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Double-Charge-Exchange Scattering of Low-Energy Pions by Nuclei* 
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The double-charge-exchange cross section for the scattering of low-energy pions by nuclei is calculated 
in second Born approximation, considering only s-wave scattering of the pions by individual nucleons. The 
differential cross section for pions of energy 20 to 40 MeV, and a light target with two neutrons outside a 
closed shell, is calculated to be ~ 7 /xb/sr, with considerable enhancement for targets with larger neutron 
excess. The scattering to the isobaric analog of the target ground state is strongly favored. 

I. INTRODUCTION 

TH E possibility of studying nuclear structure by 
means of the double-charge-exchange reaction 

7rH-[Z,iV] -> x T +[Z±2, iVT2] 

has been discussed by several authors.1-5 Kerman and 
Logan,2 using an impulse approximation, have estimated 
the total cross section for this process, with a variety 
of targets, at about one microbarn (l/xb= 10-30 cm2) for 
low-energy (~40-MeV) pions. Kohmura4 has treated 
the scattering in perturbation theory to fourth order in 
the pseudovector pion-nucleon interaction, obtaining 
a cross section for the reaction 

7T++018—>7r~+Ne18 (ground state) (1) 

of about 15 fib at 10 MeV. Parsons, Trefil, and Drell3 

have computed the cross section in the impulse approx
imation, using the Chew-Low approximation for (3,3) 
resonant scattering of the pion by each of two nucleons 
in succession. For the reaction (1) the forward differen
tial cross section peaks above 100-MeV pion energy, 
reaching an order of magnitude of 10 /jb/sv. At 30 MeV 
the cross section has decreased by several orders of 
magnitude. A calculation similar in spirit, but with a 
different treatment of the pion-nucleon resonant 
scattering, has been reported by Barshay and Brown,5 

estimating a lower forward differential cross section 
than that of Parsons, Trefil, and Drell for high-energy 
pions (100-200 MeV). 

In the present paper we report a calculation of the 
double-charge-exchange cross section for low-energy 
pions (20 to 40 MeV), considering the scattering on 
nucleon pairs in the target, in second Born approxima
tion, using a semiphenomenological s-wave pion-
nucleon interaction.6 I t is perhaps surprising that for a 
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ground-state reaction such as (1), the s-wave cross 
section at low energy is predicted to be of the same 
order of magnitude (10 /ib/sr) as the cross section 
calculated in Ref. 3 at 100 MeV, in spite of the fact 
that the elastic pion-nucleon cross sections at the two 
energies differ by more than an order of magnitude. 
The reason for this, as will be shown below, is that the 
low-energy double scattering is largely diagonal in all 
quantum numbers other than charge, favoring scatter
ing between members of an isospin multiplet, as in (1). 
The high-energy scattering is sensitive to short-range 
nucleon pair correlations, and therefore scatters largely 
inelastically, that is, to states other than isobaric 
analogs. Thus the total cross section to all final states 
should be larger at high than at low pion energy. 

The fact that the low-energy reaction goes through 
a monopole in everything but isospin has some other 
interesting features. For nuclei with large neutron 
excess in shells just above the last proton-filled shell 
(e.g., Ca48, Zr90) large enhancements of the cross section 
may be expected, since all pairs of "valence" neutrons 
may participate, irrespective of angular-momentum 
coupling. 

The other feature of the insensitivity to short-range 
pair correlations is that the appropriate nuclear matrix 
elements for the reaction are largely model-independent, 
and may be calculated directly by use of tables of 
nuclear masses. 

Two experiments on double charge exchange have 
been reported, but at energies above the range of our 
calculations. The first7 yielded total cross sections of 
500 fib for 80-MeV ir+ in emulsions. The second,8 which 
was performed at 195 MeV, using various light nuclear 
targets, produced differential cross sections at zero 
degrees ranging from 1 to 100 /xb/sr. 

II. THEORY 

An s-wave pion-nucleon interaction of the form 

H(x) = 4ir\fj,-2T:- $(x)X<x(x) (2) 

has been suggested6 to explain the low-energy charge-
exchange scattering of pions by nucleons. The quantities 
T, f, and iz are vectors in isospin space; ${x) is the pion 

7 Yu. A. Batusov et al., Zh. Eksperim. i Teor. Fiz. 46, 817 (1964) 
[English transl.: Soviet Phys.—JETP 19, 557 (1964)]. 

8 L. Gilly et al, Phys. Letters 11, 244 (1964). 
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field operator at the position of the nucleon, it(x) = $(%), 
and T is the isospin vector of the nucleon and n is the 
mass of the pion. 

