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lim (o>AB//('>(a>)). 

APPENDIX Then 

We wish to give here an argument to show that the (/»)f W A B <p>f "U — 
inclusion of vector mesons does not affect the above %IJ ^ ~ IJ ^°'*" 
conclusions. For simplicity, we shall consider the TN 
case, although the argument can be trivially generalized T h i s g i v e s f o r t h e c h a n g e i n iht reduced width yz J 
to the SU(3) case. 

Let ABu(p) be the contribution of p-meson exchange 
to the force term BIJ. Then the contribution to Nu is 

A 7 / J C P ) = l im ( O J A S J J ^ ^ O ) ) ) . 

ANIJM 
1 r ImAflij<>>(«') 

7rJz, «'—O> 
With the Hnear D approximation (Eq. 7) this becomes 

AiVi/<'>(o>) 

« A B / j W («)!>/ j ( « ) + 
1 

CO// —0>o ' 

lim (pABu^fa)). 

With the expression for ABu(p) (co) given by Chew,1 viz. 

0 > / 4 # \ 
A£r/»(co) = In 1 + — , 

4ft2 \ «, ^ 

we have 
l im (wABj/^>(w)) = 0 . 
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I t is shown that, under accelerator or bubble-chamber conditions, the passage of a particle of arbitrary 
spin through an electromagnetic field effects a Lorentz transformation on its momentum and polarization, 
and a linear differential equation determining this transformation is given. We also give explicitly the 
decay-time dependence of the angular distribution that describes the decay of a particle moving in an 
electromagnetic field, and thereby obtain a method, explained in detail, of measuring the magnetic mo­
ment of an unstable, higher spin particle like the Or. I t is noted that the gyromagnetic ratio g=2 leads to 
particularly simple equations of motion for all spins, and not only for spin J. In an appendix we use a 
novel covariant algebraic method to solve the equations of motion and obtain the finite Lorentz transfor­
mation, in the case of a constant and homogeneous electromagnetic field. The method involves the intro­
duction of an algebra of 4-by-4 matrices that plays the same role for 4-vectors as the Dirac algebra for 
4-spinors. 

I. RELATIVISTIC LARMOR THEOREM 

WE wish to describe the time evolution of the 
polarization matrix, or density matrix in spin 

space, of a relativistic particle of arbitrary spin in a 
slowly varying electromagnetic field. This matrix is 
perhaps most directly observable if the particle decays, 
for it determines the angular distribution of the decay 
products, a function, I(pi,p2,' • •)» of the 4-momenta 
pi, p%- • • of the daughter particles. Knowledge of the 
momentum and polarization matrix at a time /=0, and 
of its subsequent time evolution, allows one to predict 
the dependence I{p\p%- • •/) of the decay angular dis­
tribution on the decay time t. We will obtain this 
dependence explicitly. 

The equation of motion of the dipole polarization, 
corresponding to spherical harmonics of order 1 in the 
decay angular distribution, has been described in the 
literature,1 and is known most familiarly in covariant 
form as the Bargmann-Michel-Teledgi (BMT) equa­
tion.2 However, particles of spin j>\ also have higher 
multipole polarization, corresponding to harmonics of 
all orders up to 2j in the angular distribution. The new 
content of the description given here is that it is applied 
to these higher moments as well. It takes the form of a 
simple generalization of Larmor's theorem which, how­
ever, when stated relativistically is found to apply to 
the momentum as well as to the polarization. 

* Present address: Courant Institute of Mathematical Sciences, 
New York University, New York, New York. 

1 H. Bacry, Nuovo Cimento 3,1164 (1962). This article contains 
many references to earlier work on the subject. 

2 V. Bargmann, L. Michel, and V. Teledgi, Phys. Rev. Letters 2, 
435 (1959). 
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The result may be put geometrically in the form of the 
following theorem. 

