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Calculations based on a two-parameter description of a uniformly charged liquid drop are reported. Re­
sults include fission-barrier energy and other saddle-point properties. The electrostatic energy of the drop 
was computed by a novel and highly accurate method. The saddle-point properties and corresponding drop 
shapes are compared with calculations that use nine parameters. Agreement is best for fissionability param­
eters greater than 0.70, suggesting that these calculations may provide a few-parameter basis for dynamical 
calculations of adequate precision at the larger fissionability parameters. 

INTRODUCTION 

SINCE the appearance in 1956 of Swiatecki's first 
paper of the series1""5 entitled "The Deformation 

Energy of a Charged Drop," there has been an awakened 
interest in the theory of the liquid-drop model of nuclear 
fission. These papers provide the most complete descrip­
tion available to date of the static aspects of liquid-drop 
fission, including shapes described by as many as 18 
parameters. More recently, similar results have been 
obtained by other authors6 - 8 who solved an integro-
differential equation to obtain the saddle-point shapes. 

This paper describes static calculations of fission-
barrier shapes and energies by means of a two-parameter 
family of algebraic expressions for the surface. Such 
calculations have two goals: (a) to synthesize as far as 
possible and simplify the results of Cohen and Swiatecki5 

in a few-parameter description, and (b) to provide the 
basis (in few parameters) for full dynamical calculations 
of the fission process. Kelson9 and Nix10 adopted similar 
programs based, however, on somewhat different families 
of shapes. 

COULOMB AND SURFACE-ENERGY 
CALCULATIONS 

We consider the family of surfaces described in 
cylindrical coordinates by 

f^=aZ^+bZ2+c, (1) 

Bc= =120Z, 
EC

Q 

which form was suggested by the saddle-point shapes 
obtained in Ref. 5. The requirement of constant volume 
is utilized to eliminate the constant c, so that Eq. (1) 
describes a two-parameter family of possible shapes at 
the fission barrier. 

The cylindrical coordinate system chosen for repre­
senting the drop permits a particularly simple expression 
for the Coulomb energy, which is quite suitable for 
modern digital computers. The Coulomb energy Ec of 
the volume of revolution is expressed as a double inte­
gration over the interaction energy of infinitely many 
disks, into which the volume may be decomposed. 

Gray11 obtained a general Bessel function expression 
for the electrostatic potential at a point due to a thin 
disk of uniform charge density a. Integrating his expres­
sion appropriately over a similar coaxial disk yields the 
Coulomb interaction energy of the pair: 

Ec disks = 2ir2a2dZAdZB 

X 

dX /»00 

/ e-^z^z^Jl(\pA)Jl(\pB)-. (2) 
Jo X2 

This expression was integrated with respect to ZA and 
ZB over the full range of Z to give the total Coulomb 
energy of the drop. The resulting Bessel function 
integral was converted to an integral of trigonometric 
functions by use of Watson's identity.12 Expressed 
relative to the Coulomb energy of a sphere £c°, the 
actual integral evaluated is 

oB / pi2dz / zpWy I 
JQ JQ JQ Z(1 — 

sin2TTwdw 

y)+[z2(l—y)2+Pi2+P22— 2pip2 cosirze>]1/2 
(3) 

* Information in this article was developed during the course of work under Contract No. W-7405-ENG. 36 with the U. S. Atomic 
Energy Commission. 

* W. J. Swiatecki, Phys. Rev. 101, 651 (1956). 
* W. J. Swiatecki, Phys. Rev. 104, 993 (1956). 
8 W. J. Swiatecki, Proceedings of the Second United Nations International Conference on the Peaceful Uses of Atomic Energy, 

Geneva, 1958 (United Nations, Geneva, 1958), Vol. 15, p. 248. 
4 S. Cohen and W. J. Swiatecki, Ann. Phys. 19, 67 (1962). 
8 S. Cohen and W. J. Swiatecki, Ann. Phys. 22, 406 (1963). 
* V. M. Strutinskil, Zh. Eksperim. i Teor. Fiz. 42, 1571 (1962) [English transl.: Soviet Phys.—JETP 15, 1091 (1962)]. 
7 V. M. Strutinskil, N. Ya. Lyashchenko, and N. A. Popov, Zh. Eksperim. i Teor. Fiz. 43, 584 (1962) [English transl.: Soviet 

