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The solutions to Eq. (A7) determine the class of 
quantum states for which the equivalence of quantum 
and semiclassical descriptions obtains. An obvious solu
tion is 

/(/) = *", (A8) 

or 
g(n) = (nl)-1i2Nn!2e-Nt2ei+, (A9) 

which defines the coherent states, as can be seen by 
comparison with (3.4). We shall now show that this 
solution is unique. This can not be done by expanding 
the right-hand side of (A7) in a power series and 
equating the coefficients of Nl on both sides. The reason 
is that f(t) may itself be a function of N. We proceed 
instead by rewriting (A7) as 

£ —f(t+r+n)f*(t+r+y) = e", (A10) 
*=»o t\ 

where r, y, and v are arbitrary non-negative integers. 
Then we multiply both sides of the equation by 

(—N)r/r\ and sum over r, 

co {-NY « N* 
E E —f(t+r+v)f*(t+r+v) = l. (All) 

Next we make the change of variables t=s—r, and 
invert the order of summation, 

00 00 00 S 

r=a»0 «=»r «=-0 r—0 

to obtain 

(-D' 
E N'f(s+udf*(s+v)Y. „ ., 
«=0 r - f l f ! ( 5 - f ) ! 

(A12) 

(A13) 

The sum over r is unity for 5=0, and it is the binomial 
expansion of (1 —l)'/.y!=0 for s>0, so that 

/ ( M ) /*W=1. (A14) 

Since \x and v are arbitrary, the solution is f(t) = ei<f> 

with <j> constant. 
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It is shown that wN, KN, and KN elastic-scattering and charge-exchange data at high energy and small 
momentum transfer can be well fitted by assuming that the amplitudes are dominated by a few Regge poles 
in the crossed channel. The constraints imposed by the factorization principle are included. Unitary sym
metry (SUi) is approximately satisfied. Sample predictions of trp polarization and K+Jtn —> K°+p charge 
exchange are made. 

1. INTRODUCTION 

THIS paper shows that the present pion-nucleon 
and kaon-nucleon data, at high energy and small 

momentum transfer, are consistent with the dominance 
of a few Regge poles in the crossed channel. Explicit 
models are constructed which give good fits to the data 
in the range of incident momentum 6 to 20 GeV/c and 
squared momentum transfer | /1 < 1 (GeV/c)2. Possible 
branch points in the complex angular-momentum plane 
are neglected. Mandelstam1 has shown that such branch 

* Work done under auspices of the U. S. Atomic Energy 
Commission. 

t Permanent address: A. E. R. E., Harwell, Berkshire, England. 
1 S. Mandelstam, Nuovo Cimento 30, 1127, 1148 (1963). 

points are probably not negligible at asymptotic ener
gies; however, there seems to be a good chance that 
over a considerable energy range—perhaps up to 100 
GeV or more—their effects are not important.2 

There have already been several Regge-pole models3-4 

(some including a cut5'6) for the pion-nucleon and 
kaon-nucleon systems. However, the authors have not 
included the helicity-flip terms, have largely ignored 
the question of isospin dependence, and have not at-

2 G. F. Chew and V. L. Teplitz, Phys. Rev. 136, B1154 (1964). 
3 A. Ahmadzadeh and I. A. Sakmar, Phys. Rev. Letters 11, 439 

(1963). 
4 T. O. Binford and B. R. Desai, Phys. Rev. 138, B1167 (1965). 
5 P. G. O. Freund and R. Oehme, Phys. Letters 5, 353 (1963). 
• I. R. Gatland and J. W. Moffat, Phys. Rev. 132, 442 (1963); 

Phys. Letters 8, 359 (1964). 
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tempted accurate numerical fits to all the data. Also, 
high-energy charge-exchange measurements7-9 have not 
been made until recently, and are not considered in 
these earlier works.10 

A characteristic of Regge-pole models is that the 
forward-scattering ("diffraction") peak shrinks with 
increasing energy when a single pole dominates. Proton-
proton diffraction shrinks at present accelerator ener
gies, but pion-nucleon and kaon-nucleon scattering 
show little or no effect11; and this has sometimes been 
taken as evidence against Regge poles. However, in 
the range considered here there is no question of a 
single pole dominating; at least three poles are needed 
to explain the pion-nucleon data and five for the kaon-
nucleon data. Various authors3,5,12'13 have shown that 
when several poles are significant the shrinking effect 
may be enhanced or even reversed. In the models which 
we construct below there is little shrinking for elastic 
scattering, partly because of secondary poles and 
partly because the slopes of the trajectories are not 
large. In irN charge exchange, however, a single pole is 
operative: Here we expect shrinking to be seen, and 
indeed the data show this effect, as already reported 
by Logan.10 

Another important characteristic of Regge poles is 
the "signature factor," which fixes the phase of each 
pole contribution in terms of its energy dependence. 
The phase of the scattering amplitude in a Regge pole 
is thus fairly well determined by other aspects of the 
fit to data. When this phase can be measured directly, 
it offers a stringent test of the model. For the wN system 
this phase is known for forward elastic and charge-
exchange scattering; for the KN system it is somewhat 
less well known; in all cases our models make satis
factory predictions (see Sec. 6). This is further evidence 
to support the Regge-pole hypothesis.14'15 

In Sec. 2 we describe the Regge poles that are used, 
7 P. Astbury, G. Finocchiaro, A. Michelini, C. Verkerk, D. 

Websdale, C. West, W. Beusch, B. Gobbi, M. Pepin, M. Ponchon, 
and E. Polgar, Proceedings of the Twelfth Annual International 
Conference on High Energy Physics, Dubna, 1964 (Atomizdat, 
Moscow, 1965). 

8 A. V. Stirling, P. Sonderegger, J. Kirz, P. Falk-Vairant, O. 
Guisan, C. Bruneton, P. Borgeaud, M. Yvert, J. P. Guillaud, 
C. Caverzasio, and B. Amblard, Phys. Rev. Letters 14, 763 
(1965); J. Kirz (private communications). 

9 I. Mannelli, A. Bigi, R. Carrara, M. Wahlig, and L. Sodickson, 
Phys. Rev. Letters 14, 408 (1965). 

10 R. K. Logan, Phys. Rev. Letters 14, 414 (1965), has recently 
analyzed the charge-exchange data of Ref. 9 using one Regge pole; 
however, he does not include elastic scattering or total cross 
sections. 

11 K. j . Foley, S. J. Lindenbaum, W. A. Love, S. Ozaki, J. J. 
Russell, and L. C. L. Yuan, Phys. Rev. Letters 11,425, 503 (1963). 