Theorem: In a slowly varying electromagnetic field F, 
the polarization matrix and the unit velocity 4-vector 
u—pjm of a particle of arbitrary spin j , mass m7 charge 
e, and gyromagnetic3 ratio g, undergo a continuous 
Lorentz transformation whose infinitesimal generator 
&dTy for an increment in the particle's proper time dr, is 
given by 

0= (e/tn)ZF+Ug-2)(I~uu)F(I-uu)3. (1) 

We are using a matrix notation where F is the matrix 
with components F„M, and where uu is the matrix with 
components u»u*. It is understood that e may be zero, 
with finite eg. 

0 is an antisymmetric tensor like F. "Slowly varying" 
means that the force due to the electromagnetic multi-
pole moments Z= 1, 2, • • •, 2j, and the torque due to the 
multipole moments /= 2, 3, • • •, 2 j is negligible. For an 
elementary particle this requires that the field variation 
in space (time) is negligible over a Compton wavelength 
(c_1XCompton wavelength), which certainly obtains 
under accelerator and bubble-chamber conditions. 

The theorem is easily established by a direct applica­
tion of the argument of BMT.2 Let us first restate their 
result and review their reasoning. The Lorentz force on 
the velocity 4-vector u, where w2=l, and the BMT 
equation for a classical spin 4-vector s, where s-u=0, 
are 

du/dr=(e/tn)Fu, (2) 

ds/dr= (e/m)\jFs+l(g-2)(I-uu)Fsl. (3) 

Since u2—\ and u-s—Q, we may rewrite these equa­
tions as 

du/dT=Qu, (4) 

ds/dT=tis, (5) 

with 0 given by Eq. (1). We note incidentally that the 
familiar "precession of spin" with respect to the momen­
tum is simply an illustration of the elementary fact that 
the same Lorentz transformation affects in a different 
way the 3-vector parts of different 4-vectors. 

As pointed out by BMT, Eq. (3), and hence also 
Eq. (5), follow upon expressing in covariant fashion the 
Larmor precession of s in the rest frame, given the 
condition ws=0. 

It has recently been shown4 that the polarization 
matrix of a particle of spin j and 4-velocity u may be 
specified by a real, traceless symmetric tensor of rank 
2j, Dnltlttt...tlMV, or by a set of real traceless, symmetric 
tensors orthogonal to uy of rank r = l , 2, •••, 2j, 
MHf...ifir. These quantities are of course c numbers. 

8 If, in violation of parity conservation and time-reversal 
invariance, the particle also has an electric-dipole moment, this 
may be accounted for by adding, on the right-hand side of Eq. (1), 
the term {e/2m)p(I-uu)Fd{I—uu)t where Fd is the dual to F. 

4D. Zwanziger, Phys. Rev. 137, B1535 (1965). 

They are parameters that determine the density matrix. 
The dipole polarization 4-vector MM coincides with the 
classical 4-vector s» of BMT. 

We now assume the validity of a classical relativistic 
limit whereby the particle is characterized by a well-
defined trajectory and velocity and by these polarization 
tensors, all of which may be regarded as functions of the 
proper time r of the particle. This is exactly the situa­
tion which is familiar in the theory of light where one 
may understand polarization phenomena, such as the 
rotation of polarization produced by optically active 
substances, in the ray limit of optics. 

In the rest frame of the particle, the tensors M, 
orthogonal to u, have only nonvanishing space compo­
nents and are the familiar nonrelativistic multipole-
moment tensors. In this frame they undergo Larmor 
precession. The argument of BMT applies to them, 
giving the tensor form of Eq. (5), 

d 

dr 

+QMgifj.iM-"i\ (6) 

But any antisymmetric tensor Q, is the infinitesimal 
generator of a Lorentz transformation, and the last 
equation is the Lorentz transformation law of a tensor 

