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We have evaluated single-particle-exchange forces at low energies for all two-particle meson-baryon 
states with angular momentum from S1/2 to ffn/2. Using real masses and SU(3) coupling constants normal
ized to experiment, we considered the exchange of the following SU(3) multiplets: baryon octet, P3/2 
decuplet, F0*(1520) singlet, vector-meson octet (vector and tensor coupling), and D3/2 octet. The forces 
were classified in the direct channel according to SU(3) irreducible representations, an association which 
is inexact owing to mass splitting but which nevertheless allows us to relate resonant states thereby gener
ated in various isospin and hypercharge channels. We found strong attractive forces in the Pi/2,Fs/2 octet, 
Pi/2,Fi/2 decuplet, and Dz/2 singlet states. In particular, the exchange of vector mesons was observed to 
play a significant role in all these channels. Our analysis suggests that the D5/2 Fi*(l765) be assigned to an 
octet, the other members of which are relatively inhibited by mass-splitting effects to the extent that they 
may not be observable experimentally as resonances. No forces likely to generate resonances in the multiplet 
27 were found. 

1. INTRODUCTION 

SCATTERING experiments performed in the past 
five years have shown that the system of strongly 

interacting particles contains a notable amount of 
structure. Not only do the data exhibit the presence of 
many bound states and resonances, but when each such 
state is defined in terms of a set of quantum numbers, 
the system is found to have a strikingly systematic 
appearance. We examine these effects by presenting in 
this paper a multichannel analysis of low-energy meson-
baryon elastic scattering. This is done by deriving ex
pressions for and studying the properties of long-range 
single-particle-exchange forces which we take to con
stitute an important part of the low-energy dynamics. 
Although we make use of the language of dispersion 
relations to do this, our approach can essentially be sum
marized by the following set of rules and assumptions: 

(1) Use Lorentz invariance to decompose the scat
tering amplitude into invariant functions. 

(2) Represent a particle by a pole in the scattering 
amplitude, the location and residue of which are de
termined by the particle mass and coupling constant, 
respectively. 

(3) Assume a continuation of the amplitude away 
from this pole to the physical regions of the crossed 
channels. 

Using real masses and SU(3) coupling constants nor
malized to experiment, we determine Born phase shifts 
bB(W) in the direct-channel [see Figure 1(a)] partial-
wave states i = 0 + , 1±, 2± , 3± , 4 ± , 5 ± (where 
i = / ± J ) at center-of-mass energies W such that 
1bB(W) I < 1 radian. This analysis constitutes merely 
the first step in a complete dispersion-theoretic cal
culation of a scattering amplitude. However, such an 
ambitious project is beset by the twin difficulties of (i) 
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author to Cornell University in partial fulfillment of the require
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lack of knowledge of how long- and short-range forces 
behave at energies far above threshold and (ii) imposing 
unitarity correctly, the number of open channels in
creasing without limit as energy becomes arbitrarily 
large. Therefore, although limiting ourselves to con
clusions of qualitative or at best semiquantitative 
nature, we work in a kinematical region where we are 
relatively confident of the important forces, and where 
a multichannel treatment is well within reach. 

We express the various kinematical relations relevant 
to this problem in Sec. 2 and derive expressions for 
forces in Sec. 3. Several important details of the deriva
tion are considered in Sec. 4 and various applications 
are treated in Sec. 5. 

2. KINEMATICS 

The reactions we consider in this paper are of the 
type shown schematically in Fig. 1(a). The quantum 
numbers (p,Mi,a), (g,w*,£) describe the initial baryon 
and meson, and (p',M/,c), (q',nif,d) the final baryon 
and meson where, in particular, for the initial baryon, 
p—four-momentum in center-of-mass frame, Af»= mass, 
and a=all other relevant quantum numbers, and 
similarly for the other particles. The unitary scattering 
matrix 5 connecting the initial state (i) to the final state 
(f) may be expressed in terms of the transition matrix T, 

Sfi= bfi+i{2TrybM{p+q-p'-q') 

( EiEf \ 1 / 2 

X( ) Tfi (1) 
\^03iO)fMiMf/ 

and T may be decomposed into two Lorentz-invariant 
amplitudes A, B by1 

T=A+±(q+q').yB. (2) 
1 P. T. Matthews, Lectures on Strong Interactions (W. A. 

Benjamin, Inc., New York, 1964), gives a derivation of the rele
vant kinematics. Our metric is x-y^xoyo—x*y and we adopt the 
convention for y matrices given in S. Schweber, Introduction to 
Relativistic Quantum Field Theory (Row, Peterson and Company, 
Evanston, Illinois, 1961). We take h—c—\. 
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We further define amplitudes related to the phase where, if x is the cosine of the scattering angle, 
shift in the j ' = / ± | angular-momentum state, letting 
k(= |p | = |q| , * ,= |p ' | = |q ' | : /i=Ei U*Pm'(*)-fi-Pt~i'(*)l, 

fi±=-

(5a) 

(3) 

and the differential scattering cross section in the 
center-of-mass system: 

d<r k/ 

A t - J f dxCfiPi(x)+f2Pl±i(x)2. (5b) 

_ _ v \(f\fi+(<T-d')(<T-d)f2\i}[2, (4) T h e amplitudes fly f2 are expressed as functions of 
dQ ki»pia» A , B by 

\hJ \B/ 2W 

/ Mi+MA 
KEi+MiKEf+MjJl* (W YiEi+MtKEf+MjJl* 

/ Mi+MA 
-UEt-MdiEt-MiiJi* \W+ pEi-MME,-M,)Ji* 

(6) 

where W is the total energy in the center-of-mass system, 
which we shall measure in units of the pion mass ft, and 
E is the baryon energy 

E(W) = (W2+M2-m2)/2W. (6a) 

It is appropriate that we now introduce the con-

M (q.mj.b) M'tq'.nyi) 

(a) 

cept of crossing into the discussion by considering 
several more kinematical relations suitable for de
scribing the reactions 

P+B-^P'+B', 

B+B'-*P'+P, 

B+P'-^B'+P. 

(7a) 

(7b) 

(7c) 

A bar denotes an antiparticle, and B, P are a baryon and 
meson, respectively. We let 

B(p,Mita) BV,Mffc) U=(p-q')\ 

(8a) 

(8b) 

(8c) 

- M ' 

(b) 

M- B' 

represent the square of the invariant energy in the 
center-of-mass system of the reactions 7(a), (b), and 
(c), respectively. The momentum in the reaction 7(a), 
the direct channel, is 

£2= w*/4-}(M*+m*)+(M2- m2)2/4W2 (9) 

and the quantities t, u are related to direct-channel 
parameters by 

/lEiEr-Mf-Mf2 \ 
\^A x) , (10a) 

\ 2kikf J 
t= —2kii 

«= tnS+tnf2- W2+2EiEf- 2kikfx. (10b) 
B' 

(c) 

M- M' 

FIG. 1. (a) The process under consideration in this paper: a 
meson M and baryon B scatter in the s channel elastically into a 
meson M' and baryon B'. (b), (c) Diagrammatical representation 
of single-particle exchange forces generated by #- and /-channel 
processes, respectively. 

The dynamical information about meson-baryon 
scattering is completely described by the invariant 
amplitudes A, B. We assume that each of these satisfies 
the Mandelstam representation,2 which describes their 
singularity content and crossing properties. In par
ticular, we wish to find expressions for forces in a state of 

2 S. Mandelstam, Phys. Rev. 112, 1344 (1958). 
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definite angular momentum, and so we study the 
partial-wave projections3,4 

esses, we define amplitudes Au(s,t), Bu(s,t) by 

x A4UCM)\ 1 fx duf (A(u',t)\ 

0 = i / KB)P|W'
 (U)

 \B*(SA/TJ ^u\B{u',t))' (12) 

3. DERIVATION OF EXPRESSIONS FOR 
LONG-RANGE FORCES 

One generally writes5 dispersion relations by fixing 
the energy (fixed s) or the momentum transfer (fixed t). 
We choose to use fixed-s dispersion relations in the 
following derivations, delaying a discussion of the 
significance of this choice until the next section. In 
order to determine forces generated by ^-channel proc-

where (i) we momentarily ignore isospin crossing rela
tions, (ii) the lower limit on the integral includes all 
bound states in the u channel, a device which treats 
bound states and resonances equivalently in order to 
keep the angular-momentum bookkeeping to a mini
mum, (iii) the variable / inside the integral is a brief 
way of expressing (Mi2+Mf2+nii2+mf2—s—u'), since 
the variable s must be kept fixed. We write (12) in 
terms of the amplitudes / i , fi by using (6), 