12 R. J. N. Phillips, Phys. Letters 5, 159 (1963). 
13 B. R. Desai, Phys. Rev. Letters 11, 59 (1963). 
14 The asymptotic phase of a Regge-pole contribution follows 

from its simple power-law dependence on energy, as shown by 
dispersion relations (e.g., Refs. 10 and 15). So the part of the 
Regge pole hypothesis that is being tested here is the assumption 
that the complete amplitude is a sum of a few terms, each pro
portional to a power of the energy, and each having a simple 
isospin and G parity in the crossed channel. This is a nontrivial 
assumption. 

16 A. Bialas and E. Bialas, Nuovo Cimento 37, 1686 (1965). 

the forms of the scattering amplitudes, and our par
ticular parametrizations of trajectories and residue 
functions. Within this framework there is no unique 
set of parameters that fits the data. We have found 
several kinds of solution, which are illustrated. 

Section 3 concerns the "crossover" effect: The differ
ential cross section for ^p scattering intersect in the 
small-momentum-transfer region, and thereby pose a 
problem for Regge-pole fitting. K^p scattering shows 
the same effect. One of the main differences between 
our various models is how they explain this 
phenomenon. 

The factorization principle relates the residue func
tions of a given Regge pole in different physical ampli
tudes, as described in Sec. 4. These constraints have 
been included in our models. 

In Sec. 5 we discuss the relations implied by the 
unitary symmetry group SU%. These are ignored in 
the process of fitting the data, but are approximately 
satisfied by the results. 

The experimental data and the method of fitting 
parameters are described in Sec. 6. 

Various fits to the data are summarized, illustrated, 
and discussed in Sec. 7. A partial-wave analysis of some 
typical solutions is given, to be compared to other 
models that have been proposed, and to show that the 
unitary bound is respected. The ratio of real to imagi
nary part of the forward-scattering amplitude is com
pared to experiment. Some predictions of high-energy 
wN polarization and K+n —> K°p charge exchange are 
made. 

2. FORMALISM 

Consider first wN scattering. Then at least 
three Regge poles are needed to fit the data. The 
Pomeranchuk pole P describes the asymptotic limit; 
a second vacuum pole P' and the p pole are needed 
to give the differences of ^p amplitudes from the 
asymptotic limit and from each other. We take just 
these three. 

Singh16 among others has described the Regge-pole 
formalism for this case. There is a helicity-nip ampli
tude B and a nonflip amplitude A (which Singh calls 
A'), in terms of which the total and differential cross 
sections are 

*T(s) = ImA(syt=0)/p, (1) 

da 1 /mN\2 if t \ 

dt wsXuJ l \ 4 m W 

Here s and / are the invariant squares of energy and 

18 V. Singh, Phys. Rev. 129, 1889 (1963). 
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momentum transfer, p is the pion lab momentum, k 
is the cm. momentum, and MN is the nucleon mass. 

Each pole gives to A and B terms of the form 

A i = — C*(exp (—inn) =t l/sin7rai) (E/E0) «*, 
(3) 

in a high-energy approximation. Here the label i denotes 
P, P or p, <*(/) is the trajectory, £ = (p2+w3r

2)1^2 is the 
total pion lab energy, and EQ is an arbitrary scale 
parameter, which we take for convenience to be 1 GeV. 
The sign ± in the signature factor is + for P and P 
but — for p. d(t) and Di{t) are real functions related 
to the pole residues. When units h~c=l are used, Ai 
and d have the dimension (length), Bi and Di have 
the dimension (length)2. 

For definiteness, let the contributions Ai and Bi 
denned above refer to w~p scattering. Then the various 
wN amplitudes of present interest have the forms 

A(ir+p-+*-+p) = AP+Ap>+Ap, (4) 

A(T++P-**++P) = AP+AP>-A„ (5) 

A (ir-+p -» TT°+n) = - y/2A p. (6) 

The helicity-flip amplitudes are similarly related. 
Consider now KN and RN scattering. Regge poles 

in this context have been discussed by Sakmar.17 Besides 
the poles already described, two more poles with nega
tive G parity (which cannot affect wN) are needed to 
fit the total cross-section data.18 These are the o> pole 
(in which we include any contribution from the nearby 
tj> pole) and the R pole proposed by Pignotti.19'20 The 
argument for an JR term in kaon-nucleon scattering is 
given in Ref. 21. 

Just as for wN scattering, there are two amplitudes 
for each process and the pole terms have the same forms 
as in Eqs. (3). The various amplitudes of present 
interest have the forms 

A{R-+p-*Kr+p) = Ar+Ar.+A»+A,+AR, (7) 

A(K-+n-*K-+n) = Ap+Ap>+ACt)-Ap-AR, (8) 

A(K++p->K++p) = Ap+Ap,-A„-A,+AB, (9) 

A(K++n->K++n) = AP+Ap,-Au+Ap-AR, (10) 

A(K~+p~>K°+n) = 2Ap+2AR, (11) 

A(K++n->K°+p)=-2Ap+2AR. (12) 

We come now to the parametric forms assumed for 
the ai, d, and D%. 

In the range considered, data fitting is not very 
sensitive to the form of the trajectories a»(/). Probably 
straight lines would suffice, but we have used a two-
parameter form suggested by Pignotti22 which includes 
some curvature: 

a(t)= - l + [ l + a ( 0 ) ] 2 / [ l + a ( 0 ) - a ' ( 0 ) 0 . (13) 

The two parameters are a(0) and a'(0), the value and 
slope at t=0. 

For the residue functions d(t) and A(0> t n e data 
suggest something approximately exponential in the 
small-/ region, decreasing less strongly at larger values 
of L The data we seek to fit lie mostly in the former 
region. Accordingly, for the even-signature poles P, 
P', and R we generally take the empirical forms 

C(fl = Cfla(fl[2a(/)+l] exp(Crf), (14) 

D(t) = Doa(t) exp(ZM). (15) 

In a few cases exp(CiO in Eq. (14) is replaced by 
exp(Ci/+Cs^). The factors (2a+l) in C{t) and «(/) 
in D(t) are angular-momentum weight factors; the 
factor a(t) in C(i) is to remove the unphysical singu
larity ("ghost state") that would otherwise occur, 
when and if the trajectory passes through a = 0 in the 
region /<0. 

For the odd-signature poles p and cu, the crossover 
phenomenon (see Sec. 3) suggests that the residue 
functions may change sign. For this possibility we use 
a difference of exponentials. 

C(0 = Cotr(0)C2a(0+l]C(l+G) exp(Crf) 
-Gexp(C 3 0] , 

"Ismail A. Sakmar, thesis, Lawrence Radiation Laboratory 
Report UCRL-10834, May 1963. 

18 W. Galbraith, E. W. Jenkins, T. F. Kycia, B. A. Leontic, 
R. H. Phillips, A. L. Read, and R. Rubinstein, Proceedings of the 
Twelfth Annual International Conference on High Energy Physics 
Dubna, 1964 (Atomizdat, Moscow, 1965). 

19 A. Pignotti, Phys. Rev. 134, B630 (1964). 
20 A. Ahmadzadeh, Phys. Rev. 134, B633 (1964). 
» R. J. N. Phillips and W. Rarita, Phys. Rev. 138, B723 (1965). 

