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resonance occurs below threshold for reaction (13b), 
while it is above threshold for (13a) due to the fact 
that the resonance is also coupled to the K+X+ channel 
with its high threshold. This is a particularly clear 
example of the large deviations from symmetry that 
can be produced by the mass differences. 

The remaining discrepancy which has been reported5 

is in pfi interactions at a center-of-mass energy of 
2700 MeV. As it involves only a factor of about 2 in 
cross sections, and the energy is not particularly large 
compared to the masses involved, it is clear that this 
can easily be accounted for by the mass differences. 

To summarize, it would appear that none of the 
reported discrepancies between SU(3) and the results 
of scattering experiments are so large, considering the 
energies at which the experiments have been done, that 
they might not be due entirely to the effects of the mass 
differences within multiplets, with no other large 
symmetry breaking mechanism required. Conversely, 

INTRODUCTION 

WE propose in this paper a unified theory of 
elementary particles, specifically of baryons, 

based on the hypothesis that a particle has a configura
tion represented by four space-time points yM

a (a= 1, 
• • •, 4). This just doubles the coordinates describing an 
elementary particle as compared with the bilocal model1 

of Yukawa. 
The attractive feature of our theory lies in the fact 

that it represents the simplest possible model endowing 
an elementary particle with full and finite extension in 
space-time in conformity with relativistic covariance, 

*H. Yukawa, Phys. Rev. 77, 219 (1950); 80, 1047 (1950); 
91, 415 (1953); Progr. Theoret. Phys. (Kyoto) 31, 1167 (1964); 
M. Markov, Nuovo Cimento Suppl. 3, 760 (1956). 

the cases in which agreement has been found4'6 are 
quite probably fortuitous. Because our results would 
indicate that there are uncertain, but probably quite 
large, effects due simply to the mass differences, it 
would seem that scattering experiments may not be a 
very fruitful way either of gaining evidence for SU(3) 
or of studying the nature of its violations. In any event, 
data will be needed at considerably higher center-of-
mass energies than those at which experiments have now 
been done. 
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that the usual U (3) symmetry together with its break
down is directly ascribed to this space-time nature of 
particles (rather than to the characteristics of meson-
baryon interactions), and that internal attributes such 
as charge and hypercharge are reduced to quantized 
internal motions themselves,2 in contradistinction with 
the viewpoint of the usual composite models.3 

Furthermore, our model implies underlying broken 
U(9) symmetry such that its irreducible representation 
(IR) (3,0,0, • • • ,0) groups together, baryon super-
multiplets belonging to different relative orbital 
angular-momentum states. 

2 T. Takabayasi, Nuovo Cimento 33, 668 (1964). 
3 S. Sakata, Prog. Theoret. Phys. (Kyoto) 16, 686 (1956); 

M. Gell-Mann, Phys. Letters 8, 214 (1964). 
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A unified theory of baryons is proposed based on a spinor wave equation that depends on four space-time 
points or equivalently on the center of mass and three relative-coordinate vectors. The associated sub
sidiary condition and the structure of the mass operator are such that the four-point association is main
tained within a small region of Minkowski space-time with characteristic length and that the theory has 
Z7(9) symmetry in the full symmetry limit. By the couplings of internal motions this symmetry is reduced 
to the direct product of the usual unitary-spin group U{3) and the other unitary group U{3)' characteristic 
of spherical-oscillator-type motions, and then this latter is further reduced to simple rotational invariance. 
Baryonic states are assigned to the 165-dimensional irreducible representation (IR) of the U(9) correspond
ing to the first excited shell with respect to the oscillatory motions of relative coordinates. These states are 
subgrouped according to the IR of the usual SU(3) and to the eigenvalue of the relative angular momentum. 
Identifications with known levels are then made. The whole treatment is carried out covariantly, and 
minimum violation of causality is implied inside the particle. 
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THEORY OF QUADRILOCAL MODEL 

The four-point system is equivalently described by 
the center-of-mass coordinate 

a 

and three relative coordinate vectors x/ (r= 1, 2, 3), 
which are obtained from y^ by a 4-dimensional 
orthogonal transformation4 

xj=Ct«yf, C K > = % , (£,f= 0,1,2,3) , (1) 

where the constant coefficients C*a must have the 
additional special property C0 a=§; consequently, 

a 

Then %xti°=Xfi represents the center of mass, while the 
three vectors # / , which we call normal axes, describe 
the internal configuration of our deformable object 
extended in Minkowski space-time. 

We denote the momentum vectors conjugate to 
jv" by gM

a; they satisfy the covariant commutation 
relations5 

According to (1), #M
a transform to p^—C^q^01 which 

satisfy 

DV>̂ G = *%V (2) 
Then the quantity 2pfi°=Pfi=J^aqfi

ct represents the 
momentum-energy of the particle,6 since (2) contains 
[XM ,Pj=[#M

0 ,^y
0]=^. Equation (2) also indicates 

that x/ and their conjugates p/ are "internal vari
ables"2 which not only are translation-invariant but also 
commute with X„. Since (1) is an orthogonal trans
formation in the "a space," one has 

yfy9
a= xjxvt= 4XMX„+V*/, ,3 ) 

qnaqv
a= P**P**= iP»Pv+p/p/ • 

The choice of normal axes is not unique, but any 
possible set of them can be obtained from the "standard 
set"7 

x*= (l2)-w(3yS~yf}-yt?--yJ>), 

4 In this paper suffixes a, (3, * • • usually range from 1 to 4, and 
£, £, • • • from 0 to 3; Latin suffixes r, s, t, u, • • • run over 1, 2, 3. 
The summation convention is understood for any repeated 
suffixes unless otherwise stated. 