D ( 5 , « ' ) = — 
2W 

/ /A 1 r"> du' / / A 
( , ) = - / —D(s,u')Im(J ) , 
\ / 2 / W J U —U \j2/ 

( ) (Mi+Mf+u'^-W) I ) (Mi+Mf-u'1'2-
\(E/+MiXE/+Mf)/ MEi'-MiXEf'-Mf)/ 

(Et-MiXEf-Mf)^2 
/ {Ei-Mi)(Ef-Mf) y * / {Ei-MiHEf-Mf) \^2 

WtEi'+MiXEf'+Mf)/ \(Ei'-Mi)(E/-Mf)J 

where the primed and unprimed quantities refer to the 
uf and 5 channels, respectively. From (10b), 

u'—u=—2kikf(y—x), 

tni2+tnf
2+2EiEf-u'-W2 (IS) 

2kikf 

and expanding (y—x) in terms of Legendre functions of 
the first and second kinds,6 

(y-x)-i=Z(2n+l)Qn(y)Pn(x), 
n-0 

(16) 

we obtain 

\ / 2 / 2irkikf 
f ' \ = fdu'Z(2n+l)Pn(x)Qn(y) 
\J2' 2wkikf J n-0 

x{Ow i +O i n / ' ( » ) 

If we know the full amplitudes in the u channel, (17) 
gives the resulting force in the direct channel. Now, 
part of our basic assumption is that the strongly inter
acting particles be dynamically equivalent entities de-

3 S. Frautschi and J. Walecka, Phys. Rev. 120, 1486 (1960). 
4 W. Frazer and J. Fulco, Phys. Rev. 119, 1420 (1960). 
6 Our approach is similar to that presented in P. Carruthers, 

Phys. Rev. 133, B497 (1964). 
• E. Whittaker and G. Watson, Modern Analysis (Cambridge 

University Press, New York, 1952), 4th ed., p. 321. 

(13) 

W) 

W) 

(14) 

scribed by a self-consistent set of amplitudes. We can 
get a semiquantitative check on this by finding the 
forces generated in the direct channel by bound states 
and resonances in crossed channels, since these quantities 
presumably dominate the amplitudes at low energies. 
If we consider a particle of mass M and spin j = /'dbj 
in the u channel, then from (5a), 

Muf
9t) = ±Py±i\Xu)fv±(M') 

f,{u\t)^^Pv
f{xu)fv±{uf) 

(18) 

where the prime on the Legendre polynomials IV(#W), 
Pi'±i(xu) refers to differentiation with respect to the 
angle of scattering in the u channel, 

xu= (t+2Ei*Ef«--Mi
2-Mf

2)/2kiukfu. (19) 

We next make the sharp-resonance approximation, 

Tmfv±M-
kir^kfW 

Wr8(u'-M2) (20) 

which yields a Breit-Wigner form upon insertion into a 
dispersion relation. The subscripts r imply evaluation at 
the resonant energy, and the quantities I\ r , Tfr may be 
considered decay widths into the initial and final states, 
respectively. Use of (20) means that we are treating the 
particles as having no structure, so that in this approxi
mation, our forces are equivalent to those found in 
lowest order renormalized perturbation theory with a 
particular choice of propagator. 
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Upon performing the uf integration, 

(J U i Z(2n+l)Pn(x)Qn(y)\( )&Pi>±i'(xu))+( )(±/V(*«)) , (21) 

and applying (5b), we come to the result, 

p . l/2p 1/2 JY 

fl±(s)~ " \j2^lDll(s,M)(^Py±1
f)+D12(s1M)(±Pl/)2Qi(y) 

+lD2l(sJM)(^Py±i)+D22(syM)(±Pl^2Qi±i(y)}. (22) 

Next, we indicate the approach needed to find a general expression for the forces generated by processes in the 
direct t channel. Since helicity amplitudes F++, F+- are generally used to describe the annihilation reactions which 
take place in the i channel, we relate them to the invariant amplitudes A,B, letting qiyqf be the center-of-mass 
momenta of the reaction PP —> BB', and zt be the cosine of the scattering angle; 

0 - O *• 
n1" -(M<+M/)zt(-ty) 

(Sir) B qV qiil-zS)1'* 

16T 

(1-z,2)1 '2 

(23) 

(28) 

The helicity amplitudes may be decomposed into partial by fts, /3B, we obtain 
waves (TJ= iJM-.XiXt}), , ,_ 

i r+^=(f)«*(-) — - — 

? / ' (24) /qi\ut/y/2pa+PD\ 

F+_= £ TJPj'(zt), W \ 3 / 
q, J [ /(7+l)]"» 

Since one determines the vector-meson-baryon coupling 
where strength from the residues of pole fits, Ti(t), to form 

TJ=z — '(—\ SJ (2$) ^actor data, we combine (28) with Eq. (3.17) in Ref. 8 
\qj ' to yield the more convenient expressions, 

and may also be related to the angular momentum T y=1_ (Mi+Mf) f l uO r2(Q "j 
states, | JM;LS); + 2 * L J* K ^ H - M , ) J ' 

|7Jf;X^2> = EL</i lf ;LS| /Jf ;X^>|/J lf ;L5>. (26) (Af^+Jf,) r 1^(0 1 

From Jacob and Wick/ r -* " 1 = " ^ — ^ ^ ( M H - M , ) * 2 ^ ] ' 

</M;L5|/M;XiX2) . . . . r 

which implies 
/2L4-1\1 / 2 = fe^l) ««'i«WSWiXl-XJ. (27, ^ J j W ^ f i •-,(,) -i 

2 2 L |* J(Af<+Af/)J 
Equations (27), (26), (24), and (23) can be used to find o (Tf.-X-M ) 
resonant forms for the invariant amplitudes A, B which F+_= — (1—%?)1/2- f (30) 
then lead to expressions for forces. In fact, we shall only 2 2 
be interested in forces generated by vector mesons, for 
which we now go through the above procedure in v [~ r*W , . 1 
somewhat more detail. The only possible resonant Lx(Mi+Mf) J* 
states are S and D waves, so representing these states 

(29) 

8 P. Federbush, M. Goldberger, and S. Treiman, Phys. Rev. 112, 
7 M. Jacob and G. C. Wick, Ann. Phys. (N. Y.) 7, 404 (1959). 642 (1958). 
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Introducing pole fits for the form factors, 

Yi{t) = yi/{m2~t-ie)J ImTi(t) = wyid(m2-t), (31) 

and applying (30) and (23), we find 

611-72(5—u) 
A(t,s)= - ; 

(w2-0 

B(t ,s)=-Uw(-
71 y2(Mi+Mf)\ 

72p G2,(0) l.S3e/2M 
7 i s •1 .0 . 

(32) 

\(m2-t) 

Calculations and experimental data give for WT —•» iYiV",9 

7ip Gip(0) 0.5e 
(33) 

Since there is at present no experimental information 
on most reactions of the type we are considering, it is 
advantageous from the viewpoint of finding forces in 
meson-baryon scattering to assume the validity of 
SU(3) and adopt a Lagrangian formulation10 in terms 
of the vector and tensor couplings of vector mesons to 
baryons. Substituting the normalization 

/ P J W / P " / 4 * ^ " 3 7 i 1 gpiVisr/pTir/47r=3M72, (34) 

into (32) and using (11) and (10a), we find the following 
forces for the vector and tensor coupling of vector 
mesons to baryons (still ignoring isospin crossing), 

£iy£2 1 f / Mi+Mf\ 

fl±v{s) = — -rr^\l(Ei+Md(Ef+Mf)2
1^ JQi(y') 4TT kik/W 

/ Mi+Mf\ } 

+ Z(Ei-Mi)(Ef-Mf)Jt*lw+ Jg^GOj (35) 

fi±T(s)=~ 
4TT W 

- { [ ( ( Z ^ - M ^ z + M , ^ 

X & ± i ( / ) - [ ( i v f ^ ( ^ (36) 

where 
M*+2EiEf-Mi2-Mf2 

2kikf 

Equations (22), (35), and (36) constitute the set of 
forces which we shall analyze further in the next sec
tion and apply to specific particle reactions in the final 
section of this paper. 

4. ISOTOPIC SPIN CROSSING, UTILIZATION 
OF SU(3), AND COMMENTS UPON 

THE DERIVATIONS 

The first topic treated in this section is the determina
tion of the isospin-crossing coefficients for a general 
two-particle meson-baryon scattering process. There are 
several alternative methods which may be used, and in 
fact, were used in the course of the research which this 
paper describes. We present only one of these here since 
it is simple, rapid, and very useful in handling multi
channel scattering processes. 