We consider the double charge exchange from state i 
to state / of a nucleus of 4 nucleons, where the incident 
pion has positive charge. The transition amplitude in the 
lowest (second-order) Born approximation, is given by 
the expression 

</,q'| r | i , q ) = ( q , | Z I dH4zx&f*{xv • 'XA)H(x% 

&3 J 
) 

X (E-Ho+ier'Hix^iixv • -xA) I q> , (3) 

where q and q' are the initial and final pion momenta, 
^i and SI7 are the nuclear wave functions, E the initial 
energy, Ho the Hamiltonian for the nucleus and free 
pion. Spin and isospin coordinates are implicit. 

We evaluate the mesonic part of the matrix element 
(3) by introducing a set of virtual intermediate meson 
states: 

{q' \H(xi)(E-~HQ+ie)-lH(xj) \ q) 

f dzk 
= expi(q*Xj—q,'Xi) J exp— ik• (x,— Xi) 

x E 

(2x)3 

<q'|g(0|k(±)Xk(±)lg(j)lq) 

±(cog— 5A)—iok+i€ 
(4) 

where the (d=) refers to propagation of the virtual meson 
forward or backward in time. We use co&= (&2+/x2)1/2, 
and A=cog—uq> is the energy transferred to the nucleon 
pair. We have arbitrarily divided this energy evenly 
between the nucleons. 

From (2) we can evaluate 

<k(±) IH(J) I q>=4^-V+O-)(»9±W i)J(«,«*)-w , (5) 
where r + =2~ 1 / 2 ( r i+ i r2) . 

The sum in curly brackets in (4) is 

{ L } = (47rXM-2)2r+(i)r+(i)r 1 
± lq2-Afi-k2+ie 2 / J 

, (6) 

where we have kept only the lowest powers of q and A, 
so that Q)q=ooq'=fji except in the denominator. On 
performing the k integral in (4), using (6), Eq. (3) 
becomes 

</ ,q ' | r | ; ,q> = 47r(XM-2)2X2M £ [ dh^R^,* 
i*3 J 

XriP.R t-^Q.r i igtpr i,yij^T+^T+U)^i , (7) 

where we use the usual center-of-mass and relative 
coordinates 

and where 

P = q - q ' , Q = i ( q + q % 

We note that Eq. (7) should contain a second term, 
with 8(tij) replacing exp(iprij)/rijy which comes from 
the Fourier transform of the second term in (6). 
However, for nuclear states reflecting the short-range 
repulsion of nuclear forces, this term will not contribute. 

A first estimate of (7) may be made in the zero-energy 
limit (q~q'~0). Then 

T+(I)T+(J) 

(/|rU)^8xXV2L0'l \i). (8) 

We note that the terms of (8) are proportional to the 
Coulomb interaction of the pairs of protons which can 
be obtained from the target state by the operation 
r + ( i ) r + (y) . The Coulomb interaction is mostly diagonal 
in shell-model configurations, since it is of long range, 
so that the important two-body matrix elements in (8) 
involve only particles in unfilled shells. For these 
particles, the Coulomb pair-interaction is also largely 
independent of the angular-momentum coupling of the 
pair, so that the isobaric and radial parts of the matrix 
element may be approximately factored: 

T+(i)r+(j) 

u/\——1*-> 
iJ JJLfij 

where 

and 

- < L ) 
(T,T/\T+T+\T,Tj), (9) 

z+=iLr + (0 

(T, Tz+l\T+\T,Tz)=ZUT-Tz)(T+Tz+l)yiK (10) 

That is, the nuclear transition is largely "monopole" 
in all quantities but T; the final state differs from the 
initial only in 2V 

The average matrix element in (9) is proportional 
to the average Coulomb interaction of pairs of nucleons 
in the unfilled shells, and we have 

C = < l / V ) a v = <SCoul(2)/M^ , (11) 

where ^ = 1 . 0 2 MeV. For light nuclei ( 4 < 4 0 ) the 
pair Coulomb energy can be evaluated by comparing 
the binding energies9 of isobars with 4 = 4 w + 2 and 
4 = 4 w + l (tn= integer) in the unfilled shell: 

Seoul<2) = £ B ( 4 W + In) - EB ( 4 W + 2p) 