Consequently, the 4-vector u and the multipole-
moment tensors M, which specify the momentum and 
the polarization matrix, undergo the same instantaneous 
Lorentz transformation. Because the Lorentz trans­
formations form a Lie group, it follows that the net 
effect on the momentum and polarization of the passage 
of a particle through a slowly varying electromagnetic 
field is a certain finite Lorentz transformation A. This 
Lorentz transformation, regarded as a function of the 
proper time r of the particle, is the solution of the 
differential equation 

d 
_A(r) = 12(r)A(r). (8) 

dr 

The trajectory is obtained by solving 

d 
—*(T) = « ( T ) , (9) 
dr 

where * " ( T ) = (/(T),X(T)), which gives / as a function of 
r or inversely. The 4-velocity u(r), which appears here 
and in the definition of 0, Eq. (1), is the solution of 
Eq. (2). In the Appendix we solve Eqs. (2), (8), and (9) 
for a constant homogeneous electromagnetic field. 

We observe that the particular significance of a 
gyromagnetic ratio g= 2 does not seem limited to spin §, 
but leads to the simplest equations of motion for all spin. 
This lends support to a recent speculation of the author 
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on minimal electromagnetic coupling5 which is in con­
tradiction with various other suggestions.6 

Let us now recall the decay angular distribution 
mentioned at the beginning, I{p\pr • -r) . We adopt a 
covariant normalization so that the probability P Q of 
finding ph pr " in a volume 0 of phase space is 

PQ= f dKp(r)-pi-pr-) 

dzpi dzp2 

Xl(phpr--r) . (10) 
1EX 2E2 

Then the time dependence of the angular distribution / 
is simply 

I(pi,P*r • •,r) = / ( A - 1 ( ^ i , A - 1 ( r ) ^ r •-,(>), (11) 

where A(r) is the solution of Eq. (8), determined by 
the initial condition A (0) = 1. This follows from the fact4 

that / is an invariant function of the final momenta, and 
the initial momentum and polarization tensor. 

H. A METHOD OF MEASURING DIPOLE 
MOMENTS 

This work was undertaken in preparation for the day 
when the magnetic moment of the Or, which is believed 
to have spin f, or of some other unstable particle of spin 
> ! , is measured. This will presumably be done by ob­
serving the precession of the decay angular distribution,7 

as is done at present for /*, A, and 2 . We will now describe 
a way of obtaining the magnetic- and electric-dipole 
moments from observation of this precession. I t requires 
solving Eq. (8) in a particular way. 

Set 

QQ=(e/m)F, (12) 

and let Ao(r) be the solution of 

A0(r) = floAo(r), A 0 ( 0 ) = 1 , (13) 

where the dot means differentiation with respect to r. 
By virtue of Eq. (2), we have immediately 

u(r)=Ao(r)u(0). (14) 

5 D. Zwanziger in Proceedings of the Symposium on the Lorentz 
Group, Boulder, Colorado, 1964 (University of Colorado Press, 
Boulder, Colorado, to be published). 

•Yukawa, Sakata, Taketani, Proc. Phys.-Math. Soc. Japan 
20, 319 (1938); F. J. Belinfante, Phys. Rev. 92, 997 (1953); P. A. 
Moldauer and K. M. Case, Phys. Rev. 102, 279 (1956); V. S. 
Tumanov, Zh. Eksperim. i Teor. Fiz. 46, 1755 (1964) [English 
transl.: Soviet Phys.—JETP 19, 1182 (1964)]; T. D. Lee and 
C. N. Yang, Phys. Rev. 128, 885 (1962); T. D. Lee, Phys. 
Rev. 128, 899 (1962); R. C. Brunet, Nuovo Cimento 30, 1317 
(1963) and 34,599 (1964); L. M. Nath, Nucl. Phys. 57,611 (1964). 

7 For spin > i it is not necessary that the decay violate parity 
for this precession to be observable in principle, although the 
shorter lifetime usually associated with parity-conserving decays 
seems to preclude this in practice. 