The group which expresses the structure of the iso
spin formalism, SU(2), is a subgroup of SU(3). A well-
known conjecture11 is that all the strongly interacting 
particle states belong to irreducible representations of 
SU(3). (The actual validity of this assumption is not 
critical to our argument.) In particular, we assume that 

9 J. Ball and D. Wong, Phys. Rev. 133, B179 (1964). 
10 P. Carruthers in Lectures in Theoretical Physics (University 

of Colorado Press, Boulder, Colorado, 1964), Vol. 7, p. 82. 
11 M. Gell-Mann, Phys. Rev. 125, 1067 (1962). 

the two-particle meson-baryon states are linearly re
lated to the irreducible representations, 1, 85, 8JL, 10, 
10, 27, a relationship expressed in several sets of tables 
now in print.12 For instance, the pion-nucleon state 
with isospin | is given by 

NTT=V2= - (W20)( 127)+318S) 
+V5\SA)+VS\W)) (37) 

where we have adopted a certain choice of phase be
tween the SU(3) states. Further, the crossing properties 
of Figs. 1(b), 1(c) have been calculated in several 
places,13-15 and are reproduced in Appendix 1. We can 
therefore express any reaction of this type as 

Tfi= (/| rx(Pi+r8s(p85+r8A(p8A+rio(Pio 
+ rio(Pi5+ r27(P27+ T8SSA(?8SSA I i) 

where the subscripts i, f denote two-particle meson-
baryon states of some definite isospin. Upon expressing 
the initial and final particle states in terms of SU(3) 
states, we find the transition matrix element Tfi in 
terms of known quantities such as the SU(3) crossing 
element, the masses of the various particles, and the 
coupling constants which represent each of the vertices. 
Before we give an example of this procedure, we men
tion a few words about the coupling constants. Since the 

12 P. Tarjanne, Carnegie Institute of Technology Report No. 
NYO-9290A (unpublished). 

13 R. E. Cutkosky, Ann. Phys. (N. Y.) 23, 432 (1963). 
14 A. W. Martin and K. Wali, Nuovo Cimento 31, 1324 (1964). 
16 J. DeSwart, Nuovo Cimento 31, 420 (1964). 
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experimental information regarding coupling constants 
is quite meager, we are forced to assume the validity 
of SU(3) values which, according to some indica
tions,16,17 may be poor approximations in several cases. 
These are taken from SU(3) invariant Lagrangians 
which are presented in Appendix 1. We now find the 
isospin crossing coefficient associated with the baryon 
exchange contribution to the reaction Nw —» 2K in the 
isospin one-half channel. Using the wave function, 

- (l/v
/20)( 127)+318a)- V$ I SA)~VS110)) VK r-i/2= 

along with (37), and reading off the appropriate SU(3) 
crossing elements from the table in Appendix 1, we find 

(2K\ T\ Nw)= (l/20)(T27+9T83+5T8A+5Tio), 

20 
>T4 

- - ( l - 2 / + 4 / 2 ) ~ 1 8 ( l ~ 2 / + 4 / 2 ) 
0L3 

10 40 1 
+ - ( 5 - 1 0 / - 4 / 2 ) (1-5/+4/*) , 

3 3 J 

= ^ x 2 ( 2 / 3 ) ( - 1 0 / 2 + 5 / - l ) , 

where all kinematical quantities have been omitted and 
/ i s the BBP vertex mixing parameter. The above cross
ing element is a linear combination of the A and 2 ex
change contributions which we can find separately as 

follows: 
(2K\ T\NT)=ct(2K,A,NT)+l3(XK,X,Nw), 

= - ! a ( l + / - 2 / * ) + / 3 ( 2 / - 4 / 2 ) , 

from which we find a— 1, f}= 2 so that the isospin cross
ing is (2K,1L,NT)+2(2K2,NT). The method just 
applied is valuable in that once the phases of the 
coefficients connecting the SU(3) and particle bases 
have been fixed, the phase convention for any meson-
baryon single-particle-exchange reaction is known. We 
present a list of the relevant wave functions and crossing 
coefficients in Appendix 1. 

The expression for forces generated in the s channel by 
processes in the u channel, Eq. (22), was left in terms of 
decay widths r»-. In some cases, it is preferable to ex
press the forces in terms of SU(3) coupling constants, 
so we now find how to relate widths to coupling con
stants using much the same technique as exhibited in 
the previous section. For purposes of clarity, we 
specialize to a particle of angular momentum, y = l + , 
giving other relevant results in Appendix 1. We start 
by defining amplitudes A*(s,t), B9{s1t) as 

M9(*>t)\l r &' jm(A(sf,t)) (38) 
\B'(s,t)) TJ (S'-S) \B(s',t))' 

where the lower limit of integration covers all bound 
states in the s channel, and we temporarily ignore iso
spin. Applying (6) in the case of elastic scattering, we 
find 

O-I/^O-
({W+y/s'){E+M) (W-\Zs')(E+M) 

C(V)=«-1W«M=-
2W 

E'+M E'-M 

(y/s'-W){E-M) (W+^/s')(E-M) 

E'+M E'-M 

(39) 

From (5a), we have 

/ i = 3 # / i + , / 2 = — / i + , 

also assuming the resonance approximation, 

wT(s) 
Im/i+CO= 5(s'-M*)Wr. 

k(s) 

Integrating, and including the isotopic weight of the 
particle in the direct channel a, we find 

T(s) a 
fi+(s) = Cn(s,M2)—Wr-

If we assume the width for a particle of spin /=/db has 
the energy dependence 

/k\2l+l 

rw=r'(r) • 
then 

aWT
2 k2 Tr 

fi+(s) = -

(40) 

{Wr+M)2-m2 kr
3 2 
(W+M)*-m* 1 

X-

k(s) M2-s 

» K. Wali and R. Wamock, Phys. Rev. 135, B1358 (1964). 
" V. Gupta and V. Singh, Phys. Rev. 136, B782 (1964). 

W2 M-W 
From (41), we define the coupling constant as 

a TrWr2 

V 
2kT* (Wr+M)2-m2 

(41) 

(42) 
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The connection with SU(3) is seen by treating the 
N*Nw vertex as an example. The S(7(3)-invariant 
Lagrangian reads, omitting space-time dependence, 

£ = gD
2W2N*Nw+---), 

and so, in order to find the over-all coupling g0
2 

from experiment, we note go2=0.5gN*Nir which gives 
go2=0.22(M~2). 

The final part of this section is devoted to a study of 
some features of the forces we derived in the previous 
section. We first consider the limiting values of Eqs. 
(22), (35), and (36) for asymptotically large values of 
the center-of-mass energy W. The results are 

w-channel exchange [Eq. (22)] of a particle with 

fi±~W2(l'~1)±l \nW, which diverges for 

' > Q " j-C'-!> (43) 

^-channel exchange of a vector meson [Eqs. (35) 
and (36)]: 

fi±~ln.W, which diverges. (44) 

This is the well-known divergence of forces arising from 
the exchange of high-spin objects. The result is un
doubtedly unphysical and means that the concept which 
we assumed of a "particle" as a structureless entity is 
incorrect. The application of Regge poles offers at pres
ent a promising approach to this problem but the theory 
is still rather inchoate. At low energies, we hopefully 
expect that our forces differ in an insignificant way from 
the Regge pole forces. For instance, consider the force 
generated in TN scattering by nucleon exchange. The 
work of Frautschi and Walecka3 indicates that the 
physics in the low-energy tail of the wN physical region 
is dominated by the near or "static" exchanged nucleon 
cut. Any point on this cut corresponds to a range of 
values of u, the largest such range being M2— 2m2 <u 
<M2+2m2. Estimating the slope of the nucleon tra
jectory from the N(93S) and iV***(1688) masses, and 
applying a straight line approximation over this range 
of u, we find that the nucleon's angular momentum 
changes by about 4% and so our assumption of fixed 
angular momentum is a good one in this case. Un
fortunately, the situation is worse for the exchange of 
high-spin objects since a large contribution to the low-
energy force comes from the far left-hand cut 0>s> in 
some cases.18 Since the Legendre expansion (5a) di
verges for almost all the region s<0, we are in doubt 
about the predicted forces we find for the exchange of 
continuum states. That is, in situations where the 
"static" pole is not large, all we can hope is that for 
low energies, the Regge amplitude is approximated to 
some degree by a truncated Legendre expansion. 

