vr)lMS)t*dr, 
Jo 

V I l | i 2 

r J J* 

(7) 

where Rni is the radial harmonic oscillator wave func- where b is the oscillator parameter used in Sec. I I . The 
tion defined in Ref. 6, and a ( i ) <»'*'/') (»uri are the coefficients of the basis wave 

functions and are given in Tables I and I I . To find the 
total matrix elements we sum over the individual levels; 

y(i)==(±Vab(i)b)2 a n d y^QVfiby) 

17 We note that S|a>=0 does not necessarily imply MA=MP W2)r> = T,i(M2)D
{i) for M=MV, MA, and MP. The con-

as stated by Foldy and Walecka (Ref. 3). tributions of the individual levels are given in Table 
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TABLE IV. Squared matrix elements for the total muon capture rate. The primed results are those of Foldy and Walecka, 
(Ref. 3) who estimated (Mv2) UD by integrating over the experimental photoabsorption cross section. 

Nucleus (Mv*)u (MA
2)D (MJ)D (MV*)UD (MA2)UD {MP*)VD (MV

2)D 

C12 0.567 0.608 0.611 0.795 0.857 0.861 0.324 
C12 (RPA) 0.506 0.568 0.570 0.711 0.798 0.803 0.324 
O16 0.857 0.938 0.938 1.259 1.414 1.415 0.485 

{MV*)UD 

0.45 
0.45 
0.77 

I I I , and the total matrix elements are shown in Table 
IV. The results of Foldy and Walecka for (MV

2)D and 
(MV2)UD are also included in Table IV for comparison. 
In Table V the ratios (MV

2)D/(MV
2)UD for M=MV, 

MA and MP are compared with |Fei(j>re8) 1
2.18 

TABLE V. Square of the elastic form factor and ratios of the 
retarded to unretarded squared matrix elements. 

Nucleus 

C12 

C12 (RPA) 
Q16 

(Mv*)D 

(Mv2) UD 

0.713 
0.711 
0.681 

(MA
2)D 

(MA*)UD 

0.713 
0.711 
0.664 

(MP*)D 
(MP*)UD 

0.710 
0.711 
0.663 

|Fe l (^e 8 ) | 2 

0.719 
0.719 
0.676 

If we neglect ground-state correlations we see that 
the assumption 

(MV
2)D=(MA

2)D=(MP2)D (8) 

is good to within 8% for C12 and 12% for O16. Letting 
the energies of the excited states become degenerate, 
we find the assumption holds exactly. To see this we 
first make a unitary transformation to the basic particle-
hole states. For MA2 and Mp2 we must then evaluate 
an expression of the form 

5 . = EI(pk,(i)T<»>(f)exp[-
ph. 

• lVa6'X(i)] |A) | 2 , (9) 

where p and h are the particle and hole wave functions 
for the ith nucleon. We have arbitrarily chosen the z 
component of <F, since all components give the same re
sult. For the cases being considered the sum may be 
broken up into terms which contain particles with both 
7 = J+2 a n d j=l—J for a given hole or vice versa. Thus 
in every term we may change either the particles or the 
holes from \nljmj) to \nlmims) states. By quantizing 
these states in the z direction we see that 

^=EI(£|r<3>»exp[-
Ph 

•ivab'x(i)2\h)\ (10) 

Since SX=SU=SS=S? we find MV
2=MA

2=MP
2. Foldy 

and Walecka have shown that if the nucleon-nucleon 
force is spin-independent, one can apply Wigner's 
supermultiplet theory19 with the result that MV

2=MA
2 

= MP2. In the present calculation we find that this 

uFel(v) = (l~-4y/9)e-v for C12 and ( l - | y ) * - v for O1* where 
y= (hbp)2. As in Ref. 3 we have used hvna=Em--Ena = 83 MeV for 
C12 and 85 MeV for O16. 

19 E. Wigner, Phys. Rev. 51, 106 (1937). 

equality is no longer exact when spin-dependent forces 
are considered. We have included spin dependence in 
two ways. The correct singlet-triplet ratio has been 
used for the internucleon force, and the configuration 
energies have been taken from the empirically observed 
levels of the neighboring nuclei. We have not included 
a tensor force in the internucleon interaction; what 
effect it would have is not known. 