D(t) = Docx(t)l(l+H) exp(D!t)-H exp(Z>rf)]. 

(16) 

(17) 

In the limit G=0, Eq. (16) reduces to Eq. (14), 
except that the ghost-killing factor (not needed for odd 
signature) is replaced by the constant a(0). For H=0y 

Eq. (17) reduces to Eq. (15). Another way to parame
terize a sign change is to multiply a single exponential 
by a factor (t—to); we tried this but found Eqs. (16) 
and (17) more satisfactory. 

The parameterizations above are intended only for 
the range under discussion, 0 ̂  11 \ < 1 (GeV/c)2. It is 
not suggested that they can be extrapolated as they 
are beyond this range. They are purely empirical. 

3. CROSSOVER EFFECT 

Near /=0 the w~p differential cross section is slightly 
greater than the w+p value, at each energy. For larger 
t, however, the ir+p cross section is greater. The cross
over point seems to He near t—— 0.05 (GeV/c)2. This 
effect has special implications for the p pole. 

It is natural to suppose first that the nonflip ampli
tude A dominates at small t and is responsible for the 
crossover effect. Then the -K^p cross-section difference 

22 A. Pignotti, Phys. Rev. Letters 10, 416 (1963). 
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is due to the interference term between (AP+AP>) and 
A p. Since this interference term changes sign at the 
crossover, either Ap changes sign or the relative phase 
passes through ±ir/2. However, in a Regge-pole model 
the phase of each term is tied to its energy dependence, 
and it can be shown that in our case this relative phase 
cannot approach ztzTr/2 for small L Hence, if Ap domi
nates the crossover, it must change sign. 

Now in fact the amplitude Bp is not negligible at the 
crossover point. If it were, the T~+p —> Ti°+n charge-
exchange cross section would vanish, whereas nothing 
of the kind happens. 

If we include a substantial Bp effect, Ap can still 
explain the crossover by changing sign, but an alterna
tive explanation also appears. Suppose that the inter
ference term between (BP+BP>) and Bp is rather 
strong, and that it has the opposite sign to the inter
ference between (AP+AP>) and Ap. Then at /=0 the 
ir^p cross-section difference is given by the A term, 
since there is no helicity-flip contribution here. How
ever, as \t\ increases the B term can overtake the A 
term and reverse the cross-section difference. 

We thus have two simple explanations: (a) Ap 

changes sign, (b) Ap and Bp effects have opposite sign, 
but neither goes through zero. Of course other ex
planations can be constructed by combining or modi
fying (a) and (b). For instance, (c) Ap and Bp effects 
have opposite signs and Ap goes through zero, (d) Ap 

and Bp both change sign, at different values of t, etc. 
A similar but stronger crossover seems to occur with 

the K^ differential cross sections. Though we have no 
small-angle K~p data, the total cross sections with the 
optical theorem suggest the forward cross section is 
greater for K~p\ in our model this is certainly so. At 
larger angles, however, the K+p value becomes much 
the larger, by a factor of 2 or more. In our models the 
crossover must be due to the p and w poles. The same 
general types of explanation can be constructed as in 
the wN case, subject to certain constraints. If A^ 
changes sign, then so does B„ (see Sec. 4). The total 
cross-section data also require both A„ and Ap to have 
the same sign at 2=0. 

Because the K^ crossover is a bigger effect, it is 
harder to fit the data purely by a helicity-flip effect of 
type (b) than in the case of the w±p crossover. A good 
fit seems to require a sign change in a residue function 
(see Sec. 7). 

4. FACTORIZATION CONSTRAINTS 

The factorization theorem of Gell-Mann23 and Gribov 
and Pomeranchuk24 states that the TN residue functions 
have the forms 

Ci(wN) = EoVrrlvu+V2it/(^nN2-t)3, (18) 

Di(TN) = tirmi, (19) 
23 M. Gell-Mann, Phys. Rev. Letters 8, 263 (1962). 
24 V. N. Gribov and I. Ya. Pomeranchuk, Phys. Rev. Letters 8, 

343 (1962). 

following the notation of Ref. 25, where E0 is the same 
scale constant as in Eqs. (3); 77™ characterizes the 
coupling of Regge pole i to thejrx system, while 771* 
and 772* give its coupling to the NN system. The KN 
residue functions are similar, with 77™ replaced by T]K%. 

This immediately gives a relation between the wN 
and KN terms: 

Ai{TN)/Bi{irN) = Ai{KN)/Bi{KN) (20) 

for the Regge poles common to both problems, i—P, 
P\ and p. 

The factor functions 77™, TJEH, 77̂ , and 772* are usually 
assumed to be analytic and real in the scattering region 
of interest. Hence if Ap(wN) changes sign near the 
crossover (Sec. 3), either T\VP or t]ip must change sign. 
It cannot be rjTP) since that would make both Ap and 
Bp vanish at the same point, giving zero charge ex
change. So 77ip must change sign. Hence AP(KN) also 
changes sign at the same point. 

In the NN and NN problems, residue functions 
(vu)2, 0?2t)2> a n d VitV2i appear. Clearly there are many 
constraints, relating these to each other and to the TTN 
and KN problems. Rarita and Teplitz26-27 have argued 
that the residue function corresponding to (771c)2 must 
change sign in order to explain a crossover effect 
between the pp and pp differential cross sections. Such 
a sign change would contradict the assumption of real 
analyticity for the 77*. However, the actual residue 
functions themselves would remain real in the example 
cited if (771a,)2, (772a,)2, fej2, and all the other squared 
co-factor functions changed sign at the same point. 

5. UNITARY SYMMETRY 

The unitary symmetry group SUz gives several 
relations that are interesting to consider, even though 
the symmetry is not exact.28 

Now, x, K, and R are supposed to belong to a 
common unitary octet; hence the ww and RK couplings 
to a singlet, such as the Pomeranchuk pole P, should 
be equal: 

VrP=r}KP. (21) 

Hence AP(TN) = AP(KN) and BP(TTN) = BP(KN). The 
same holds for P', if it too is a unitary singlet. 

The p pole belongs to an octet. The_coupHng between 
this particular octet and the TIT and KK octets must be 
pure F type to preserve charge-conjugation invari-
ance.29 Hence there is a precise relation between the 
couplings, 

Vrp=z27}Kp, (22) 

25 M. Gell-Mann, in Proceedings of 1962 Annual International 
Conference on High-Energy Nuclear Physics at CERN. edited by 
J. Prentki, (CERN, Geneva, 1962), p. 533. 