18 E. Golowich (unpublished). 
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Early in the derivations last section, we decided on 
fixed s- instead of, say, fixed t dispersion relations. In an 
approximation scheme where one does not evaluate the 
single dispersion integrals exactly, different results are, 
in general, found depending upon which is used. Let us 
now consider the w-channel contribution, (12), where we 
eventually make the sharp resonance approximation in 
calculating forces generated by ^-channel poles. Our 
approach is to continue the pole terms from the physical 
u channel to the physical s channel by fixing the cosine 
of the angle of scattering, 

xu= (t+2Ei
uEf

u-Mi
2-Mf

2)/2ki
ukf

u 

as follows. We use the Mandelstam relation, 

t=Mi2+Mf2+mi2+m/2-- s—u 

and evaluate all quantities in the cosine which depend 
upon u at the pole position, u=Mr

2* If, instead, one 
evaluates the ^-dependent quantities at u=Mr

2, but 
fixes the momentum transfer /, 

f{2EiEr-Mi
2-Mf

2 \ 

\ 2kikf I 

then one finds that, if the orbital angular momentum of 
the exchanged state V is less than or equal to the orbital 
angular momentum of the direct channel I, the forces 
are identical. Otherwise, this is not the case.19 

5. APPLICATIONS 

We shall now analyze low-energy meson-baryon re
actions in terms of the long-range forces which have 
been derived. The maximum momentum transfer for 
such reactions at a given center-of-mass energy W is 
twice the center-of-mass momentum 2k, and for small 
enough k, say, &<M+w=baryon mass+meson mass, 
we expect the long-range effects to dominate. Our forces 
are real, and constitute an approximation to the 
"Born phase shift", 

fi±(W)qi
l{2qf

1l2=eiS*sm8l±~8i± if 5 , ± <1. (45) 

Using a CDC-1604 computer, we calculated the approxi
mate Born phase shifts for the partial waves 0 + to 5— 
in all two particle channels at ten energies in the low-
energy region. The forces are generated by the exchange 
of the following SU(3) multiplets (the letters J5, D, 
etc., indicate the notation we use in tables which appear 
later). 

1. Baryon (mixing parameter=0.35) (B). 
2. Decuplet (D). 
3. Vector meson. 

(a) Vector coupling (mixing parameter = 1.0) (Vv)* 
(b) Tensor coupling (mixing parameter=0.25) (VT). 

4. F0*(1520) singlet (S). 
5. Z)3/2 octet (mixing parameter=0.40) (O) . 

19 B. Thomas, Cornell University, 1964 (unpublished). 



B 1 3 0 4 E . G O L O W I C H 

We choose to exchange only those multiplets which have 
been confirmed experimentally. Further experimental 
evidence may allow us to expand this program with the 
addition of an octet of j= 3— resonances and a decuplet 
of y = 3 + resonances. Of the former, only iV*(1688) 
and F0*(1815) have been found while for the latter 
iV*(1920) is the only confirmed state. Actual masses are 
used to describe all particles, and SU(3) estimates for 
coupling constants, normalized to the experimentally 
determined value as in the previous section, are adopted. 
For a definite strangeness and isospin state, the output 
for a given energy generally consists of a matrix since 
several two-particle meson baryon states can have the 
same quantum numbers. We also find the diagonal form 
of such a matrix since this gives us information regard
ing 5*7(3) amplitudes.20 

(a) S-Wave Nx, NK> NK Reactions 

As a first attempt to check the consistency of our 
forces with low-energy phenomena, we examine the 
5-wave Born phase shifts for wN, KN, RN reactions. 
Ross21 has performed an analysis of these using the 
inverse matrix amplitude technique and found the re
sults to be consistent with the exchange of an octet of 
vector mesons with pure F coupling. Our results are 
shown in Fig. 2. In all but the 5 = — 1, T= 0, 1 channels, 
the vector meson exchange with vector coupling is 
dominated by other forces, which seems to contradict 
Ross' result. However, Table I, which relates the total 

TABLE I. 5-wave Born ph 
energy W 

5 = 1 , 
Channel T = 0 

W (M) 10.3 
<5total 8 .5 
bvy 3.5 

5 - 1 , 

r=i 
10.3 

-11 .6 
- 7 . 0 

ase shifts (deg). (Center-of 
in pion masses fi.) 

5 — 1 , 

r=o 
10.3 
8.5 
9.0 

5 = - l , 5 = 0, 

r=o r=| 
10.5 7.8 
5.6 17.0 
5.0 3.0 

-mass 

5 = 0 , 
T 3 
1 — 2 

7.8 
- 6 . 0 
- 1 . 5 

FIG. 2. 5-wave Born phase shifts 5 (deg) as a function of center-
of-mass energy W in pion masses /*. The reactions considered are 
r - 0 , 1 KN; r = J , f vN; T=0 , 1 RN elastic scattering. 

20 A. W. Martin and K. Wali, Phys. Rev. 130, 2455 (1963). 
21 M. Ross, Bull. Am. Phys. Soc. 9, 629 (1964). 

Born phase shift to that of vector meson exchange, is 
rather interesting. In all cases, the two have the same 
sign, and except for 5=0 , T= J, the magnitudes are not 
too far apart. If our forces do represent reality to some 
degree, then the low-energy physics seems to be more 
complicated than an analysis of scattering lengths would 
indicate. Of course, our forces could be incorrect and, 
for instance, the fixed t description could be valid. How
ever, again it is found that, e.g., in the channels 5=0 , 
T=h f, the nucleon exchange term is far larger than 
the vector-meson contribution. Therefore, all we can 
say is that our description seems consistent with ex
perimental 5-wave data, although it is certainly not 
clear that various short-range forces which we have 
ignored are insignificant (witness the suspiciously large 
contribution from the Z>3/2 states). 

(b) Low-Energy Resonances 

Our primary aim in studying meson-baryon forces is 
to reproduce the low-energy structure. The most con
venient way to classify the large set of numbers which 
we have calculated is according to SU(3) multiplets, 
and possible Regge recurrences. Because we do not con
sider either short-range forces or the contribution of the 
unitarity integral over the right-hand cut, it is not 
possible for us to determine the wave function (and 
hence branching ratios) of any resonance discovered in 
this analysis. Rather, the association with 5*7(3) states 
allows us to relate the classified bound states and 
resonances generated in various isospin and hypercharge 
channels. Although the symmetry is badly broken for 
long-range forces at low energies, it is still possible to 
apply the concept of 5*7(3) to diagonalized Born-phase-
shift matrices. We can identify the various irreducible 
representations of 5*7(3) by examining the eigenvectors 
of the diagonalized matrix since we know the relation 
between the particle and 5*7(3) bases from our isospin-
crossing technique. As an example of this we consider 
diagonalization of the Born-phase-shift matrix with 
quantum numbers 5=0 , T = | , j=3— generated by 
baryon-exchange forces at energies W=13, 14.5 pion 
masses in the center-of-mass system. The relevant 
eigenvector amplitudes are given in Table II. Since we 
use real masses in our calculation, the eigenvectors 
found from diagonalizing the force matrix do not equal 
the 5*7(3) eigenvector, but tend towards it as the energy 
is increased and mass-breaking effects become less 
significant. However, even in the example shown in 
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TA^BLE II. Eigenvectors of Born-phase-shift matrix (deg) for channel 5 = 0 , T—\. 

Particle 
component 

Nx 
AX 
XK 
Nrt 

8 
-0.97 
-0 .01 
-0 .02 
- 0 . 2 

Particle 
component 

N-K 

AK 
2K 
Nn 

w= 8' 
-0 .04 
-0 .22 
+0.97 

0.08 

8 

-0 .67 
-0 .22 
-0 .67 
-0 .22 

13.0 M 
10 

-0 .07 
0.89 

+0.24 
-0 .37 

SU($) prediction 

8' 

- 0 . 5 
- 0 . 5 
+0.5 

0.5 

10 

- 0 . 5 
0.5 

+0.5 
- 0 . 5 

Actual eigenvectors 

27 
-0 .22 

0.39 
- 0 . 0 

0.90 

8 
-0 .95 
-0 .02 
-0 .09 
- 0 . 3 

27 

-0 .67 
0.67 

-0 .22 
0.22 

pf= 
8' 

-0 .14 
-0 .36 
+0.88 

0.21 

= 17.0 UL 

10 
- 0 . 0 8 

0.79 
+0.43 
-0 .43 

27 
-0 .26 

0.49 
-0 .03 

0.82 

Table II, one of the largest cases of mass breaking we 
treated, the association can be made. In case the ex
change of a multiplet, e.g., J9, VT, leads to the transi
tions, 8 <-> 8', in the direct channel, we modify the above 
prescription somewhat. The appropriate SU(3) eigen
vectors are not 8, 8', but rather 8(1), 8(2), the linear 
combination of 8, 8' determined by diagonalizing that 
2X2 submatrix of the SU(3) crossing matrix which de
scribes the transitions 8 -> 8, 8' -> 8', 8 -» 8'. 