We now break up Eq. (8) into two parts. Set 

A(r) = A„(r)A,(r), (15) 

and substitute this into Eq. (8) to obtain an equation 
for Ai: 

A i W ^ O i W A ^ r ) , A i ( 0 ) = l , (16) 

with 

O1(r) = A 0 - 1 ( r ) [ l - ^ ( r ) w ( r ) ] 

X[ | (g -2 )0o( r )+ i i>0o d ( r ) ] 

X [ l - « ( r ) i * ( r ) ] A o ( r ) , (17) 

where we have included the effect of a possible electric 
dipole moment, in accordance with footnote 3. Now in 
virtue of Eq. (14) for U(T), we find 

01(r) = [l-W(0)W(0)]{Ao-1(r)Q(g~2)Oo(r) 
+ ^ O o d ( r ) ] A 0 ( r ) } X [ l - ^ ( O V ( 0 ) ] . (18) 

From this expression for Qi(r), we see immediately 
that it annihilates u(0), 

Oi(r)«(0) = 0 , 

so that Oi(r) is the generator of a rotation in the rest 
system of u(0). By virtue of Eq. (16), Ai(r) is a pure 
rotation in the rest system of u(0), 

Ai(r)«(0) = «(0) . (19) 

Furthermore the entire dependence of A on the value 
of the magnetic- and electric-dipole moments is con­
tained in the rotation Ai, because Ao, defined by Eqs. 
(12), (13), and (15), is independent of g and p. 
Consequently, it proves very convenient to refer all 
quantities to the rest frame Ro of the particle at r = / = 0 
rather than the laboratory frame Z, or the instantaneous 
rest frame Rt. 

A particularly simple way of interpreting the observa­
tions is as follows. All quantities (time t, position x, 
observed momenta of daughter particles pip2> field 
strength E, B) are understood to refer to the R0 frame 
and are obtained from the corresponding quantities, as 
measured in the laboratory, by the Lorentz transforma­
tion which brings «(0), as measured in the laboratory, 
to rest. We assume that Eqs. (9), (13), and (16) have 
been solved, so r and Ao(r) are known for each dis­
integration and Ai(r) is a known function of the mag­
netic- and electric-dipole moments. (In the Appendix 
they are found explicitly for constant homogeneous 
electromagnetic fields, which is perhaps the most im­
portant practical case.) Then for each momentum ph 

p2'—, resulting from a decay observed to occur at 

proper t imer , calculate pi=A0~1W^i J?2=Ao""1(^2- • •, 
and plot the observed angular distribution for the 
decays occurring at proper time r a s a function of 
pi,p2"** This results in an angular distribution 

I(jPhPr->T) = I(Php2,--,r) 
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whose time dependence is 

/ (Pi , fr , ' • ' ,r) = I(R~Kr)piiR-1(r)p2i • • • ,0) , (20) 

where we have written i£(r)=Ai(r) to indicate that it is 
a pure rotation. From the observed rotation of the 
angular distribution J as a function of time, R(T) may 
be deduced. The magnetic- and electric-dipole moments 
may then be determined because the dependence of 
of R(T) on them is known. In the case of constant and 
homogeneous electromagnetic fields E and B, R is a 
rotation about the direction (g—2)B+pE> through an 
angle 

<p=(e/2m)\(g-2)Ji+pE\T. (21) 
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APPENDIX: SOLUTION FOR A CONSTANT 
FIELD, AND THE ALGEBRA OF 

LORENTZ TENSORS 

We will find the solution to Eq. (8) in the case of a 
constant, homogeneous electromagnetic field, by the 
method of Sec. I I . We adopt the metric ( + , —, —, —) 
and a matrix notation for Lorentz tensors, whereby the 
first (row) index is upper (contravariant) and the 
second (column) is lower (covariant), so that, for 
example, F is the matrix with components 

F=F»V= 

r0 
Ei 
E2 

.E3 

Ei 
0 

-Bt 

B2 

Et 
B3 

0 
-Bi 

Ez 

- B , 
S i 
0 

(Al) 

The solution to Eq. (13), for constant, homogeneous 
F is obviously 

A0(r) = exp(O0r), (A2) 

with fi0 given by Eq. (12). The velocity 4-vector U(T) is 
given by Eq. (14), which may be integrated to give 

X(T) = T{ (Oor^CexpfOor) - l ] } « ( 0 ) + * ( 0 ) , (A3) 

which gives the dependence of the time / on r and the 
equation of the orbit. The function of fi0r in the braces is 
the entire function represented by the corresponding 
power series, even though (Oor)"1 may not be defined. 
We will shortly evaluate explicitly these functions of 
antisymmetric tensors. 