26 W. Rarita and V. L. Teplitz, Phys. Rev. Letters 12, 206 
(1964). 

27 A similar conclusion is reached in Ref. 4. 
28 See, e.g., M. Gell-Mann, Phys. Rev. 125, 1067 (1962). 
29 H. Lipkin, Phys. Letters 7, 221 (1963). 
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where the relative sign is given to agree with the con
ventions of Eqs. (4)-(12) and (18), (19). Hence 
AP(TTN) = 2AP(KN) mdBp(wN) = 2Bp(KN). 

The co pole we have introduced is meant to stand for 
both a) and <£, which belong partly to the same octet 
as p but partly also to a singlet. No useful relations 
concerning them can be inferred without further specific 
assumptions. 

The R pole is supposed to belong to an octet and 
Pignotti19 suggested that the isoscalar member of this 
octet (let us denote it S) might in fact play the physical 
role usually ascribed to a second vacuum pole P'. Now 
this octet must have pure ZMype coupling to the wir 
and KK octets,29 so we have 

(1/^/S)TJKR= —r}Ks=h*s. (23) 

This implies AS(TN)=~2AS(KN) and BS(TN) 
— —2Bs(KN), and shows that Pignotti's suggestion 
about the role of S is untenable: S cannot substitute 
for P\ since total cross-section data require at least 
that Ap*{wN) and Ap>{KN) have the same sign at 
/ = 0 . However, our empirical Pr term may in fact 
include a contribution from S, and may, therefore, not 
behave like a pure singlet. 

We cannot compare the complete R and S ampli
tudes, since we do not know the F/D ratio of their 
coupling to NN. 

6. DATA AND PARAMETER FITTING 

The experimental data used are as follows. Total cross 
sections for ^p, K^p, and K±n at 6, 8, 10, 12, 14, 16, 
18, and 20 GeV/c are taken from Ref. 18. Elastic dif
ferential cross sections are taken from Ref. 11 for w+p 
at 6.8, 8.8, 10.8, 12.8, 14.8, and 16.7 GeV/c; for w~p 
at 7, 8.9, 10.8, 13, 15, 17, and 18.9 GeV/c; for K+p at 
6.8, 9.8, 12.8, and 14.8 GeV/c; and for Krp at 7.2 and 
9 GeV/c. For ir~-\-p —>7r°+w charge exchange, we use 
data from Ref. 9 at 6, 8, 10, 12, 14, and 16 GtV/c and 
from Ref. 8 at 5.9, 9.8, 13.3, and 18.2 GeV/c. Our 
K-+p-+R°+n data are at 9.5 GeV/c, from Ref. 7. 
In all we use 334 wN data points, plus 115 more for KN 
and KN; most of these are illustrated in the next 
section. 

Recently fresh v^p differential cross-section meas
urements have been made30 at 8.5,12.4, and 18.4 GeV/c. 
These results are very similar to those of Ref. 11, but 
there are small systematic differences which make it 
hard to fit both sets simultaneously. Accordingly we 
have chosen to omit the data of Ref. 30 from the final 
analysis. 

The wN charge-exchange data of Ref. 8 show a 
minimum near t= —0.6(GeV/c)2, followed by a slight 

30 D. Hartig, P. Blackall, B. Eisner, A. C. Helmholz, W. C. 
Middelkoop, B. Powell, B. Zacharav, P. Zanella, P. Dalpiaz, 
M. N. Focacci, S. Focardi, G. Giacomelli, L. Monari, J. A. Beany, 
R. A. Donald, P. Mason, L. W. Jones, and D. O. Caldwell, Nuovo 
Cimento (to be published). 

rise. I t is not clear whether we should seek an explana
tion of this in terms of the p Regge pole. We therefore 
constructed two kinds of solution, one including and 
one excluding the charge-exchange data beyond this 
minimum. 

The parameters of our models were optimized by 
least-squares fitting to data, using the IBM-7094 com
puters at the Lawrence Radiation Laboratory, with 
programs based on a variable metric minimization 
method.31 The parameters were also restricted to 
satisfy reasonable physical criteria. The coefficients 
Ci, C3, Dh and D* appearing in exponentials [see Eqs. 
(14)—(17)3 w e r e n o t allowed to become negative, nor 
very large; a practical upper limit (4wff

2)-1~12.5 
GeV~2 was imposed. The zero intercept of the P 
trajectory was fixed at ap(0)= 1: Some empirical sup
port for this choice is described in Sec. 7. 

Perhaps the most important constraint we applied 
was unitarity. Each solution was decomposed numeri
cally into partial waves and the partial amplitudes 
were compared with the unitary bound. Violations of 
unitarity were tolerated only if the partial amplitudes 
concerned were essentially zero and contributed nothing 
to the fit to data; we regard these marginal violations 
as being consequences of imperfect parameterization 
and having no physical significance. Substantial vio
lations of unitarity were not tolerated; the corre
sponding solutions were modified and constrained until 
they conformed. 

I t is interesting to note the types of unitarity viola
tion that occurred. We did not find the type most 
expected, in which the lowest partial amplitudes become 
too large, but we found two unexpected types, (i) To 
illustrate the first type, consider a spinless problem at 
some given energy, with a pure imaginary amplitude 
iexp(at). I t can be shown that all the partial-wave 
amplitudes are positive imaginary, because of the 
special properties of Bessel functions. However, if 
instead the amplitude is i exp(at+bt2), the partial ampli
tudes do not all have the same sign; some are negative 
imaginary and violate unitarity. We met this type of 
violation when the parameter Ci was used [see below, 
Eq. (14)]; fortunately the offending terms were usually 
very small and in high angular-momentum states, and 
had no physical importance. This kind of violation 
seems clearly due to oversimplified parameterization 
of the amplitudes, (ii) To illustrate the second type, 
consider the usual "nonrelativistic" definition of non-
flip and spin-flip amplitudes. For given orbital angular 
momentum L, the nonflip contribution contains a sum 
of partial amplitudes (L+l)aL++LaL- and the spin-
flip terms contains the difference aL-— #L+. Suppose 
the partial amplitudes GL± are imaginary: then for a 
fixed nonflip term, the spin-flip term cannot increase 
indefinitely without either aL+ or aL - becoming negative 

31 W. C. Davidon, Argonne National Laboratory Report No. 
ANL-5990 (Rev.), 1959 (unpublished). 
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and violating unitarity. The relation of our amplitudes 
A and B to partial waves is more complicated,32 but 
we did find essentially this type of violation when B 
contributed too strongly to high partial waves; the 
remedy was to reduce and restrain the coefficients Do 
and D\ [see Eq. (15) J 

We began by fitting the wN data. With this analysis 
used to fix the ratios A/B (from factorization) and the 
trajectories «(/) for P , P', and p, the KN and KN data 
were fitted by adjusting the remaining parameters. 