The assumption 

(M2)D=(M2)UD\Fel(vres)\
2 (11) 

is satisfied to about 1% in all cases [including C12(RPA)] 
in our calculation. Again we note that if we let the 
energies become degenerate, the v dependences of, for 
example, (MV

2)D and l^eii2 become almost identical 
(to about 1% at ^a6=*,res). Goldemberg et al20 have 
shown this relation holds whenever the neutrons and 
protons oscillate with small amplitude against each 
other while maintaining their ground-state spatial dis
tributions. The Goldhaber-Teller21 model of the giant-
dipole resonance satisfies these conditions. Another 
example is the giant-dipole resonance for the case of a 
harmonic oscillator with an interparticle harmonic 
force.22 Furthermore, Bishop and Isabelle23 find this 
relation is consistent with experiment for the giant 
resonance in O16. 

The inclusion of ground-state correlations in the C12 

calculation reduces the squared matrix elements by 
about 10%. Equation (8) holds to within 13% instead 
of 8%, and Eq. (11) is still found to be accurate to 1%. 

Foldy and Walecka have obtained a value for (MV2)UD 
by integrating the empirical photoabsorption cross sec
tion weighted by an energy-dependent factor. We find 
that our value of (MV

2)UD is about twice what they 
obtain. Since their results for the total muon capture 
rates are in good agreement with experiment, we believe 
our values for all the matrix elements are too high. This 
will be discussed further in Sec. V. 

IV. ELECTRON SCATTERING 

The cross section for exciting a nucleus from a 0+ 

ground state to a 2~ state by inelastic electron scattering 
is proportional to the square of the matrix element of 
the magnetic quadrupole operator. In Born approxima-

20 J. Goldemberg, Y. Torizaka, W. C. Barber, and J. D. Walecka, 
Nucl. Phys. 43, 242 (1963). 

21 M. Goldhaber and E. Teller, Phys. Rev. 74, 1046 (1948). 
22 D. M. Brink, Nucl. Phys. 4, 215 (1960). 
23 G. R. Bishop and D. B. Isabelle, Nucl. Phys. 45, 209 (1963). 
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tion, with neglect of nuclear recoil and the electron mass with respect to its energy, 

da ki 8ira2 

—(2- <- 0+)= VT{9) I (2-||r2^(g)||0+) | ^, 
dQ, ki A4 

2k 1̂ 2 
VT(6)= sin1(0/2)[(Ai+*i),-2*i*« cos2(0/2)], (12) 

Tui—(q) = / dx£w (x) • (TXi jC^)^^!^ (nx))+y2(?a;)g)22iaf (fix) • j * (x)]; 

9 and A axe the three- and four-momentum transfers, and k\ and ki are the initial and final electron energies.6 For 
the case of a T= 0 ground state and a T= 1 excited state only the isovector part of TIMmag has a nonvanishing 
matrix element. Inserting single-particle operators, we have 

where 

| ( * / ^ r ^ J ^ | | r , » » « f a ) | | » t t ) | W * f e ) = i | E aj^,T^^'''^^-\n'(mj'\\h,^\\n{l\)j)\\ (13) 

h h 1 
<ur..""«= VX Mqr)9mM (6,<t>) (Xp- X.)<H-/i(«r)9m"(*,*) V. 

2Afc Afc i 
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We shall call F(q) the (transverse) form factor for the 
state. The corresponding (transverse) form factors for 
excitation of the 1~ states have been calculated by Lewis 
and Walecka6 for C12 and by Lewis7 for O16. All the cal
culations are for a scattering angle of 180°. In this case 
the longitudinal form factors do not contribute, leaving 

24 For example see A. R. Edmonds, Angular Momentum in 
Quantum Mechanics (Princeton University Press, Princeton, New 
Jersey, 1957). We use Edmonds' notation. 

only the transverse ones mentioned above. These are the 
same transverse form factors that appear in processes 
involving real photons. However, such processes deter
mine the form factor for only one momentum transfer 
since the photon must be on the mass shell. 

We note that our results using a residual interparticle 
that fits low-energy nucleon-nucleon scattering give 
energy levels which are approximately 1 or 2 MeV higher 
than those using a 5-function ordinary force with a 
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strength chosen to fit the known 1~ levels.6*7'9-10 We 
therefore compare our form factors with those of ex
perimental levels of slightly lower energy. 