(i) Decuplet Trajectory 

It has been conjectured that there is an intimate 
dynamical relationship between the j = 1+ and j=3+ 
baryonic resonances.22 In Figs. 3 and 4, we plot the 
diagonalized phase shifts for j=l+ and i = 3 + , re
spectively in the states 5=0 , r = f ; S = - l , T=l; 
S= —2, r = f , and S= —3, r = 0 . The most significant 
future of each angular momentum state is the large 
amplitude for 10. There are attractions for 27 and 8(1) 

but these are down by at least a factor of three. The reso
nances N*(1238), Fi*(138S), E*(1520), and Q-(1676) 

13J0 132 13.4 13.6 118 

FIG. 3. i/"<=l+ Born eigenphase shifts 5 (deg) as a function of 
W (/*) in the channels 5 = 0 , r = f ; S = - l , r = l ; S = - 2 , T = J ; 
5 = - 3 , T « 0 . 

verify our findings for the j=l+ state, but at present 
only one of the j=3+ states, iV***(1920), has been de
tected experimentally. Our results indicate that rela
tively large attractions occur for j=3+ in the channels 
( 5 = - l , T = l ) , ( 5 = - 2 , r = J ) , and ( 5 = - 3 , r = 0 ) , 
with(5=2, r = | ) especially favorable. The dynamics of 
these large phase shifts is shown in Table III in which we 

TABLE III . Born phase shifts (j—1+, 3 + ) in channels 5 = 0 , 
r = | , and 5 = - 3 , T = 0 . 

Exchanged 
states 

B 
D 
Vv 
VT 
S 
O 

Total 

i = l + P F 
10 

83.2 
-2 .6 

-12.5 
39.0 

3.5 
-40.0 

70.6 

S=0, 

= 13 fi 
27 

5.8 
-0 .4 
-1 .6 

3.4 
-3 .5 
-2 .6 

1.1 

r=f 
d (deg) 

j = 3 + W = l3ti 
10 

5.4 
-0.06 
-0.02 

2.89 
0.02 
0.6 
7.6 

27 

0.02 
0.0 

-0.87 
0.03 

-0.02 
0.0 

-0 .9 

s = ~ 
i - i + 

W = 14M 

19.8 
-2 .3 

2.9 
10.0 
6.3 

-4 .6 
32.1 

3, T = 0 
i=3 + W = 16fi 

10 

2.3 
-0.14 

0.85 
2.5 
0.60 

-0.30 
5.5 

list the various exchange contributions to j= l + , 3 + at a 
given energy for the channels (S= 0, T= f) and (S— —3, 
T=0). In each channel, it is the baryon and vector meson 
(tensor coupling) exchange which provide the main attrac-

1 P. Carruthers, Phys. Rev. Letters 12, 259 (1964). 

17.0 W(/i) 

FIG. 4. / = 3 + Born eigenphase shifts, 5 (deg), as a function of 
W (JJL) in the channels 5 = 0 , r = f ; S = - l , r = l ; 5 = - 2 , T = i ; 
5 = - 3 , T = 0 . 
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TABLE IV. Born phase shifts 0 * = 3 - ) in channels (5=0, T=4), ( S - - 1 , r = 0 ) , ( 5 - - 1 , 3T-1), and ( S - - 2 , r » J). 

S T W 
SU(3) 
state B D 

5 (deg) exchanged state 
Vv VT S 0 Total 

0 } 

- 1 0 

-1 1 

-2 i 

14 y. 

16M 

16; 

15 M 

8(D 
8(2) 

10 
27 

8(D 
8(2) 

10 
27 

8d) 
8(2) 

10 
10 
27 

8«> 
8<2> 

10 
27 

0.96 
0.01 
0.06 

-0 .19 
1.1 
0.03 

-0 .39 
-0 .66 

1.90 
0110 

- 2 . 0 
0.30 

- 0 . 2 
0.3 
0.05 

- 0 . 9 
- 0 . 1 

8.90 
- 0 . 3 
0.31 

0.11 
17.3 

-0 .98 
-19 .8 

0.46 
9.50 

- 7 . 3 
3.6 
0.28 
1.35 
3.0 

- 1 . 3 
0.88 
0.05 

5.40 
1.15 
0.30 

- 0 . 9 
8.12 
2.92 

14.0 
- 2 . 2 

3.46 
7.11 

- 0 . 5 
0.02 

- 3 . 7 
3.03 
2.10 
0.17 

-0 .73 

12.5 
- 0 . 6 

2.20 
-0 .99 

16.9 
-3 .14 

8.1 
-1 .7 

14.4 
-6 .34 
- 9 . 5 

4.40 
-1 .75 

3.83 
-2 .80 
-3 .93 

0.39 

0.00 
-0 .01 
-0 .01 

0.01 
0.10 

-0 .04 
0.06 
0.04 
0.05 

-0 .10 
-0 .04 
-0 .05 

0.04 
0.02 
0.0 

-0 .02 
0.0 

- 0 . 2 
0.00 

-0 .01 
0.02 

-0 .03 
0.00 
0.13 
0.00 

- 0 . 3 
-0 .02 

0.5 
-0 .05 

0.06 
-0 .03 

0.01 
0.10 
0.03 

27.7 
0.04 
2.85 

-1 .93 
43.6 

-2 .11 
2.05 

- 4 . 1 
28.7 

- 6 . 5 
- 7 . 9 

4.9 
- 4 . 3 

6.42 
- 1 . 3 
- 2 . 8 
- 0 . 3 

tion, and Dm octet exchange the main repulsion. How
ever, the relative importance of the baryon- and vector-
exchange terms is different in the 5 = 0 and 5 =—3 
channels. This shows that the actual long-range forces 
may have values far removed from the SU(3) estimates. 

(ii) Baryon Trajectory 

The y= 1 —, 3— states receive large attractive forces 
from the exchange of the j=l+ states. Therefore, at 
our level of calculation, Chew's "reciprocal bootstrap" 
mechanism23 extends to the SU(3) case. The results are 
given in Table IV and Fig. 5. In all the j=3— states, 
the combined effect of the vector-meson exchange terms 
is greater than that of decuplet exchange, while in the 
j = l— state, they are roughly equal. This implies that 
any realistic "bootstrap" calculation attempting to 
generate the meson-baryon spectrum should include 
the exchange forces of the vector mesons. 

JS0 130 

!2J6 ltb^Wb^!5l63loZ^J2;
,0[ 

FIG. 5. j=3— Born eigenphase shifts, 5 (deg), as a function 
of W (M) in the channels 5 * 0 , T = i ; 5 = - l , r = 0 , 1; S - - 2 , 

The only i = 3 ~ states found experimentally so far 
are the resonances in the (5=0, T = | ) and (S= —1, 
JT=0) channels. As seen in Table IV, the forces in the 
remaining channels of the predicted octet are rather 
small compared to those of the occupied channels, and 
inelastic effects may be playing a dominant role. 

(Hi) Y0*(1520) Unitary Singlet 

The only remaining angular momentum and SU(3) 
channel having attractive forces so large and rapidly 
varying that a resonance or bound state is clearly pre
dicted is the D$/2 (S- — 1, T=0) unitary singlet state. 
Figure 6 shows the forces which contribute to the uni
tary singlet, and Fig. 7 exhibits the domination of the 
unitary-singlet phase shift over the phase shifts of 8(1), 
8(2), and 27. The largest attractive force comes from de
cuplet exchange, and the sum of the vector-meson ex
change forces is also significant. An examination of the 
remaining angular momentum states indicates that it is 
unlikely that any other unitary singlet states are 
generated by elastic forces, except possibly in the 5 
state. 