Having obtained A0(r) we now require Ai(r), defined 
by the differential equation (16) in terms of Oi(r), which 
is given in Eq. (18). In the present case of constant, 
homogeneous electromagnetic field, Q0 is independent of 
r, and Eq. (18) reduces to 

o1= zi-u(o)u(o)2LUg-2)Qo+ipnodl 
X [ l - « ( 0 ) « ( 0 ) ] , (A4) 

which follows from Eq. (A2) for A0(r), and the fact, 

verified below Eq. (A20), that fi0 and O0
d commute. We 

observe that Oi is time-independent, so Eq. (16) may 
be immediately integrated, with solution 

Ai(r) = exp(Qir). (A5) 

Equations (A2), (A3), and (A5) are the desired formal 
solutions to Eqs. (9), (13), and (16), and we have for 
total Lorentz transformation 

A(r) = Ao(r)Ai(r) = exp(12oT) exp(Qir). 

For these formulas to be useful we must be able to 
evaluate these functions of antisymmetric tensors. Let 
the generic antisymmetric Lorentz tensor be represented 
by Eq. (Al). We introduce the complex 3-vectors 

F + = ( E + ; B ) , F - = ( - E + * B ) = - ( F + - ) * . (A6) 

Then Eq. (Al) may be trivially rewritten 

F=F»V 

0 

F2+ 
F3+ 

FS 
0 

iFz+ 
-iF2+ 

F2+ 
-iFz+ 

0 

+F3+" 

0 

+1 
0 

-Fr 
-F2~ 
-Fz~ 

-F1~ 
0 

iFf 
-iF2~ 

-F2 —Fz 
-iFr iF2~ 

0 -iFr 
iFr 0 

(A7) 

We now define the matrices <r+ and a~= — (<y+)* by 

0 01 
0 0 
0 -i 
i 0 

ro 
l 
0 o

 

1 
0 
0 
0 

0 0" 
0 0 
0 - i 
i 0, 

, <ri = 

' 0 - 1 
- 1 0 

0 0 
. 0 0 

0 V 

0 
0 
0 

-i 

1 
0 
0 
0 

<rz .+= 

0 0 0 
0 0 - f 
0 * 0 

U o o 

(72 

<r* 

0 
0 

- 1 
0 

0 
0 
0 

- 1 

0 
0 
0 

-i 

0 
0 
i 
0 

-1 01 
0 i 
0 0 
0 0 

0 - 1 
•i 0 

so that Eq. (A7) takes the form 

F = ^ = i a + . F + + J c r - . F - , 

and the dual tensor is given by 

These matrices satisfy the commutation relations8 

ax~af-= 8ij+ieijk<rk-, (Al l ) 

<7 / f 07~=<7 /~0 -» + , 

(A9) 

(A10) 

8 The algebra of these matrices plays the same role for 4-vectors 
as the Dirac algebra for Dirac 4-spinors. In particular the 16 
linearly independent matrices 2« = 1, <r»+, <ry~, <n+irj~(i, j= 1,2,3) 
each have unit square S a

2 = l , and are pairwise orthogonal 
tr2aZ0 = 45a/3. 
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which are those of two independent sets of Pauli 
matrices, each set commuting with the other. 