The value of x2, characterizing the goodness of fit to 
data, requires some comment. Ideally, with data free 
from systematic error and a perfect theory, the expected 
value is the number of data points less the number of 
adjusted parameters. However, when the quoted ac
curacy of data becomes less than the systematic errors 
of experiment or theory, the value of x2 soars. We found 
two places where this happens. Firstly, the K+p total 
cross sections18 are given to ± 0 . 1 mb, and in the mean 
are almost constant with energy; however, there are 
some fluctuations of order 0.3 mb, so that no theory 
with a smooth energy variation can give a textbook fit. 
These eight points contribute typically about 23 to x2-
Secondly, the w~-\-p~^w°+n data from Ref. 8 show 
systematic deviations at small angles from the single-
power energy dependence of our models; the apparent 
rate of change, comparing 5.9 and 18.2 GeV/c data, is 
greater than that obtained by comparing 9.8 and 13.3 
GeV/c. The quoted uncertainty is as small as 3 % for 
many points. As a result, the 40 data points with 
|*| <0.2 (GeV/c)2 contribute typically about 100 to x2 

With data of such precision, even a small systematic 
divergence between theory and experiment has a big 
effect on x2; whether theory or experiment is at fault 
we cannot say. However, the charge-exchange data 

have appreciable uncertainties in /, which we have not 
folded in. 

7. RESULTS AND DISCUSSION 

Four solutions are given in the tables. Table I lists 
the parameters a»(0) and a/(0) of the trajectories 
(abbreviated to on and a/): aP= 1 is not listed. Tables 

TABLE I. Trajectory parameters. The slopes a are 
in units (GeVA)"2. 

Solution 

1 
2 
3 
4 

aP' 

0.34 
0.34 
0.34 
0.34 

ap> 

0.50 
0.50 
0.50 
0.50 

ap> 

0.34 
0.34 
0.34 
0.34 

« P 

0.54 
0.53 
0.54 
0.53 

«/ 

0.65 
0.71 
0.78 
0.75 

&R 

0.32 
0.30 
0.30 
0.31 

r 
<XR 

0.80 
0.55 
0.75 
0.55 

Oiu, 

0.52 
0.50 
0.52 
0.52 

0.60 
0.60 
0.60 
0.50 

I I and I I I give the coefficients of the amplitudes 
Ai(wN) and Bi(wN), respectively. Table IV shows 
parameters that connect the KN and wN contributions 
from P , P', and p, in the notation 

A i(KN)/Ai(7rN) = Bi(KN)/Bi(wN) = FQ exp(Frf). (24) 

Table V gives the coefficients for the R and o> KN 
amplitudes. 

The fit to data is illustrated in Figs. 1 through 7 for 
the typical case of solution 1. 

Solution 1 explains the wN crossover effect both 
because Ap changes sign and by Bp interference; in 
terms of the discussion of Sec. 3, it is of type (c). The 
KN crossover is explained with the help of the change 
of sign A c. The dip and second maximum in wN charge 
exchange is explained because Bp goes through zero 
near *= - 0 . 6 (GeV/c)2. The fit to 334 wN data, with 

TABLE II. wN nonflip amplitude coefficients. 

Solution 

1 
2 
3 
4 

Solution 

1 
2 
3 
4 

P 
Co 

(mbXGeV) 

6.55 
6.60 
6.52 
6.58 

i 

Do 
(mb) 

- 7 . 5 
- 6 . 5 

-11.4 
-22.3 

G 
(GeV-2) 

2.51 
2.24 
2.58 
2.44 

Co 
(mbXGeV) 

19.6 
18.6 
20.0 
18.9 

P' 

c c 
(GeV-2) (GeV-4; 

4.04 
2.48 -10.3 
4.01 
2.24 -11.2 

) 
Co 

(mbXGeV) 

2.45 
2.61 
2.45 
2.60 

TABLE III. irN helicity-fiip amplitude coefficients. 

P 

(GeV~2) 

0.51 
0.65 
0.90 
1.73 

Do 
(GeV-*) 

- 1 0 1 

- 1 0 1 

P' 
Dl 

(GeV"2) 

8.1 

8.1 

Do 
(mb) 

56.9 
69.5 
62.4 
67.5 

Di 
(GeV"2) 

1.64 
2.50 
3.17 
3.39 

P 
Ci 

(GeV"2) 

5.6 
9.6 

11.4 
12.5 

Cz 
(GeV"*) G 

0.14 
0.00 

P 
D* 

(GeV^) 

0.31 
0.59 

0.50 
0.47 

H 

0.90 
0.51 

The relation is provided by combining Ref. 16 with G. Chew, M. Goldberger, F. Low, and Y. Nambu, Phys. Rev. 106, 1337 (1957). 
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22 
26 

•+==4-=fc==fc=5=*=*^= 
K P 

-t (GeV/c)2 , 
0.2 0.4 0.6 0.8 1.0 

10 12 14 16 18 20 22 

P|0b <GeV/c) 

FIG. 1. Total cross sections for *•*£, K^, and !£% from Ref. 18, 
compared with solution 1. 

21 adjustable parameters, has x2==504. The fit to 115 
KN data, with 18 parameters, has x2== 152. 

Solution 2 gives essentially the same explanation 
for the crossover and charge-exchange effects. However, 
the BP> term—whose main role is apparently to give 
some convexity to the cross-section plots—is dropped 
and a factor exp(C2^) introduced in Ap> instead. The 
fit to 334 irN points with 20 parameters has x2=482. 
The fit to 115 KN points with 18 parameters has 
X2=139. 

Solution 3 explains the wN crossover by Bp inter
ference; in terms of Sec. 3, it is of type (b). A corre
sponding explanation for the KN crossover, adding Bu 

interference effects, was tried but proved unsatisfactory. 
Accordingly, the KN crossover here relies on a change 

TABLE IV. Parameters relating P, P'y and p contributions 
to TTN and KN. 

Solution 

1 
2 
3 
4 

F0 

0.901 
0.896 
0.905 
0.900 

P 
Fi 

(GeV-«) 

-0.23 
-0.22 
-0.21 
-0.18 

Fo 
0.279 
0.285 
0.280 
0.281 

P' 
Fl 

(GeV2) 

-1.61 
-1.19 
-1.72 
-1.27 

Fo 

0.527 
0.521 
0.529 
0.480 

P 

Fl 
(GeV"2) 

0.01 
0.01 
0.01 
0.00 

0.4 0.6o 0.8 
- t (GeV/c)2 

FIG. 2. w+p differential cross sections at 6.8, 8.8,10.8,12.8,14.8, 
and 16.7 GeV/c, from Ref. 11, compared with solution 1. The 
different sets are spaced by a decade. 

of sign in AW9 and Bu is not used at all. Solution 3 con
tains no explanation for the second maximum in wN 
charge exchange: in making the fit, the data of Ref. 8 
for |*| >0.6 were omitted; x2=502 for 322 TN points 
with 17 parameters; x2= 155 for all 115 KN points with 
18 parameters. 

TABLE V. KN amplitude coefficients for R and w. 