40 

3o| 

(Deg) 20: 

lOh 

exchange 

&0 133 1314 i3l6 t$A i4X> \4% Iffi 

exchange 

exchange 

B exchange 
*{ / * ) 

23 G. Chew, Phys. Rev. Letters 9, 233 (1962). 

FIG. 6. j=2-~ Born phase shift, 5 (deg), contributions of baryon, 
.7 = 1 + decuplet, vector meson (vector and tensor coupling) 
exchange forces in the singlet SU(3) state as a function of W(ji). 
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TABLE V. Born phase shifts ( j - 2 + ) in channels ( 5 - 0 , T - i ) ; ( S - - 1 , T - 0 ) , ( 5 = - l , T = l ) , and ( 5 = - 2 , r - J ) . 

5 T 

0 i 

- 1 0 

- 1 1 

- 2 i 

W 

14 M 

1 6 M 

16M 

1 5 M 

Stf(3) 
state 

8(D 
8(2) 

10 
27 

8(D 
8<2> 
1 

27 
8d) 
8(2) 

10 
10 
27 

8<l> 
8<2> 

10 
27 

B 

17.5 
2.55 
0.80 

-5 .50 
17.0 

1.0 
- 7 . 0 

-10 .0 
20.0 

3.0 
-40.7 

7.2 
- 6 . 6 

7.2 
1.3 

-17 .0 
- 3 . 0 

D 

1.13 
0.24 

-0 .04 
-0 .44 

1.22 
0.40 

- 2 . 6 
- 0 . 6 

2.23 
-0 .50 

0.7 
- 0 . 1 

0.24 
2.6 

-1 .21 
0.73 
0.11 

5 (deg) 
Vv 

3.20 
9.30 
0.73 

-2 .30 
13.7 
6.80 

24.0 
- 4 . 7 

6.7 
12.4 

- 1 . 0 
0.03 

- 6 . 8 
5.03 
6.70 
0.49 

- 2 . 0 

exchanged state 
VT 

-30 .3 
2.62 

- 6 . 2 
2.04 

-39 .1 
7.60 

-18 .0 
4.20 

-37 .8 
14.7 
21.7 

-11 .5 
4.5 

- 9 . 9 
7.4 

10.0 
- 1 . 2 

S 

0.79 
-0 .79 
- 0 . 7 

0.7 
2.00 

-2 .00 
3.20 
2.10 
2.45 

- 3 . 0 
2.5 

- 2 . 0 
2.0 
4.6 

- 2 . 5 
- 4 . 6 

2.5 

0 

- 4 . 9 
-0 .03 
-0 .71 

1.40 
-1 .60 
-2 .70 

5.30 
1.80 

-10 .0 
- 1 . 9 
14.8 

- 2 . 4 
3.6 

- 2 . 1 
- 0 . 1 

3.9 
1.2 

Total 

-12 .6 
9.0 

- 6 . 1 
- 4 . 1 
- 4 . 8 

11.1 
4.9 

7.9 
-11 .3 

25.2 
- 2 . 1 
10.8 

- 3 . 1 
7.4 

11.7 
- 6 . 5 
- 2 . 4 

(c) Other Channels 

In Part (b) of this section we studied channels for 
which our dynamical mechanism provides an explana
tion of experimentally determined bound states and 
resonances. We now consider situations in which an 
experimentally produced resonance may not be ex
plainable mainly in terms of elastic forces. 

The dynamics of the P3/2 octet has been analyzed24 

in the framework of the Cook-Lee model,25 which uses 
an inelastic mechanism. Our study of the D3/2 states 
yields results shown in Figs. 7 and 8. There are attrac
tions for both octet states, but they are rather small and 
slowly varying compared to the phase shifts we found in 
the preceding part, so it is difficult to believe that the 
observed resonances could depend to any large degree 
upon elastic forces. 

We next turn to Fi*(1765) which lies in the j=2+ 
angular momentum channel. The Born-phase-shift plot 
in Fig. 9 implies that if this resonance is the result of 
elastic forces, then it must belong to an SU(3) multiplet 
8(2). We list the Born phase shifts at a given energy for 

wj£) 

FIG. 7. y«2— Bora eigenphase shifts, 5 (deg), as a function 
of W(p), in the channel S = - 1 , T^0. 

the states of the full octet in Table V. The most attrac
tive forces do lie in 8(2), but are seemingly not sufficient 
to produce an octet of resonances. In particular, mass 
breaking effects so vitiate the (5=0, T = | ) channel 
phase shift that it seems unlikely a resonance will occur 
there. Hence, a study of the long-range forces in this 
case implies that one or more members of a given 
multiplet may not be experimentally observable as a 
resonance. 

Our next application is an examination of the repre
sentation 27 in two channels, (S= —1, T—2) and 
(5= — 3, r = l ) . This multiplet has been the object of 
many speculations, both experimental and theoretical.26 

In Tables VI and VII we present the Born phase shifts for 
all partial waves up to j=5dz. The only signs of struc
ture, aside from the somewhat unreliable S-wave phase 

W(/t) 

FIG. 8. j = 2— Born eigenphase shifts, 5 (deg), as a function 
of WQi) in the channels 5 = 0 , T = J ; S - - 1 , r - 1 ; S - - 2 , 

r=*. 

24 J. Brehm, Phys. Rev. 136, B216 (1964). 
26 L. Cook and B. Lee, Phys. Rev. 127, 283 (1962). 

26 For instance, we cite: R. Alvarez et al.t Phys. Rev. Letters 
12, 710 (1964); D. Kleitman and S. Glashow, Phys. Letters 11, 
84 (1964); Y. Pan and R. P. Ely, Phys. Rev. Letters 13, 277 
(1964); B. Diu and H. R. Rubinstein, CERN, 1965 (unpublished). 
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TABLE VI. Born phase shifts (i=0-f- to 5—) in channel 
5 - - 1 , r » 2 . 

WQA) 

i - /± 
10 
0+ 

14 
1 + 

5 (deg) 
14 

1 -
17 

2+ 
17 

2 -

5 
D 
Vv 
VT 
S 
O 

Total 

-49 .0 
6.8 

-13 .5 
0.2 

13.5 
24.2 

-12 .8 

29.0 
-2 .07 
-19.4 

16.3 
-16.8 
-14.6 
- 9 . 6 

-15.1 
19.2 

-39.2 
-39.8 

8.5 
8.3 

-58.1 

-13.6 
0.11 

-14.0 
12.1 
10.1 
8.8 
3.5 

3.8 
- 9 . 5 

-24 .1 
-16 .9 

-2 .61 
- 2 . 1 

-51 .4 

i-fcfc 
17 
3+ 

17 
3 -

17 
4+ 

17 17 
5+ 

17 
5 -

B 4.0 -0 .73 - 1 . 3 0.16 0.39 -0 .05 
D -0 .02 2.02 0.0 -0 .46 0.0 0.11 
Vv ~5.25 -8 .74 -2 .04 -3 .33 -0 .81 -1 .31 
VT 4.5 - 5 . 5 1.72 -1 .98 0.68 -0 .75 
S - 2 . 0 0.28 0.41 -0 .05 -0 .08 0.01 
O - 1 . 5 0.20 0.28 -0 .03 -0 .05 0.0 

Total -0 .27 -12 .3 -0 .93 -5 .70 0.13 - 2 . 0 

TABLE VII. Born phase shifts (j=0-f- to 5-

5=-3, r - i . 
) in channel 

W{ix) 13.1 
0+ 

14.5 
1 + 

(deg) 
14.5 
1 -

18.0 
2+ 

18.0 
2 -

B 
D 
Vv 
VT 
S 
O 

Total 

-36.3 
5.8 

-15.3 
0.24 
9.71 

50.2 
14.4 

12.1 
- 1 . 2 
- 5 . 6 

9.4 
-2 .73 
-10.8 

1.17 

-5 .72 
6.74 

-11 .8 
-27 .4 

1.78 
5.9 

-30 .5 

-10 .4 
0.34 

- 6 . 9 
12.92 
3.94 

13.4 
13.3 

2.7 
- 7 . 4 

-12.5 
-21.3 
-1 .21 
- 3 . 7 

-34 .4 

18.0 
3+ 

18.0 
3 -

18.0 
4-f 

18.0 
4 -

18.0 
5+ 

18.0 
5 -

B 2.76 -0 .42 -0 .75 0.10 0.18 -0 .02 
D -0 .07 1.44 0.02 -0 .30 -0 .00 0.07 
Vv -2 .12 -3 .65 -0 .69 -1 .15 -0 .25 -0 .39 
VT 3.83 - 5 . 6 1.1 -1 .65 0.40 -0 .51 
S -0 .72 0.16 0.14 -0 .02 -0 .03 0.00 

O -2 .15 0.30 0.35 -0 .05 -0 .06 0.01 
Total 1.53 -7 .77 0.17 - 3 . 1 0.24 0.52 

shift, come from the j= 2+ (S= —3, T— 1) phase shift, 
which may even be large enough to produce a resonance, 
although a more sophisticated calculation including in
elastic channels is needed to ascertain this. Of particular 
interest26 is the .7=1+, 5=0 , T = | channel where the 
phase shift for 27 is small for the low-energy region due 
to a rather large cancellation between the strongly 
attractive baryon exchange force and the repulsive vec
tor-meson (tensor-coupling) and D3/2 singlet and octet 
exchange forces. 