Phys.—JETP 16, 418 (1963). 
8 V. M. Strutinskii, Results of Calculations Based on the Liquid Drop Model of Nuclear Fission (Order of Lenin, Institute of Atomic 

Energy, Moscow, 1963). 
9 1 . Kelson, Phys. Rev. 136, B1677 (1964). 
10 J. R. Nix, Lawrence Radiation Laboratory Report No. UCRL-11338, 1964 (unpublished). 
11 A. Gray, Phil. Mag. 38, 201 (1919). 
12 G. N. Watson, A Treatise on the Theory of Bessel Functions, (University Press, Cambridge, England, 1944), p. 389, 13.22(1). 
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TABLE I. Calculated values of relative Coulomb and surface energies of a sphere and two spheroids, 
with comparable figures for other investigators. 

Spheroid Spheroid 
Gauss order or Major axis 1 Major axis 1 

number of = — = — 
Machine or author grid points Sphere Minor axis 0.7 Minor axis 0.5 

Relative Coulomb energy Be 
STRETCH Exact* 1.000 000 000 0.988 678 870 0.957 975 925 
STRETCH 16 0.999 999 707 0.988 678 577 0.957 975 557 
STRETCH 96 0.999 999 998 0.998 678 869 0.957 975 925 
Cohen and Swiateckib 41 0.999 998 2 0.988 676 6 
Cohen and Swiateckib 61 0.999 999 3 0.988 678 4 
Cohen and Swiateckib 81 ••• 0.988 678 6 
Beringerc 40 0.999 828 ••• 0.957 662 

Relative surface energy Bs 
STRETCH Exact* 1.000 000 000 1.021383 583 1.076 728 262 
STRETCH 16 1.000 000 000 1.021383 583 1.076 728 262 
STRETCH 96 1.000 000 000 1.021383 583 1.076 728 262 

a "Exact" means that the closed algebraic expressions for the energies were evaluated, while the numbers designate numerical integrations. 
b Reference 5. 
0 Reference 14. 

where 

Pl
2= 4aZo2s4-8aZ0V+ (6aZQ

2+b)z2- (2aZ0
2+b)z, 

p2
2 = 4aZo2*Y - SaZohy + (6aZ0

2+b)z2f 
— (2aZ0

2+b)zyy 

and 2Zo is the length of the drop at p=0. 
The integral representation of the surface energy 

relative to that of a sphere Es° is 

Es rl 

Es* A 
+ (b2+b)ZQ

2u2+c21/2du. (4) 

Equations (3) and (4) were evaluated on the IBM 
7030 (STRETCH) computer by Legendre-Gauss quadra­
ture.13 This integration technique was chosen because it 
has a precision of order IN— 1 when only N evaluation 
points are used. In common with all numerical integra­
tion schemes, more accurate results can be obtained by 
using a larger number of evaluation points (higher order 
quadrature) at the cost, of course, of more computa­
tional time. 

The triple Coulomb integrals were evaluated for the 
sphere and two spheroids, using 16th- and 96th-order 
Legendre-Gauss quadrature. In Table I these results 
are compared to the exact energies for these shapes and 
with the results of Cohen and Swiatecki5 and Beringer.14 

The 16th-order quadrature is seen to be accurate to four 
parts in 107, meeting or exceeding the accuracy of 
previous calculations. While the 96th-order Gauss 
quadrature was slightly more accurate, each triple inte­
gration required 6 min of computer time compared with 
3 sec for the 16th-order quadrature. 

Table I also includes the single Gauss quadrature 

13 F. B. Hildebrand, Introduction to Numerical Analysis (Mc­
Graw-Hill Book Company, Inc., New York, 1956), p. 312. 

14 R. Beringer, Phys. Rev. 131, 1402 (1963). 

results for the relative surface energy Bs. Both the 
16th- and the 96th-order quadrature are seen to be in 
precise agreement with the exact evaluations for the 
indicated number of significant digits. These calcula­
tions, therefore, establish the accuracy and desirability 
of the 16th-order Gauss quadrature, which was used to 
compute the final results. 