Figure 1 shows the calculated spectrum of the 1~ and 
2~J T=\ states in C12 for various values of q. The con
tribution of the 2~ states is small for low qf but becomes 
quite sizeable at about g= 100 MeV/c. In particular the 
state at 20.76 MeV carries most of the 2~" strength at 
this q and should be clearly noticeable in experiments.25 

The experimental spectrum for 65-MeV incident elec
trons shown in Fig. 2, indicates a very strong state at 

q * 20 MeV/c 

18 ' 20' 22 24 
E(MeV) 

q*!60M«V/c 

q*80 MeV/c 

LL-

18 2 0 22 24 2 6 
E (MeV) 

q*220 MeV/c 

20' 22 2'4 26 
E(MtV) 

q*!20 MeV/c 

M 

2 0 ' 22 24 
E(M«V) 

26 

20 22 24 26 
E(MeV) 

q-300 MtV/c 

16 ' 2 0 " 22 2'4 26 
E(MeV) 

FIG. 1. Spectrum of the 1~ and 2~, T= 1 states in Cn. The length 
of the line is proportional to the square of the transverse factor 
for the state. For the 2~ states the line is extended slightly below 
the base line. An additional 1" state at 35.80 MeV is not shown. 

19.2 MeV.12 The squared form factors for these states 
are compared in Fig. 3. The calculated curve is too large 
by about a factor of 2. We note, however, that the form 
factor appears to be rising rapidly with q as predicted 
by the theory. Sanderson26 has calculated inelastic pro
ton scattering from the 2"", T= 1 state at 19.3 MeV cal
culated by Vinh-Mau and Brown10 (which corresponds 
to our 20.76 MeV state) and from other states in this 
region and has shown the results are consistent with the 

26 The importance of this state for Ml transitions has been 
noted previously by Vinh-Mau and Brown (Ref. 10). 

2« E. A. Sanderson, Nucl. Phys. 35, 557 (1962). 
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FIG. 2. The experimental energy spectrum of 65-MeV electrons 
scattered through 180° from C12. (Ref. 12.) 

inelastic proton-scattering experiments of Tyren and 
Maris.27 

Hanna and his co-workers28 have also seen a state at 

0.0035 

0.00301 

0.0025h 

0.0020 

0.0015 h 

0.0010 

0.0005 

FIG. 3. Squared form factor versus momentum transfer for the 
2~, T= 1 state at 20.76 MeV in Cu. The dashed curve is the same 
but with half the strength, while the dot-dash curve is the result 
of a random-phase approximation calculation. The triangles are 
from Stanford 180° scattering experiments by Goldemberg and 
Barber (Ref. 11). The circles are from 152° scattering experiments 
at Darmstadt (Ref. 11), and the data have been treated as though 
the state had no longitudinal component. The square is from recent 
Stanford 180° data (Ref. 12). Note added in proof. Recent experi
ments by Vanpraet (private communication) provide two new 
points in Fig. 3: / ^ 0.0006 at ?=81 MeV/c and F«=0.0018 at 
£ = 121 MeV/c with an error of about ±0.0001 in each case. 

27 H. Tyren and Th. A. J. Maris, Nucl. Phys. 3, 52 (1957); 4, 
637 (1957). ' 

28 R. E. Segel, S. S. Hanna, and R. C. Alias, Phys. Rev. (to be 
published). 
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FIG. 4. Squared form factor for the giant resonance in C12. The 
lower curve includes only the contribution of the 1~, T = l states 
while the upper curve also includes that of the 2~ states. The dot-
dash curves are the result of a random-phase approximation calcu
lation. The point at 23 MeV/c is from photon experiments (Ref. 
6). The three other circles are from Stanford 180° scattering data 
(Ref. 11), and the square is more recent Stanford data (Ref. 13). 
The experimental points were obtained by integrating the cross 
section between 20 and 26 MeV. 
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FIG. 5. Spectrum of 1~ and 2~, T = 1 states in O18. The length of 
the line is proportional to the square of the transverse form factor 
for the state. For the 2~ states the line is extended slightly below 
the base line. 