(d) Symmetry Breaking 

The mass splittings among the groups of particles we 
have been treating as SU(3) multiplets are rather 

(Deg) 

FIG. 9. i = 2 - f Born eigenphase shifts, 5 (deg), as a function 
of WQi) in the channel S = - 1 , T = 1. 

large27 and imply that we should study the validity of 
our assumption regarding the consistency of an approxi
mate S£/(3)-invariant and crossing-symmetric model. 
That is, if one starts with an exact SU(S) model and 
introduces mass splittings, for instance through a 
"spontaneous breaking" mechanism,28 to what extent 
will the ordering of the single-particle-exchange forces 
mirror the experimental findings? There are two types of 
ordering to which we refer—both the relative size of the 
forces which generate states within a given SU(3) 
multiplet and also the various multiplets themselves. 
With regard to the first type, we studied the Born terms 
for the individual states which make up the j = 1 + , 1 —, 
3+, 3— multiplets and found in all cases that the 
attractions in the potentially resonant states are mono-
tonically ordered according to hypercharge, the most 
attractive lying in the states of largest hypercharge. 
This is of course in agreement with experiment, in cases 
where the resonant states have actually been found. 
Further, as seen in the typical values given in Table 
VIII, the equal-spacing rule holds roughly for the j—1 + , 

TABLE VIII. Symmetry-breaking effects upon long-range 
forces. Intramultiplet Born phase shifts. 

State W{n) b (deg) W(p.) 8 (deg) 

Decuplet, y = l - f 

Octet, y = 3 -

Decuplet, /=3-f-

2V*(1238) 
Fi*(1385) 
S*(1530) 
Q-(1676) 

#'(1688) 
70^1815) 
F/(?) 
S'(?) 

#"(1920) 
Fi"(?) 
E"(?) 
0"(?) 

13.0 70.9 
13.0 45.8 
13.0 18.2 
13.0 1.24 

14.0 27.0 
14.0 14.0 
14.0 11.0 
14.0 2.0 

15.0 14.0 
15.0 10.7 
15.0 6.9 
15.0 2.9 

15.0 44.0 
15.0 27.0 
15.0 20.0 
15.0 6.0 

16.0 22.4 
16.0 18.2 
16.0 12.2 
16.0 7.5 

27 G. Rajasekaran, Ph.D. thesis, University of Chicago, 1964 
(unpublished), investigates the extent to which the SU(S) wave 
functions are valid for several meson-baryon resonances. 

28 R. E. Cutkosky and P. Tarjanne, Phys. Rev. 132,1354 (1963). 
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3+ forces whereas the A, S j=3— excited states He 
close together. We give no numerical values for the 
j = 1 — states since at energies where all particle channels 
are open, the Born phase shifts are already beyond the 
8< 1 bound of validity for the approximation, ei8 sin5« 8. 
Taking the average of the Born phase shifts for the 
states composing a given multiplet, we compared the 
strengths of the forces generating the intermultiplet 
structure. The results show, in order of decreasing 
attraction: j=l— baryon octet, j = l + decuplet, 
F0*(1520) singlet, j=3- octet, Fx*(1765) decuplet. 
Again a comparison of this with experiment, where 
possible, indicates agreement. 
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APPENDIX I 

Having utilized several features of SU(S) symmetry 
in the course of our discussion of long-range forces in 
meson-baryon scattering, we present relevant details 
in this Appendix. 

Consider the elastic scattering of the pseudoscalar-
meson octet from the baryon octet. The crossing ele
ments resulting from the exchange of various SU(3) 
multiplets are listed in Table IX. All elements are 
expressed in terms of coupling constants which describe 
various vertices made up of three interacting SU(3) 
multiplets. We use the Lagrangian formulation, omit
ting space-time dependence, to express these couplings 
in terms of particle states. 

TABLE IX. Crossing elements resulting from the exchange of various SU (3) multiplets. 

Direct channel 
representation 

1 
10 
To 
27 
8-8 

8'-8' 
8-8' 

8'-8 

Uncrossed baryon 

0 
0 
0 
0 

( 2 0 / 3 ) ( l - / ) W 
1 2 / W 
(WS)(i-f)fg^ 
(WS)(l~f)fgNr2 

Crossed baryon 

t ( 5 - 1 0 / - 4 / " W 
(8/3) ( 1 + / - 2 / ^ v * 
( 8 / 3 ) ( l - 5 / + 4 / * ) l ^ 
f ( l - 2 / + 4 / ^ 2 

~2(l-2f+4f)gNJ 
- § ( 5 - 1 0 / - 4 / ) ^ 

0 
0 

Crossed 
decuplet 

SgD* 
gn2 

gD2 

hn2 

2gn2 

0 
-MV%2>2 

+ (\/%z>2 

Crossed 
singlet 

gs2 

-gs2 

-gs2 

gs2 

gs2 

~gs2 

0 
0 

Crossed vector 
meson 

SfvgrNgpT 
— (1 — MgicNgpr 
(l~ fv)g*Ngp* 
-frg*NgpT 
§fvg*Ngpr 
ifrgvNgp* 
(W5)a-fv)g*NgP« 
(W5)(l-fv)girNgpr 

(a) Pseudoscalar-Meson-Baryon-Antibaryon Vertex 

+ ^ ( E A i r c + H . c . ) + f a i ^ 

where the field operators are given in the usual isospin notation, and 

K° 
Kc=ir2K* 

< - , - ) • 

The coupling constants are related to gNT
2/4tT =15 by (in units of gNw) 

ft*r=l, S A K = - ( 1 / V 3 ) ( 1 + 2 / ) , ^ = ~ ( l / v 3 ) ( l - 4 / ) , 

^ = ( 2 / v 3 ~ ) ( l - / ) , gzK=(l-2f), *A,= - ( 2 / > £ ) ( 1 - / ) , 

g*r=2/, * A S = - ( 1 A 3 ) ( 1 - 4 / ) , ^ = ( 2 / V 3 ) ( 1 - / ) , 

* E , = - ( 1 - 2 / ) , A S * = - 1 , £H,= - ( l / v 3 ) ( l + 2 / ) , 

where the mixing parameter / is the ratio of F to D coupling. 

(b) Pseudoscalar-Meson-Antibaryon-Z>3/2-Octet Vertex 

Same as in (a), where the operators, N, A, 2, E represent the Dz/2 resonances #**(1512), A**(1660),2**(1660), 
E**(1810) and the mixing parameter has a different value, as discussed later. 

(c) Pseudoscalar-Meson-Anti-F0*(1520)-Singlet-Baryon Vertex 

£SBP=gsYo*tKN+X-7t+£K+Ar}~]+II.c. 
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(d) Pseudoscalar-Meson-Anti-Decuplet-Baryon Vertex 

(e) Pseudoscalar-Meson-Vector-Meson-Pseudoscalar-Meson Vertex 

(f) Vector-Meson-Antibaryon-Baryon Vertex 

Same as in (a), where the operators T, rj, K> R represent the vector mesons, p(750), ^(1020), Z*(890), R*(890). 
The vector and tensor couplings each have different mixing parameters. 

The relation between width and coupling constant was given in Sec. 4 for the special case of a state with j = 1 + . 
We list this relation for the y== 1 — ? 2— states below: 

i = l - : g2 
pwr

2rr 

1 = 2-\ £2= 

2qrl(Wr-M)2-m2l 

f3Wr2Tr 

2qr*Z(Wr-M)2-m2l' 

The factor 0 is proportional to the inverse of the product of the isotopic weight of the resonant state times the rele
vant SU(3) coupling strength. The crossing table given above is normalized such that the proportionality constant 
determining # = 6 . The numerical values of these coupling constants taken from experimental values of widths and 
kinematical factors are given below. 

gNT
2/4w=15.0, 

g52/47T=0.50, 

gpN
vgpr/^r=^0J 

gD2/47T = 0.13, 

gi>,/22/4x (octet) = 0.218, 

gPNTgP*/*Tr= - 0 .787 . 