SADDLE-POINT DETERMINATION 

The classical fission threshold is represented by the 
saddle point of the relative deformation energy £: 

Z=Bs-l+2x(Bc-l), (5) 

where x=EcQ/2Es{i, and is the Bohr and Wheeler 
fissionability parameter.15 For a function of two vari­
ables such as £(a,b), a saddle point is mathematically 
defined to be a point (asp,£sp) in the vicinity of which 
the first and second partial derivatives are continuous 
and at which (a) the two first partial derivatives are 
zero and (b) the second partial derivatives satisfy the 
relation16 

/ d2£ \ 2 d2£ <92£ 
> 0 . (6) 

\dadbJ da2 db2 

In the neighborhood of the saddle point, the contour of 
the deformation-energy hypersurface is approximated 
by a quadratic expression in the parameters. The saddle 
point is then obtained by computing the deformation 
energy, Eq. (5), in a grid of points near the saddle, and 

15 N. Bohr and J. A. Wheeler, Phys. Rev. 56, 426 (1939). 
16 If condition (b) is not satisfied, the point located by condition 

(a) may be a maximum, minimum, or inflection point. Two non-
saddle cases arise in the present calculations: (1) When x< 1.00, 
the spherical configuration is a minimum of the deformation 
energy. (2) When #==1.00, the saddle point and minimum coalesce, 
and the result is an inflection point. 

file:///dadbJ
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mathematically fitting the "best" quadratic surface to 
these energies. 

The quadratic approximation in the vicinity of the 
saddle point is 

f (a,4) = d+C2a+Czb+C4a
2+C6ab+C6b

2. (7) 

When the coefficients satisfy Eq. (6) (i.e., C£ 
—4C4C6>0), the saddle point is 

tfsp= ( C 3 C 5 - 2 C 2 C 6 ) / ( 4 C 4 C 6 - C 6 2 ) , 

& S P = ( C 2 C 5 - 2 C 3 C 4 ) / ( 4 C 4 C 6 - C 5
2 ) . 

(8) 

Six points in the parameter space are needed to deter­
mine the coefficients (Cj, j=l>6) of Eq. (7). A pen­
tagonal grid was chosen surrounding an initial estimate 
of the saddle point (aiybi). The deformation energy f 
was calculated for each of these six point sets. A matrix 

x-0.9 

x-Q8 

%'OJ 

FIG. 1. Comparison of saddle-
point shapes as calculated|in a two-
parameter space (continuous line) 
with those of Ref. 5 (designated 
b y # ) . 

x-O.6 

x-0.5 

X-0L4 

1 I p 

Q»0 O80 0.70 O60 O50 Q40 

x-03 

FIG. 2. Relative deformation energy £ versus fissionability 
parameter x. Solid lines are the results of this study and marked 
points (o) are from Ref. 5. For x<0.66 the deformation energy is 
plotted on a J-scale reduction. 

solution of the six simultaneous equations provided the 
coefficients Cy, and the new estimate of the saddle point 
was obtained from Eq. (8). This new estimate was used 
as the initial point in an iterative process with suitable 
grid size reductions until the following convergence 
criteria were met: 

Afl=|a l~aSp|<4.0X10-5 , 

A6= |^-^ S p |<4 .0X10- 4 , (9) 

A £ = | £ ~ £ S P | < 5 . 0 X 1 0 - 8 . 

RESULTS AND DISCUSSION 

Saddle points were determined for values of x from 
0.98 through 0.30 in increments of A#=0.02. Since for 
x= 1.00 the spherical drop is known to be unstable and 
to have zero deformation energy,16 no calculations were 
performed for this value of x. 

For each saddle point the following quantities were 
calculated: the deformation energy £, the surface 
energy Bs, the Coulomb energy Be, the parallel moment 
of interia Ilh the perpendicular moment of inertia Ix, 
the inverse of the effective moment of inertia r, and the 
quadrupole moment Q. The parallel moment of inertia 
Zii was taken about the Z axis and the perpendicular 
moment about an axis at Z=0 perpendicular to the 
Z axis. The quantity r is given by \/I\\ — l/Ii. Cohen 
and Swiatecki's definition5 of the quadrupole moment 
was adopted to facilitate comparison with their work. 

Table II contains the calculated saddle-point proper­
ties. Figures 1 and 2 and Table III are comparisons of 
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TABLE II. Calculated saddle-point properties and shape parameters of drops defined by Eq. (1) 
for the range of fissionability parameters. 