19.2 MeV in a BU(^,7)C12 experiment with a width of 
about 25 eV. Our calculations indicate the state at 
20.76 MeV should have a partial width for decay to the 
ground state of only 4 eV. We have also calculated the 
partial width for this state to decay to the 2+, T=0 
state at 4.43 MeV. The wave functions of Goswami and 
Pal29 have been used for the latter state. As a result of 
almost complete cancellation of the matrix elements we 
find a width of 1 eV. This decay has not been observed, 
which is consistent with the predicted width. Since the 
observed state at 19.2 MeV has a much larger width for 
ground-state decay than predicted by the theory, we 
believe some other state has been seen in the experiment. 
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FIG. 6. The squared form factor for the giant resonance in O16. 
The lower line includes only the 1~ states while the upper line also 
includes the contribution of the 2" states. If only half of the 2~ 
contribution is included the dashed lines result. The point at 22 
MeV/c comes from photon experiments (Ref. 7). The other circles 
are Stanford 180° data (Ref. 11), while the squares are more 
recent Stanford data (Ref. 13). Owing to the different spectra 
obtained in the two Stanford experiments, the experimental points 
were obtained by integrating the cross section in the region 20-27 
MeV in Ref. 11, and 19-27 MeV in Ref. 13. 

The 2- state at 23.94 MeV falls in the giant resonance 
region in C12. In Fig. 4 we show the correction this state 
makes to the form factor of the giant resonance using 
only the 1~, T== 1 states as calculated by Lewis and 
Walecka. The modification is quite small, but depends 
critically on the mixing of the unperturbed states. Most 
of the unperturbed strength is in the (Id^ilpw)-1 

configuration; thus only a slight admixture of this state 
can greatly increase the form factor of one of the other 
states. About | of the strength of the 23.94-MeV state 
comes from this mixing although it is quite small (0.131). 

Finally we note that the inclusion of ground-state 

29 A. Goswami and M. K. Pal, Nucl. Phys. 35, 544 (1962). 



M U O N C A P T U R E A N D I N E L A S T I C E L E C T R O N S C A T T E R I N G B 1225 

correlations in the calculation does not substantially 
alter the results. 

The spectrum of the 1~ and 2r, T= 1 states for O16 

for various values of q is shown in Fig. 5. The 2~ state 
with the largest form factor at low q occurs at 21.34 
MeV, which along with the 24.52-MeV state is in the 
giant resonance region. In Fig. 6 we plot the correction 
these states make to the giant resonance form factor cal
culated by Lewis using the 21.01-, 23.89-, and 26.63-MeV 
1~~ states. This produces a greater modification than in 
C12 since the 2~ state with the largest form factor is now 
in the giant resonance region. Corresponding to the pre
dicted level at 21.34 MeV, the experiments of Vanpraet13 

show a peak in the giant resonance at 20.2 MeV. The 
form factor for this state is shown in Fig. 7. We note that 
the q dependence of the calculated form factor is in good 
agreement with experiment. As was the case for the 
20.76-MeV state in C12 our results for the square of the 
form factor are larger than experiment by a factor of 2. 
The recent O16 experiments13 show considerably more 
structure in the giant resonance than predicted by the 
particle-hole theory of Brown, and the identification of 
individual levels is quite difficult (except for the 2~ at 
21.34 MeV mentioned above). For this reason only the 
integrated cross section of the giant resonance has been 
compared with experiment. Although comparison with 
individual levels may not be possible, we should be able 
to predict the shape of the giant resonance. In particular 
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FIG. 7. Squared form factor for the 21.34-MeV 2~ state in O16. 
The dashed curve is one-half of this result. The experimental 
results are from Ref. 13. 

FIG. 8. Squared form factor for the 13.85-MeV 2~ state in O16. 
Half of this result is indicated by the dashed curve. The points are 
from Stanford 180° experiments. (Ref. 13). 

the 1~ level at 26.63 MeV should be very large at high q 
(see Fig. 5). Thus as the momentum transfer is increased 
we expect to see the peak of the giant resonance shift 
up by about 2 MeV. The original experiments11 con
firmed this shift; however the recent experiments of 
Vanpraet13 indicate that such a pronounced shift does 
not take place. Although there is some shift of strength 
from the low-energy part to the high-energy part of the 
giant resonance, it is much smaller than predicted by the 
theory.30 Since the agreement of the integrated strength 
of the giant resonance with experiment is fairly good, 
we believe that some of the strength predicted for the 1~ 
state at 26.63 MeV appears instead in additional states 
at a lower energy. 