Solution 
Co 

(mbXGeV) 

R 
d 

(GeV"2) (mb) 
Di 

(GeV"2) 
C0 

(mbXGeV) 
Ci 

(GeV-4) 
C, 

(GeV-3) 

1 
2 
3 
4 

3.34 
3.69 
3.50 
3.71 

2.16 
2.81 
2.21 
2.83 

-31.2 
-29.3 
-32.2 
-29.5 

1.76 
1.77 
1.73 
1.78 

5.99 
6.62 
6.14 
6.34 

10.5 
10.0 
10.0 
10.0 

0.17 
0.02 
0.27 
0.00 

0.86 
0.66 
0.99 
0.69 
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Solution 4 explains the crossover and ignores the 
second maximum in TN charge exchange in the same 
way as solution 3. However, like solution 2, it drops 
Bp> and introduces a factor exp(C2^) in Ap> instead. 
The fit to 322 wN points with 16 parameters has x2= 445. 
The fit to 115 KN points with 18 parameters has 
X2=145. 

We now discuss several points, under separate 
headings. 

(i) Agreement with Experiment 

If the Regge-pole hypothesis is correct, we may 
perhaps expect the few leading poles to give 90-95% 
of the scattering amplitude, in the nonasymptotic 
region considered here. In any case, our simple parame-
terizations of the t dependence can hardly be more 
accurate than this. We might therefore expect an 

- t (GeV/c)2 

0.4 0.6 

- t (G«V/c)z 

0.2 0.4 0.6 0.8 1.0 

0.01 

0.001 

(GeV/c)2 

FIG. 3. v~p differential cross sections at 7, 8.9, 10.8, 13, 15, 17, 
and 18.9 GeV/c, from Ref. 11, compared with solution 1. Suc
cessive sets are spaced by a decade. 

(GeV/c)z 

FIG. 4. tt~-\-p -* 7r°+ n differential cross sections at 5.9, 9.8, 
13.3, and 18.2 GeV/c, from Ref. 8, compared with solution 1. The 
sets of data are spaced by a decade. 

accuracy of 10-20% for differential cross sections, but 
in fact the agreement with experiment is much better 
than this. 

Thus, although the values of x2 are not impressive 
when taken at face value (see Sec. 6), the fit to data is 
really surprisingly good. 

(ii) Parameters of Trajectories 

We have given no statistical uncertainties in Tables 
I through V, since in many cases they would have 
dubious physical significance. However, there is special 
interest in the trajectory parameters a»(0) and a/(0). 

The statistical standard error on the intercept a*(0) 
is typically about 0.002 for p, 0.01 for P' , and 0.03 for 
R and w. Such a small error for ap(0) is meaningless 
when compared with systematic differences between 
solutions. 

The intercept aP(0) has been assumed fixed at 1.0. 
It is interesting to test this theoretical choice empiri
cally.33 In solution 2 we varied aP(0) near 1.0; the x2 

minimum seemed to lie between 1.0 and 1.005, with a 
standard error about 0.01. 

The standard error on the slope a/(0) at /=0 is 
typically about 0.01 for p, 0.03 for P and P', and 0.05 
for R and o>. Again, systematic differences are bigger 
than this for p. 

It is satisfactory that afl(0) agrees with the value 
0.31dz0.05, deduced by Ahmadzadeh from NN data.20 

33 A suggestion due to H. Lubatti. 
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- t (GeV/c)2 

0.2 0.4 0 6 0.8 1.0 1.2 

-t (GeV/c 

FIG. 5. K+p differential cross sections at 6.8, 9.8, 12.8, and 14.8 
GeV/c from Ref. 11, compared with solution 1. Successive sets 
are spaced by a decade. 

(iii) Slope of p Trajectory 

There has been great interest in whether the latest 
wN charge-exchange data8,9 really establish a shrinking 
diffraction peak—i.e., a slope for the p trajectory. 
Logan10 concluded that they do, using the data of Ref. 
9 only. However, to determine an accurate value for 
the slope he had to assume a straight-line p trajectory 
passing through 1.0 at t=m9

2. 
Our models give strong evidence for shrinking. We 

do not require the p trajectory to extrapolate to the p 
pole, but we do include a lot of noncharge-exchange 
data which help to tie down the trajectory. Also we 
include the more accurate data of Ref. 8. 

As a further check, we analyzed the data of Ref. 8 

FIG. 6. Krp differ
ential cross sections 
at 7.2 and 9.0 GeV/c 
from Ref. 11, com
pared with solution 
1. The two sets are 
spaced by a decade. 

alone, in terms of the p trajectory, following the pattern 
of solutions 1 and 2. Assuming first a curved trajectory 
according to Eq. (13), we found the trajectory parame
ters <*p(0) = 0.540±0.002 and a/(0) = 0.65±0.02. For 
this fit to data, x 2 = 144 with 75 data points and 10 
adjustable parameters. 

Assuming next a linear trajectory, instead of the form 
in Eq. (13), we found a best fit with intercept 
0.530dz0.003 and slope 0.47±0.02. For this fit to data, 
x 2 = i75? with the same number of points and parameters 
as before. 

The best fit with no shrinking (horizontal trajectory) 
has intercept 0.45±0.1 and x2= 265. 

(iv) Spin Dependence 

To determine the spin dependence of wN or KN 
scattering purely from experiment, polarization and 
triple-scattering experiments are needed, and they are 
still lacking. However, the spin dependence of our 
models is an important help in fitting the data. In 
particular, the sudden rise in wN charge exchange as 

0.4 0.6 
- t ( G e V / c ) 2 

FIG. 7. The K'+p^fr+n differential cross section at 9.5 
GeV/c, from Ref. 7, compared with solution 1. 

the scattering angle increases from zero is most natu
rally explained by a strong spin-flip term—which has 
to vanish at zero angle—coming from the p trajectory.34 

The corresponding effect in KN charge exchange calls 
for spin dependence from R as well as from p (which is 
constrained by factorization). Also, spin dependence 
allows an alternative explanation of the wN crossover 
effect (Sec. 3). 

For a particular model, therefore, there is an optimum 
spin dependence that gives the best fit to data. But in a 
broader sense the spin dependence is not really well 
determined. It may be changed considerably while a 
5 to 10% fit to data is still preserved; it may be changed 
radically if we use a completely different parameteri
zation. For an example, compare solutions 1 and 2 (or 
3 and 4), which show how the Bp> term may be traded 
for a change in Ap>. Also note in the KN case that we 

0.4 0.6 0.8 
- t (GeV/c)2 

34 The large flip term is adopted as a reasonable physical expla
nation of the data and is not a special characteristic of Regge poles. 
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FIG. 8. ^p polari
zations at 10 GeV/c 
corresponding to "0.2 
solutions 1-4, rela
tive to the normal 
vector kinXkout 
(Basel sign conven
tion). 