X 

0.98 
0.96 
0.94 
0.92 
0.90 

0.88 
0.86 
0.84 
0.82 
0.80 

0.78 
0.76 
0.74 
0.72 
0.70 

0.68 
0.66 
0.64 
0.62 
0.60 

0.58 
0.56 
0.54 
0.52 
0.50 

0.48 
0.46 
0.44 
0.42 
0.40 

0.38 
0.36 
0.34 
0.32 
0.30 

* 
0.00001 
0.00005 
0.00015 
0.00037 
0.00072 

0.00125 
0.00199 
0.00301 
0.00434 
0.00604 

0.00818 
0.01085 
0.01413 
0.01815 
0.02309 

0.02908 
0.03605 
0.04359 
0.05140 
0.05936 

0.06739 
0.07547 
0.08357 
0.09167 
0.09978 

0.10788 
0.11597 
0.12404 
0.13210 
0.14014 

0.14816 
0.15617 
0.16415 
0.17210 
0.18004 

Saddle-point properties 
Bs 

1.00085 
1.00334 
1.00740 
1.01302 
1.02022 

1.02903 
1.03953 
1.03183 
1.06608 
1.08248 

1.10135 
1.12312 
1.14845 
1.17832 
1.21368 

1.25137 
1.27762 
1.29019 
1.29626 
1.29942 

1.30111 
1.30199 
1.30239 
1.30248 
1.30238 

1.30217 
1.30187 
1.30153 
1.30115 
1.30077 

1.30038 
1.30000 
1.29963 
1.29927 
1.29892 

Be 

0.99957 
0.99828 
0.99614 
0.99312 
0.98917 

0.98422 
0.97818 
0.97094 
0.96235 
0.95222 

0.94028 
0.92614 
0.90924 
0.88878 
0.86386 

0.83655 
0.81699 
0.80734 
0.80254 
0.79995 

0.79852 
0.79775 
0.79739 
0.79730 
0.79739 

0.79762 
0.79793 
0.79831 
0.79875 
0.79922 

0.79971 
0.80023 
0.80076 
0.80131 
0.80166 

In 

0.9547 
0.9117 
0.8708 
0.8314 
0.7934 

0.7566 
0.7208 
0.6859 
0.6519 
0.6187 

0.5865 
0.5551 
0.5250 
0.4969 
0.4730 

0.4594 
0.4610 
0.4692 
0.4784 
0.4872 

0.4956 
0.5035 
0.5109 
0.5180 
0.5248 

0.5312 
0.5374 
0.5434 
0.5491 
0.5547 

0.5601 
0.5653 
0.5703 
0.5753 
0.5800 

h 
1.0259 
1.0574 
1.0949 
1.1393 
1.1916 

1.2533 
1.3260 
1.4120 
1.5144 
1.6374 

1.7871 
1.9730 
2.2099 
2.5231 
2.9531 

3.5073 
3.9796 
4.2452 
4.3875 
4.4664 

4.5098 
4.5314 
4.5388 
4.5366 
4.5276 

4.5137 
4.4963 
4.4761 
4.4536 
4.4298 

4.4049 
4.3790 
4.3524 
4.3254 
4.2979 

T 

0.0728 
0.1511 
0.2351 
0.3251 
0.4212 

0.5239 
0.6333 
0.7497 
0.8736 
1.0054 

1.1456 
1.2946 
1.4522 
1.6161 
1.7757 

1.8916 
1.9180 
1.8957 
1.8625 
1.8286 

1.7961 
1.7656 
1.7369 
1.7100 
1.6848 

1.6609 
1.6384 
1.6170 
1.5965 
1.5771 

1.5585 
1.5407 
1.5236 
1.5072 
1.4913 

Q 

0.2389 
0.4880 
0.7511 
1.0318 
1.3346 

1.6646 
2.0281 
2.4332 
2.8901 
3.4134 

4.0235 
4.7513 
5.6460 
6.7898 
8.3111 

10.2135 
11.7911 
12.6536 
13.0998 
13.3345 

13.4517 
13.4976 
13.4974 
13.4663 
13.4135 

13.3453 
13.2664 
13.1788 
13.0841 
12.9858 

12.8841 
12.7800 
12.6738 
12.5667 
12.4587 

Saddle-point parameter values 
a 

-0.00610 
-0.01933 
-0.03477 
-0.04988 
-0.06341 

-0.07483 
-0.08398 
-0.09093 
-0.09581 
-0.09881 

-0.10011 
-0.09987 
-0.09822 
-0.09526 
-0.09122 

-0.08742 
-0.08675 
-0.08886 
-0.09211 
-0.09584 

-0.09979 
-0.10388 
-0.10805 
-0.11229 
-0.11657 

-0.12089 
-0.12523 
-0.12963 
-0.13409 
-0.13855 

-0.14306 
-0.14760 
-0.15220 
-0.15682 
-0.16150 

b 

-0.8643 
-0.7380 
-0.6211 
-0.5134 
-0.4142 

-0.3231 
-0.2393 
-0.1622 
-0.0912 
-0.0256 

0.0353 
0.0922 
0.1458 
0.1970 
0.2469 

0.2945 
0.3327 
0.3605 
0.3829 