The problem of evaluating functions of antisymmetric 
Lorentz tensors is thus reduced to the familiar problem 
of evaluating functions of Pauli matrices. In particular, 
for the exponential function expF, where F again 
represents the generic antisymmetric tensor, we have 

expF=exp( i< r+ -F + +^- -F - ) 

= exp(!<F+.F+) exp(|<r--F-) 

= [cosh(f F+-)+«F+- f+ s inh( |F+)] 

X [ c o a h ( J F - ) + < r - ^ - s i n h ( i F - ) ] , (A12) 

where 

• [ ( | F ± ) 2 > 
c o s h ( i F ± ) = Z - — — -

n-o (2n)l 

o ± - ^ s i n h ( i F ± ) = J<r±-F± L 
i(m2in (A13) 

«-o ( 2 n + l ) l 

and 

( F ± ) 2 = E 2 - B 2 ± t 2 E - B = 2 i ± i s 2 . (A14) 

I t is now convenient to introduce two real parameters 
a and p according to (F ± ) 2 = (a+i/3)2 or 

a2-p2=E2-B2=zu 

2a/3=2E-B=22 . 

Then Eq. (A 12) takes the form 

(P2 cosha+a2 cos/3\ (a sinha+/3 sin/3\ 

(A15) 

expF 
ml cosha+a'1 cos/3\ /a smh 

\ a2+p2 J \ a 
-)F 

/cos/?a—-cos/3\ 
+ ( 

2+P2 / 

—P s inha+a sin/3\ 

\ a2+/32 

\ /—P s inha+a sm/3\ 

J \ a2+P2 J 
(A16) 

If Eqs. (A15) are solved for a and P in terms of the 
bilinear invariants Z\ and z%, then the coefficients in 
parentheses, when expressed in terms of z% and z%, turn 
out to be entire analytic functions. The coefficient of Fd 

is odd in the pseudoscalar 22, the others are even. 
Equation (A 16) shows very clearly the dependence 

of exp F on the invariants. Some special cases are of 
interest. We call F "rotation" or "magnetic" type if 
a = 0 , which means that in some frame E = 0 ; "velocity" 
or "electric" type if 0=0, which means that in some 
frame B = 0 ; and "crossed" or "light" type if a = £ = 0 
which means that E 2 - B 2 = 0 , E . f i=0 . 

Equation (A 16) reduces in these cases, respectively, 

to 
sin/3 1 ~ cos/3 

expF= 1 + — F + z—F2, 
P 

sinha 
expF= 1 + -F+ 

P2 

cosha-
- F 2 , 

expF=l+F+§F2. 

(A17) 

(A18) 

(A19) 

We recall that F here represents the generic anti­
symmetric tensor and not necessarily an electromagnetic 
field. In particular, if F is the generator of a Lorentz 
transformation, then expF is a Lorentz transformation 
and the special cases are, respectively, a pure rotation in 
some frame, a pure velocity transformation in some 
frame, and an exceptional type of transformation. 

A useful relation, obtained directly from Eqs. (A9) 
and (A10) is 

FF*=FdF= - E B = -op (A20) 
or 

F-l=-{ap)~lF\ (A21) 

which enables us to calculate from Eq. (A 16) 

r/33 s inha+a 3 sin/6" 
F-^expF-l) -F 

[cosha-—cos/3 

a2+p' 

a/3(a2+/32) J 

!~| r6 sinha 
\F+\ 

J L a/3(a! 

8 sinha—a sin/3l 
\F2 

+ 

t/3(a2+/32) J 

"a2+j82—P2 cosha—a2 cos/3~ 

ap(a2+p2) 

The three special cases are, respectively, 

1 

\Fd. (A22) 

cos/3 p—sin/3 
F + F2 iP - 1 (expF- l ) = l + 

cosha — 1 sinha—a 
F - 1 ( e x p F - l ) = l + p+ F2, 

F-1 ( expF-1) = 1 + J F + (1/3 !)F2. 

(A23) 

(A24) 

(A25) 

The required solutions of the equations of motion 
Eqs. (A2) and (A3) are obtained, respectively, from 
Eqs. (A16) and (A22), or their special cases, by the 
substitution F—» (e/m)Fr. The anomalous additional 
precession induced by an anomalous magnetic moment 
and/or an electric-dipole moment is given by Eq. (A5). 
I t is a "rotation"-type transformation and hence is 
obtained from Eq. (A17) by the substitution F—»12ir. 