0.6 0.8 1.0 
_ j , j j p -

0.2 0.4 0.6 0.8 
-t (GeV/c)2 

have not invoked the Bu term; in fact, a wide range of 
values are consistent with the data. 

The wp polarizations shown in Fig. 8 are therefore 
illustrations rather than firm predictions. It is inter
esting to note that the value may be as large as 20% 
at 10 GeV/c, and that the Bp term suggested by the 
wN charge-exchange data is strong enough to reverse 
the sign between w+p and w~p polarization, at some 
angles. But irN charge-exchange polarization vanishes, 
of course, since A and B have the same phase when 
both come from a single trajectory. 

Although some parameter freedom remains, polari
zation data of all kinds would make a valuable test of 
Regge-pole models. 

There is an over-all sign ambiguity for the helicity-
flip terms Bi with the data we have. This has been 
resolved by assuming the ratio A P/Bp to have the same 
sign at 2=0 as at the p pole, /= mp

2. It is interesting also 
to consider the magnitude of this ratio. Taking the 
NNp vector and tensor coupling constants to be pro
portional to the nucleon isovector charge and anoma
lous moment form factors, we find that AP/BP^0.2E 
at t=tnp

2, whereas at 2=0 the value is 0.08JS-0.09E 
for our models. This decrease seems consistent with 
the fact that, for 2<0, Ap goes on decreasing faster 
than Bp in these models. 

(v) Characteristic of Regge Spin Dependence 

A significant feature of the Regge-pole formalism is 
that the spin dependence of a pole contribution does 
not vanish asymptotically35—unlike what one expects 
in a simple diffraction situation. Ordinary (first-rank) 
polarization vanishes asymptotically only because it 

35 As we have defined them, the amplitudes A and B do have 
different energy dependences. However, their actual contributions 
to scattering have the same asymptotic dependence: see, e.g., 
Eq. (2). 

happens to require the interference of two amplitudes 
that are out of phase, and hence requires two poles. 
However, second-rank polarization effects (e.g., spin 
correlation, depolarization) can come from a single pole. 
If the P pole has spin dependence, some of these effects 
tend asymptotically to nonzero values. 

Second-rank polarization measurements at high 
energy would, therefore, be very interesting. With 
polarized targets now coming into use, they are not 
unthinkable. 

On this question of the flip and nonflip effects, having 
the same energy dependence,35 there is already some 
affirmative evidence in the case of p. Assuming the 
small-angle bump in wN charge exchange is due to, 
and dominated by, the flip term, we have a measure 
of its energy dependence. The nonflip term is isolated 
in charge exchange at /=0, and in the total cross-section 
differences. Our fits to data illustrate that the energy 
dependences of the flip and nonflip effects are closely 
comparable. 

(vi) Partial-Wave Analysis 

Our models offer an interesting contrast to various 
empirical partial-wave analyses of wN scattering in the 
multi-GeV region.36"88 The latter have generally had 
to*assume a purely imaginary amplitude with no spin 
dependence39; we have neither of these restrictions. 

Table VI illustrates the partial-wave amplitudes for 
solutions 1 and 2, for ir+p scattering at 10 GeV/c. They 
are defined by 

aL±= [exp(2t5L±) - l ] / i , (25) 

where 8L± is the (complex) phase shift for orbital 

5 -o.i 

FIG. 9. The ratio < 
of the real to the e 
imaginary part of ~ , 
the forward scatter- § 
ing amplitude for < 
w^p and K'tp scat- £ 
tering: Solution 1 is 
shown but the others 
give very similar pre
dictions. The ^p & 
data are from Ref."*^ 
40; the inner error 5 
bars are statistical, X 
the outer ones are *~ 
estimated limits of E 
systematic error. t^ 

o 
< 

10 14 
Piflb <GeV/c) 

18 22 

88 S. Minami, Phys. Rev. 133, B1581 (1964). 
37 M. L. Perl and M. C. Corey, Phys. Rev. 136, B787 (1964). 
38 E. M. Henley and I. J. Muzinich, Phys. Rev. 136, B1783 

(1964). 
39 A. O. Barut and W. S. Au, Phys. Rev. Letters 13, 489 (1964) 

have considered adding spin dependence in the lowest waves only. 
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TABLE VI. Partial-wave amplitudes of solutions 1 and 2 for *+p scattering at 10 GeV/c. 

L 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

ReaL+ 

-0.056 
-0.092 
-0.098 
-0.087 
-0.073 
-0.060 
-0.049 
-0.038 
-0.029 
-0.022 
-0.016 
-0.012 
-0.008 
-0.006 
-0.004 

Solution 1 
Ima>L+ 

0.224 
0.259 
0.269 
0.257 
0.233 
0.205 
0.176 
0.148 
0.121 
0.098 
0.077 
0.060 
0.045 
0.034 
0.025 

Reai,. 

-0.018 
-0.033 
-0.043 
-0.043 
-0.037 
-0.030 
-0.024 
-0.019 
-0.014 
-0.010 
-0.007 
-0.005 
-0.003 
-0.002 

Imax,-

0.161 
0.151 
0.143 
0.128 
0.109 
0.088 
0.068 
0.051 
0.036 
0.024 
0.016 
0.009 
0.005 
0.002 

Reaz,+ 

-0.050 
-0.081 
-0.078 
-0.072 
-0.062 
-0.051 
-0.040 
-0.030 
-0.023 
-0.017 
-0.012 
-0.009 
-0.006 
-0.004 
-0.003 

Solution 2 
Ima,L+ 

0.248 
0.268 
0.269 
0.257 
0.234 
0.206 
0.175 
0.145 
0.117 
0.092 
0.072 
0.055 
0.040 
0.030 
0.022 

Reaz,-

-0.057 
-0.040 
-0.042 
-0.041 
-0.038 
-0.034 
-0.029 
-0.025 
-0.021 
-0.018 
-0.015 
-0.012 
-0.010 
-0.008 

ImaL-

0.212 
0.185 
0.162 
0.140 
0.118 
0.096 
0.076 
0.058 
0.043 
0.030 
0.021 
0.014 
0.009 
0.005 

angular momentum L and total angular momentum 

The partial-wave analysis was made by continuing 
the model amplitudes to all scattering angles, well 
beyond the range where they are fitted to data. How
ever, only the lowest partial waves are sensitive to the 
wider angles; the higher ones are mainly determined 
by the forward peak. 

Unitarity requires GL± to lie within a unit circle in 
the complex plane, centered at i. In the pure diffraction 
approximation, HL± would be pure imaginary and re
stricted to lie between 0 and i, the latter corresponding 
to complete absorption. Notice that the low partial 
waves in Table VI do not approach complete absorption. 