0.4025 

0.4203 
0.4370 
0.4529 
0.4682 
0.4829 

0.4973 
0.5112 
0.5249 
0.5384 
0.5516 

0.5647 
0.5776 
0.5903 
0.6029 
0.6154 

c 

0.9540 
0.9093 
0.8656 
0.8225 
0.7799 

0.7374 
0.6949 
0.6520 
0.6084 
0.5637 

0.5173 
0.4684 
0.4158 
0.3576 
0.2915 

0.2204 
0.1654 
0.1331 
0.1128 
0.0986 

0.0877 
0.0790 
0.0718 
0.0657 
0.0603 

0.0556 
0.0514 
0.0477 
0.0442 
0.0411 

0.0382 
0.0356 
0.0331 
0.0308 
0.0287 

Zo 

1.0466 
1.0931 
1.1398 
1.1871 
1.2354 

1.2850 
1.3361 
1.3894 
1.4452 
1.5042 

1.5673 
1.6357 
1.7115 
1.7973 
1.8962 

1.9998 
2.0690 
2.0971 
2.1056 
2.1052 

2.1003 
2.0931 
2.0844 
2.0749 
2.0650 

2.0548 
2.0446 
2.0342 
2.0238 
2.0136 

2.0034 
1.9934 
1.9834 
1.9736 
1.9639 

data calculated in this study with those of Cohen and 
Swiatecki.5 In Fig. 1 cross sections of the deformation-
energy saddle-point drop shapes are illustrated, while 
in Fig. 2 the deformation energy £ is plotted versus the 
fissionability parameter x for a few values in the range 
of x. Table III consists of the percent difference between 
the calculated saddle point properties and those of 
Ref. 5 for a few values of x. 

From Table III it is seen that all of the calculated 
properties are within 5% of Cohen and Swiatecki's 
properties5 for #>0.70. In support of this result, Fig. 1 
also indicates a close agreement in drop shapes for this 
range of x. This is consistent with Cohen and Swiatecki's 
result5 that only the first two of their parameters had 
appreciable magnitude for the same x range. 

As yet no study of the dynamical motions of the 

TABLE III. Percent difference between saddle point properties calculated in this two-parameter study and those properties calculated 
by Cohen and Swiatecki (see Ref. 5), using nine parameters. The superscript CS refers to Ref. 5. 

X 

0.90 
0.80 
0.70 
0.60 
0.50 
0.40 
0.30 

S£/£cs 

+1.41% 
+2.20% 
+3.26% 
+4.23% 
+4.65% 
+5.50% 
+6.38% 

8BS/Bsca 

+0.03% 
+0.23% 
+0.67% 
+ 1.08% 
+ 1.24% 
+1.60% 
+ 1.71% 

&Bc/Bcc8 

-0 .02% 
-0 .15% 
-0 .61% 
-1 .18% 
-1 .42% 
-2 .30% 
-2 .24% 

6/. . / / . . c s 

-0 .19% 
-0 .85% 
-1.87% 
-0 .75% 
+0.46% 
+1.08% 
+2.53% 

S/JL/ /J . C S 

+0.17% 
+ 1.18% 
+3.64% 
+7.01% 
+8.76% 

+ 10.76% 
+20.06% 

5T/TCS 

+0.86% 
+2.11% 
+3.00% 
+1.72% 
+0.55% 
+0.70% 
-0 .65% 

8Q/Q™ 

+0.85% 
+2.45% 
+4.77% 
+8.05% 
+9.94% 

+15.32% 
+16.89% 
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liquid drop has been made with precision comparable to 
the static investigations of Cohen and Swiatecki.5 Both 
Kelson's and Nix's simplified dynamical treatments9-10 

provide static saddle-point properties which agree best 
with Cohen and Swiatecki's5 for elements less massive 
than radium (fissionability parameter c^0.70). It is 
hoped that the present investigations will provide a 
few-parameter basis for dynamical calculations of 
adequate precision, even for x values approaching 1.00. 
Studies directed towards this goal are presently under 
way. 