+2lEB(4m+p)-EB(4m+n)29 (12) 

(p=proton, n= neutron). Some typical values of the 
ratio C are 

4 = 14, C=0 .55 ; 

4 = 18, C=0 .58 ; , x 
(13) 

4 = 22, C=0 .87 ; 

4 = 32, C=0 .42 . 
9 See, e.g., L. A. Konig et al., Nucl. Phys. 31, 18 (1962). 
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Finally, we can evaluate the low-energy cross section 
using (8), (9), (10), 

da y2 q' 
- = -\(f\T\i)\2 

dtt (2TT)2 q 

= (i6)2xv-2c2-</|r+r+|i)2, (14) 
where 

</| T+T+1 i)2= i (T- 2V-1) (T+ ZV+ 2) 
XiT-miT+T^+l), (15) 

which reduces to the excess neutron pair number 
%N(N— 1) when there are only neutrons in the unfilled 
(target) shells: r = - r 3

t ' = J A r . 
We obtain X from the first Born term for single charge 

exchange, using (5). In terms of the j-wave phase 
shifts 5 3 and 5i we have 

\=(-fx/6q) (dz-dt). (16) 
This gives10 

X=0.045. 
Then 

da qf 

- ~ 7 . < ^ < / | r + r + | i ) W s r . (17) 
dQ q 

If we ignore inelasticity (qf/q), this gives an estimate of 
7.6 fib/sT for the reaction (1). For nuclei with large 
neutron excess the cross section will be much larger, 
as can be seen from Eq. (15). The enhancement factor 
is thus 28 for Ca48 and 45 for Zr90. 

However, several corrections must be applied to the 
"zero-energy" result Eq. (17) to get a useful prediction. 
Firstly, the positive pion must have sufficient energy to 
penetrate the Coulomb repulsion of the nucleus. We 
estimate11 that the probability of penetration for 10-
MeV pions is more than one-half for targets with 
Z<40. A more serious lower limit on the energy is the 
inelasticity; for a light target, the pion must lose 
~ 10-12 MeV to excite the isobaric state, owing to the 
increase of Coulomb energy in the target. Thus the 
factor (g/V)<i for £<15 MeV. But Eq. (17) clearly 
cannot be used for E< 12 MeV. 

At finite pion energy, however, the momenta q, q' 
must be retained in the complete expression (7) for the 
transition matrix element. This leads to a correction to 
Eq. (8), which is analogous to the introduction of form 
factors in relative and center-of-mass motion. For 
moderately low pion energies, and for light nuclei 
which are well represented by harmonic oscillator wave 
functions, the correction to (8) is of the order of 

exp(-JgW, (18) 

where fi is the length parameter of the oscillator: 

p (r) oc exp (—r2//32), r —> oo . 

Thus the cross-section estimate (17) should be valid for 
energies such that q2fi2 < 1. For a light nucleus,12 02^3 F2, 
so that the limit q2^^l is reached for pion energies 
- 4 0 MeV. 

In summary, the range of validity of the approxima
tions involved in Eq. (17) is given by Z <40,12<£<40 
(MeV). 

III. DISCUSSION 

We conclude that the cross section for double-
charge-exchange scattering of low-energy pions may 
be as large as that of high-energy pions, when the final 
nuclear state in either case is the isobaric analog of the 
target ground state. The low-energy pion has a smaller 
probability for each single scattering, but the two 
scatterings are largely in phase, as can be seen from 
Eq. (7). This enhances the diagonal nuclear matrix 
element. Conversely, the rapid phase change for higher 
energy pions between scatterings means that non-
analog states may be reached. 

We wish to point out a similarity between our analysis 
and that of Kerman and Logan.2 Our derivation of 
Eq. (7) is equivalent in principle to treating their 
optical potential for single charge exchange in second 
Born approximation. However, we then separate the 
integral of Eq. (7) in center-of-mass and relative 
coordinates, because we can then evaluate the matrix 
element (8) in an approximately model-independent 
manner, using Coulomb energies. This avoids the 
approximate steps used by Kerman and Logan in 
constructing the optical potential, which requires an 
assumption of the form factor for the charge-exchange 
potential. It is not clear, however, that this difference is 
sufficient to explain the fact that we predict larger 
cross sections at low energy than they. 

Finally, we note that multiple-scattering corrections 
to the second Born approximation should not be 
important, since the s-wave pion-nucleon scattering 
length is considerably smaller than the mean distance 
between scattering nucleons.13 
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