(vii) Phase of the Scattering Amplitude 

The phase of the scattering amplitude in our models 
is not freely disposable, but is determined by the a,-
through the signature factors. Where this phase can be 
measured directly, it offers an important test of this 
kind of model.14 

The ratio of the real to the imaginary part of the 
forward elastic amplitude has been measured for high-
energy ^p scattering.40 The results are shown in Fig. 
9, together with the theoretical predictions of solution 
1 for ^p and K^ scattering (the other solutions all 
lie within ±0.01). The models agree with experiment 
in sign, in magnitude, and in giving a larger value for 
TT+P than for ir~p. There have also been various dis
persion-relation calculations of this ratio.41"43 The results 
depend on what asymptotic behavior is assumed for 
total cross sections, but on the whole they are consistent 
with experiment and with our models. 

The phase of the forward elastic .R^p amplitudes 
40 S. Lindenbaum, rapporteur report to the 1964 International 

Conference on High Energy Physics at Dubna (to be published). 
41 V. S. Barashenkov and V. I. Dedyu, Dubna report R-1598 

1964 (unpublished). 
42 H. I. Saxer, University of Michigan, Ann Arbor, 1964 

(unpublished). 
43 G. Hohler, J. Baacke, J. Giesecke, and N. Zovko, Karlsruhe, 

1965 (unpublished). 

has not yet been measured at high energy. It would be 
a valuable test. 

The phase of the irN forward charge-exchange ampli
tude is also known. The imaginary part is determined 
by the total cross-section difference <TT{TT~P)—<JT{TT+P) 
and the optical theorem; the real part then follows from 
the differential cross section; the two are approximately 
equal, within a sign. This is an important test of the 
consistency of the model. In fact, the test is even 
stronger than this; at t=Q, Ap is determined by just 
two parameters, ap(0) and Co(p). These two successfully 
account for four independent experimental quantities— 
the magnitude and the energy dependence of forward 
charge exchange and the difference of ^p total cross 
sections. 

The phase of the K~p charge-exchange amplitude is 
also roughly known, from similar arguments. The 
amplitude appears to be mainly imaginary. The differ
ence between this and the irN situation is neatly ex
plained by the R contribution—the presence of which 
is required by the total cross sections.21 This is another 
example in which the phase is correctly given by the 
Regge-pole model. 

The other possible charge exchange, K++n —> K°+p, 

1 — 1 

m
b 

(G
eV

/c
 j2 

OL 
O 

f 

"Oj-O 

1.0 

0.5 

0.2 

O.i 

0.05 

0.02 

O.OI 

0005 

0.002 
C 

r 

) 

[— 

! 
0.2 

_ , j p. 

V 
1 . . t 

0.4 

1 ' ' ' J" 1 
1 

. 

1 . ! . *|3 | 

0.6 0.8 1.0 
- t ( 6 e V / c ) 2 

FIG. 10. K++n -* K°+p differential cross sections at 10 GeV/c 
for solutions 1, 2, and 3. 
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has not been measured at high energies. The p+R 
Regge-pole model predicts that the forward amplitude 
is mainly real—i.e., the forward cross section greatly 
exceeds the optical limit—since the p and R terms now 
change their relative sign, and the real parts add while 
the imaginary parts cancel.21 More specifically, the 
models we have constructed give predictions for this 
cross section in the range |/| <1 (GeV/c)2, which are 
illustrated in Fig. 10 at 10 GeV/c. The nonflip term is 
much stronger there than for Kr+p —>R°+n, giving 
a bigger cross section and eliminating the dip near 2=0. 
Measurements of this process would be very interesting, 
and would make a good test of the models. 

(viii) Second Maximum, in izN Charge Exchange 

Solutions 1 and 2, which set out to explain the dip 
and second maximum, do so by making the factor 
(1+H) exp(Dit)-H exp(DzO in Eq. (17) change sign, 
so that Bp goes through zero. There are of course other 
possibilities. 

One attractive idea is that Bp does indeed go through 
zero, but because of the kinematical factor ap instead 
of the other empirical factor in Eq. (17). The curved 
trajectories we have used, which are rather arbitrarily 
made to go to a= — 1 at t= — a>, do not pass through 
zero in the right region. However, if we assume an 
almost linear trajectory going through the p pole 
[ > P = 1 at /= wp

2=0.56 (GeV/c)2] and through ap=0.5 
at /=0 (as indicated by much data), it goes through 
a p =0 near t=—Q.6(GtV/c)2—precisely where the dip 
occurs in wN charge exchange. This is a remarkable 
coincidence. 

To explore this idea, we constructed a model similar 
to solution 1 but with a linear trajectory of the kind 
described above and with H lying between 0 and —1. 
The resulting fit to wide-angle charge-exchange data 
was less good, and x2 was over 600 for the wN data. 
However, we believe that an explanation along these 
lines is tenable. 

(ix) Unitary Symmetry 

The prediction of SUz symmetry is that, in Table IV 
the coefficients Fo should be 1 for P and P\ but 0.5 for 
p; also, the coefficients F should all be zero (see Sec. 5). 

These predictions are fulfilled remarkably well for P 
and p,44 but both fail for P'. This may be due to 5, the 
isosinglet member of the R octet, which would con
tribute with opposite signs to wN and KN amplitudes; 
if so, it would appear that the contributions of 5 and 
the "true" P' are roughly equal in the wN case, for the 
energy range considered. 

Let us also consider the Johnson-Treiman relations 

for forward scattering amplitudes, inferred from the 
wider SUQ symmetry45: 

$LA (K+p)~A (K-Pn=A(K»p)-A (K°p) 
= A(w+p)-A(7r-p). (26) 

In terms of our models, if we disregard the small differ
ences between ap(0) and aw(0), this implies 

KCoKN(o>)+C0
KN(p)-] = CoKN(o>)-CoKN(p) 

= C0^(p). (27) 

This in turn, when the SU% relation for p couplings 
which we have already seen to be verified is used, 
reduces to 

Co™(«) = |Co*"(p). (28) 

Comparing Tables II and V, we see this is quite well 
fulfilled, showing that the data we fit are at least 
approximately consistent with Eq. (26). A test of lower 
energy KN and KN data has been made previously.46 

The corresponding relation for helicity-flip ampli
tudes is irrelevant here, since there are not enough data 
to fix Bu and we have arbitrarily set it equal to zero. 

Equation (26) would also follow from SUz symmetry 
alone, if oo and p belonged to the same octet and had 
pure F-type coupling to baryons.47 

(x) Helpful Experiments 

Finally we summarize briefly some measurements 
that would help to test Regge-pole models of the kind 
we have made: ^p polarization, to tie down the spin-
flip terms and test the relations between phase and 
energy dependence (K^ polarization too, of course); 
K++n —>K°+p charge exchange, to test the p+R 
model; K±p Coulomb interference, to test the phase of 
the forward scattering amplitude; T~+p —*Tiss+n 
polarization, to see if a single pole really dominates; 
wN second-rank polarization tensors, to test the Regge 
characteristics mentioned in (v); K~+p —>K°+n at 
other energies, to test the energy dependence of the 
p+R model. 
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