I. INTRODUCTION AND SUMMARY 

IN recent years, it has been found that in inelastic 
scattering, the collective levels are more strongly 

excited than others, regardless of the projectiles used. 
The preferential excitation of collective levels by alpha 
particles has been pointed out by Blair.1 Cohen2 has 
noted the similarity between the inelastic scattering of 
protons and deuterons and has emphasized the col­
lective nature of the process. High-energy electron 

* Supported by the U. S. Atomic Energy Commission. 
f Part of a dissertation presented by K. H. Wang in partial ful­

fillment of the requirements for the Ph.D. degree of Yale Uni­
versity. 

t Present address: Harvard Cyclotron Laboratory, Cambridge, 
Massachusetts. 

§ Present address: Physics Department, Texas A & M Univer­
sity, College Station, Texas. 

1 J. S. Blair, Phys. Rev. 115, 928 (1959). 
2 B. L. Cohen, Phys. Rev. 116, 426 (1959); B. L. Cohen and R. 

E. Price, ibid. 123,283 (1961). 
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scattering3 has been shown to strongly excite levels 
known to be collective. Heavy-ion (mC) inelastic scat­
tering has also been shown 4,s to be very similar to the 
alpha-particle scattering. This enhancement can be 
understood in terms of the similarity between the 
matrix elements of inelastic scattering and electric 
transitions, as pointed out by Pinkston and Satchler.6 

Therefore regardless of the projectiles used, the in­
elastic-scattering process has proved to be a good 
method for investigating collective states. 

In the heavy-ion studies of inelastic scattering, the 

3 H. Crannel, R. Helm, H. Kendall, J. Oeser, and M. Yearian, 
Phys. Rev. 123, 923 (1961). H. W. Kendall and J. Oeser, ibid. 
130,245(1963). 

4 S. D. Baker, K. H. Wang, and J. A. Mclntyre, Proceedings of 
the International Conference on Nuclear Structure, Kingston, 1960 
(University of Toronto Press, Toronto, 1960),p. 926; K. H. Wang, 
S. D. Baker, and J. A. Mclntyre, Phys. Rev. 127,187 (1962). 

5 D. J. Williams and F. E. Steigert, Nucl. Phys. 30. 373 (1962). 
8 W. T. Pinkston and G. R. Satchler, Nucl. Phys. 27,270 (I960). 
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Inelastic Scattering and Neutron Pickup for 12C and 160 Projectiles on 208Pb*f 
K. H. WANGJ AND J. A. MCINTYRE§ 

Physics Department, Yale University, New Haven, Connecticut 
(Received 1 February 1965; revised manuscript received 6 May 1965) 

^ P b nuclei have been bombarded with 12C and 160 projectiles under conditions where a semi-
classical description of the process should be valid. In the bombardment of ^ P b with 126.5-MeV 
12C (rj—ZZ'et/hv — l&.S), two inelastic-scattering peaks are observed corresponding to Q= — 2.7±0.3 MeV 
and —4.5±0.3 MeV. The angular distributions of the inelastically scattered 12C show a monotonic increase 
with decreasing angle until a maximum is reached at about 0c#m. =35°. This angle corresponds to grazing 
collisions, assuming that particles follow Rutherford trajectories. The Q= — 2.7-MeV peak is identified as the 
excitation of the 2.6-MeV state in ^ P b . The Q= —4.5-MeV peak could be the excitation of the 4.4-MeV 
state in 12C or the 4.3-MeV state in ^ P b . The inelastic scattering cross section for the excitation of the 
2.6-MeV ^ P b state by 160 projectiles having approximately the same velocity (166.4 MeV) is a factor of 2 
smaller than when 12C is used as a projectile; this result is somewhat surprising since the semiclassical con­
ditions are similar and the elastic-scattering cross sections differ only by 20%. The cross section for the 
4.5-MeV excitation is not observed and is smaller by more than a factor of 4. Therefore, in the "C-f-^Pb 
case, the major contribution to the 4.5-MeV excitation very likely originates from the excitation of the 
4.4-MeV state in 12C. The reactions 208Pb(180,17O)207Pb and 208Pb(12C, " Q ^ T b were also observed in these 
experiments. Both angular distributions have a maximum differential cross section of 100 mb/sr, which is 
considerably larger than those ordinarily observed in neutron-transfer reactions. The excitation energies 
are consistent in both reactions with neutrons being picked up by the projectiles into d&/2 states. 