We now give the crossing coefficients (isospin crossing coefficient times isotopic weight of exchange particle) first 
for w-channel exchange, then for /-channel exchange. The crossing elements are given by the notation (initial state, 
exchanged particle, final state). 

u-Channel Exchange of Baryons 

5 = 1 , T=0: 3(NK,2,NK)-(NK,A,NK) 

5 = 1 , T= 1: (NK,2,NK)+(NK,A,NK) 

5=0, r=| : Nw KK S Z Nrj 

NT -(NT,N,NT) -v3(iVV,2,AiO 2(NT,X,XK)+(NiryA2K) -y/3(Nw,N,NV) 
AK (AK&AK) +>/3(AKJ5,2K) (AK,A,Nrj) 
2K -(XK&XK) -TJ5&K,2,NV) 
Nv (Nr),N,NTj) 

5 = 0 , T = f : NT 2K 

Nir 2(NT,N,NT) (NT,A,XK) - (Nw&'SK) 

2K 2@K,'E,2K) 

5 = - l , J = 0 : NK S T ZK AT? 

NR 0 -S/6(NR,N,2T) - ( A ^ , A , S ^ ) + 3 ( ^ S , S ^ ) yft(NR,N,Av) 
S T ( S T , A , S T ) - 2 ( S T , S , S T ) V6&*,Z£K) - V3(ST,S,AT7) 

SK 0 - V 2 ( E # , E , A T ? ) 

Arj (A7jyA,Ar}) 
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S = - l , r = l : 

M£ 2x AT SAT 2J? 

iV,ff 0 2(NK,N,STT) -^1(NK,NM) + (NK,A,'EK)+(NK,X,'EK) -yJ2(NR,N,2v) 
2x (S7r,S,Sir)-(S7r)A,Sx) +v2(2x,2,Ax) - 2(2X,E,EA:) - \ 2 ( 2 X , 2 , 2 J ? ) 

Ax (Ax,2,Ax) v2~(Ax,E,EA:) (AX,A,2J?) 
HA: o ^(SAT.S.SI?) 

ST? ( 2 I ? , 2 , 2 T , ) 

S = - l , T=2: (2x,2,2x)+(2x,A,2x) 

5 = - 2 , r = | : Ex AX 22? Si? 
Ex -(Ex,E,Ex) -\3(Ex,2,Ai?) 2(Hx)2,2X)+(2x,A,2Z) -V3"(Ex,E,E>?) 
Ai? (AK,N,AK) +V5(AR,N,2K) (AX,A,SJ?) 

2i? -(2K,N,2K) -\5(2i?,2,Ei?) 
s?? (H»?^;,Si?) 

5 = - 2 , r = f : Sx 21? 
Sx 2(Sx,S,Sx) (Ex,A,2i?)-(Sx,2,2i?) 
2i? 2(xR,N,SK) 

5 = - 3 , T=0: 3 (E /? ,2 ,EA: ) - (E£ ,A ,EA > ) 

S=-3, T=l: (S£,2,E£)+(Ei?,A,E£) 

(-Channel Exchange 

5=1 , r = 0 : 3(NK,p,NK)-(NK,<(>,NK) 

5 = 1 , T = l : -(NK,p,NK)-(NK,<p,NK) 

S=0, J = | : Mr AAT 2AT #17 

iVx 2(iYrx,p,Arx) ^ ( A V ^ A A : ) (AV,i?*,2A:) 0 

AA: - ( A A > , A A : ) V3~(AA:,P,2A:) (AK,K*,NV) 

2AT - ( 2 A > ) 2 A : ) 2 ( 2 A : , p J 2 A : ) -y/3(2K,K*,Ny) 

N11 0 

5=0, r = f : iVx 2A 

AV -(NT,P,NW) -2(Nir,K*,i:K) 
2A: - (2AT, <p,2A:) - (2A:,P,2A:) 

5 = - l , T=0: tf£ 2x HAT A , 

iW? 3(NK,p,NK)+(NK,<p,NK) y/6QfRJP&r) 0 rt{NR,K*,Ar,) 
2x 2(2x,p,2x) \/6(2x,i?*,EA:) 0 
SAT 3(SA: ,P ,EA:)+(EA>,EA-) -^(SK,K*,AV) 

AI? 0 

5 = - l , T = l : 
A'i? 2X AX HA 2J? 

# £ -(NR,p,NR)+(NK,<p,NK) -2{NKjC*^ir) -^2(NgjC*,AT) 0 -^(NK,K*?V) 
2 T (2x,p,2x) -V2(2x,p,Ax) 2 (2X^* ,HA: ) 0 
AT 0 yJ2(Ar,R*,3K) 0 
SA: -(SA-,P,SA:) -(SK>V,SK) ^(SK,K*,XV) 

zv 0 

5 = - l , r = 2 : -(x2,p,x2) 
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5 = - 2 , r = i : HTT AX Si? ST? 

STT 2(H7r,p,S7r) -^3(Zir,K*,AK) -(ZT,K*,2K) 0 _ 
Ai? (AK,<p,AK) ^(AK,p,2K) (AK,K*,AV) 

Sv 0 

5 = - 2 , r = | : HTT 2i£ 
ST - (S7T,p,S7r) - 2(3x, t f * , 2 j f ) 

2 i? - (SK, <?,22?) - (?K,p,2K) 

S= - 3 , T=0: 3(3X,p,SX)+(SX,^SX) 

5 = - 3 , T = l : -(SX,p,SX)+(S^,^,SZ). 

The ^-channel elements for the exchange of the bary-
onic excited states are just those of the relevant 
baryons when possible, e.g., the crossing coefficients for 
N**(1S12) are exactly those of #(938). The only ex
changed states which we use in this paper for which the 
crossing coefficients have not been given are N*(123&) 
and 12~(1676). These are listed below. 

S=0, r = £ : f(Ar7r,iV*(1238)J#7r) 

S=0, T=f: $(Nv,N*(123g),Nir) 

S=~l, T=0: -f(V6)CVX,#*(1238),S7r) 

5 = - l , T = l : -i(NR,N*(1238)&c) 
(SKfit^SK) 

S=~2, r = J : f(2i?,^*(1238),2iO 

5 = - 2 , r = f : J(s£,tf*(1238),s£). 

Finally, we give the transformation, relating SU(3) 
multiplets to two particle meson-baryon states, which 
we used in our calculations. We use the notation 
( IR)TY where Y is the hypercharge and T is the isospin 

127) 
I 27): 3/2 

= KN, 

= -( l /v2)[AV+2iT], 

27)1/2' =(20)-wt31Vrl+3AK-2K-NT'], 

= (10)-1'»[-vZiVi?-v3AT--\flSi|-v5EK'], 

= [2(30)1'2]-1[+9A7,-vJ27r 
-3v2A^+3v2S^], 

127)i° 
|27)„« 

|27)3/2-1 = (l/v2)[SJff+H5r], 

127)i/2-
1 = (20)-1 '2[-Hx-2 JK-3Sr?-3AX], 

127)x-2 = E £ , 

|27)2° = 2 x , 

110>3/2
1 = ( lA2)[AV-2tf ] , 

110)!° = i [ A x - 2 , + (f)i/2A^-(|)1 '2Hiir+(f)1/22T], 

|10)i/2-

|10)o-2 

185)1/2' 

|8s)o° 

••$Z-Sl+AK+3r-2lT\, 
-ZK, 
••(l/tyS)i-3Nr-AK-S2K-Nri], 
= ( l /V5)[-Aij- \32ir 

- ( lA0)iV£+(l / \G)Er]> 
= (10)-1'2C-v225j-\5A7r+\5A^^+\3"Eir], 

= = ( 1 / 2 V ' 5 ) [ S > ? + A & - 3 2 Z ' - 3 S T ] , 

= i[7Vj7-AiT-AV+2/r], 

= (l/V6)L-NR+2Sr+Sir\, 

-{X/yfDl-NR-ZK-], 

|8s>i° = 

185)1/2-' = 

184)1/2' = 

18 )̂0° = 

18.4)1/2-'= §[Ei7- AiM-E7r-22T], 

IIV 

|10)o2 

|10)l/2' 

110)i° 

110),,--i /2 -

( l /2v2)[- A T J + \ 5 2 T - V 2 A ^ + \ £ E # ] , 

j [Aii :-A^-A rT+2ii :] , 

iczij-AH-ay/wj? 
-(f)"2E^+(f)"22T], 

(l/\^)[Ex-2^]. 