Of the remaining 2~ states in O16, the one predicted at 
13.85 MeV, which is a member of the same T= 1 multi-
plet as the ground state of N16, has the greatest strength. 
The form factor for this state is compared with the ex
perimental results of the observed level at 13 MeV in 
Fig. 8. Except for the point at q= 73 MeV/c we find the 
experiments give about half the predicted cross section. 

V. SUMMARY AND DISCUSSION 

Using the particle-hole model of the nucleus, we have 
computed the dipole and unretarded dipole contribu
tions to the matrix elements Mv, MA, and Mp for muon 
capture. To do this we needed the wave functions of the 
0~, 1~, and 2~~, T= 1 states. The wave functions of the 
1- states in C12 and the 0~, 1~ and 2~ in O16 have been 

30 We note that with the inclusion of the 2~ states, the predicted 
shift is much smaller than that predicted if only 1~ states are 
considered. 
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calculated by Lewis and Walecka. We have extended 
their calculations to the 0~ and 2~ states in C12. The cal
culation has essentially no free parameters, since a 
potential which fits the low-energy scattering of free 
nucleons was used. The equality (MV2)D = (MA2)D 
= (MP2)D was found to hold to within 13% in all cases, 
while the assumption (M2)D=(M2)uD\Fei(vTes)\2 was 
good to 1%. 

We have also used the wave functions for the 2~ 
states to compute the inelastic electron scattering from 
these states. For both carbon and oxygen one state 
carries most of the 2~ strength. These "giant-magnetic-
quadrupole states" have been identified with states ob
served in recent electron-scattering experiments. The 
momentum-transfer dependence of the calculated states 
are in good agreement with experiment. However, since 
the spins and parities of the levels were not determined 
directly from the experiment, we must consider our re
sults as not being definite. 

In the case of C12 we have repeated the calculations 
this time using the random-phase approximation to in
clude ground-state correlations. In both muon capture 
and electron scattering the results did not differ 
radically from those where correlations were not 
considered. 

As has been noted, our results for the squared form 
factors for electron scattering from the 2~, T= 1 states 
tend to be too high by about a factor of 2. Similarly, the 
matrix elements (MV2)UD for muon capture exhibit a 
factor of 2 discrepancy when compared with the results 
of Foldy and Walecka. Lewis and Walecka6 have shown 
that if one uses current conservation to evaluate TIM*1 

in the limit q —> 0, 

TiM«(qfi)=-(V2/3)qfi 

X dxxPN(x)Y1M(Qx), q/i-*0, (15) 

the resulting squared matrix element is about twice that 
obtained by using the particle-hole model to evaluate 
the matrix element of the current. They find the latter 

method is in good agreement with photoabsorption ex
periments. The discrepancy is due to the use of approxi
mate wave functions. Since (Mv2)uD(i) is proportional 
to the square of the matrix element of the same opera
tor that appears in Eq. (15), we expect (MV2)UD to be 
about twice the correct value. Furthermore, since 
we believe the approximate equality of (MV2)UD, 
(MA2)UD, and (MP2)UD should hold for all reasonable 
wave functions, we expect (MA2)UD and (MP2)UD 
should also be too large by a factor of 2. However it 
may easily be seen that the major contribution to 
| (2-, T= 1|| ra^liO*, T= 0) |2 comes from a term which 
is proportional to the contribution of this 2~ state to 
(MA2)UD. This is consistent with the observed dis
crepancy in the squared form factors for the 2~ states. 

In our calculation of the form factors for the giant 
resonance, we have only considered the contributions 
of the I" and 2r, T= 1 states. A 1+, T= 1 state would 
also contribute strongly to the form factor, but cal
culations indicate the probable absence of such states in 
the region of the giant resonance, at least for C12.10 

Weisskopf estimates of E2, £3 , and M3 transitions for 
g=120 MeV/c and Efi=20 MeV are about 1% of the 
observed cross section for the giant resonance for both 
C12 and O16.11'13 These estimates are quite rough since 
the long-wavelength limit is not appropriate for q= 120 
MeV/c; however, we believe they give a reasona
ble order of magnitude. The magnetic transitions 
to 2~, T=Q states will be small compared with those 
to the 2~, T= 1 states considered in their paper since 
C(Xp+Xn)/(Xp-Xn)]

2=(0.88/4.71)2= 0.035. Finally we 
note that collective effects may increase the strength 
of the neglected states. 
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