5 We set h = c=l, and use the convention of imaginary 
Minkowskian fourth component for any real 4-vector; suffixes n, 
p, K, • • - run over 1 to 4, while i, j , k, • • • over 1, 2, 3. 

6 If one has to treat a system of n points y^1, • • •, yM
n, one should 

perform an ^-dimensional orthogonal transformation for the 
separation of center-of-mass motion; thus, one takes (1) with 
a = l, •••, n, and £ = 0, •••, n— 1, and puts C°a = l/\/n. Then 
XM = 2<* yf/n'^XiP/y/n and PM= S a q»ct= {\/n)p^. The present 
quadrilocal model corresponds to the case n = 4. 

7 A quadrilocal theory is considered also by H. Yukawa, 
Y. Katayama, and E. Yamada, with a different choice of relative 
coordinates and in a more generalized frame (to be published). 

BAYASI 

through an orthogonal transformation in the figure 
space 

V ' = # r s V> RRT=I, (5) 

which includes figure-space rotations and reflections. 
The former are generated by 

Lr= erstX/PS, [ ! / , £ * ] = UrstL*. ( 6 ) 

The transformation (5) corresponds to such 4-dimen
sional orthogonal transformations of yf with respect to 
the a index as leave XM invariant8 : 

yf' = R*tyf, RRT=I, 1 ^ = 1 . 
a 

These include in particular the S* subgroup of permuta
tions of the four points ya, including transpositions 
(ya,yP) and cyclic permutations like (y1,;y2,;y3), (y1^^2)-

The binding mechanism keeping the four points 
within a small space-time region around XM to construct 
a particle may be supposed to be supplied by a direct 
"invariant potential" V working inside the particle in 
conjunction with the subsidiary condition stated below 
[see Eq. (17)]. Under the assumption that V is a 
scalar function constructed from 

v**= E (yfl
a-yf>

fi)(y>a-y/)=4x/x/, 
[a.01 

all normal axes are mutually equivalent, resulting in 
the 0(3) symmetry independent of Lorentz transforma
tions with the conservation of Lr, which constitute part 
of the unitary spins [see Eq. (16) below]. 

The simplest possibility for V is the relativistic Hooke 
potential V= FMM, namely, the sum of 6 invariant 
squared distances among y^. The model then implies 
the free-particle wave equation 

Hf= 0, H= (2M)" ̂ fqS+hKV^, (7) 

[besides the subsidiary condition (17) below]. By the 
transformation to normal coordinates the center-of-mass 
degrees are separated [owing to (3)], and (7) is brought 
to the diagonal form H= (P M

2 +M 2 ) /8M, with 

M2= Wi^p^PZ+k-'x^x/), (8) 
Zo= {^K)-u\ Mo/o=2V2, (9) 

and the wave equation becomes 

(PM
2+Jf2)^=0. (10) 

Evidently (8) represents the (mass)2 operator for this 
model, for which the characteristic length l0 and the 
scale of mass jLt0 are related by (9). 

We now define the oscillator variables 

V = 2-1'z(l0-
1xfi

r+ilopli
r), a / t = 2~l'2(h~lxl:-iUpl/), 

8 These transformations, which we call bodily transformations, 
form in fact an 0(3) subgroup of 0(4); the meaning of such 
transformations is analyzed in detail in T. Takabayasi, NUDP-
Report T-l, 1965 (unpublished) [Progr. Theoret. Phys. (Kyoto) 
(to be published)]. 
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satisfying the covariant commutation relations 

[ a / , a / t ] = 5rs5MP. (11) 

I t is important to notice that since xf and p£ are pure 
imaginary, the above definition implies that a*rt=0A:r*, 
a / t = — aAr* ^he asterisk designates Hermitian con
jugate), whence (11) means that [a»r,air*]= 1 (r and i 
not summed) while [a4 r ,a4

r t]= —[a4
r,a4 r*]=[a4

r*,a4 r] 
= 1 (r not summed). Thus, if we define nf^a^aS 
(r and i not summed) and nir=a4rair*=— afaf* 
= — (a4

rW"+1) (r n ° t summed), each of mT and n4
r 

takes non-negative integer eigenvalues 0, 1, 2, • • •, 
representing the number of vibration quanta for each 
normal coordinate. For those quanta a/ are annihilation 
and a / t creation operators, while a£ are creation and 
a4

rt annihilation operators. Further we write 

0 M
r t 0 / + 1 = H «*r—W4r=»(r) (r not summed). (12) 

k 

Then (8) is rewritten as 

M 2 = M O 2 ( V V + 6 ) = M O 2 ( X ; n W + 3 ) , (13) 
r 

and clearly the wave equation is invariant not only 
under the 0(3) group (5) but under the wider U(3) 
transformation in the figure space: 

a / - > 6 T " a / , a / t - * a / t ( ^ * ) T > UU*=I. (14) 

This indicates that a/ and a / t are contravariant and 
covariant vectors, respectively, with respect to the 
figure-space suffix. The generators of the U(3) group are 

4 / = V V + S « , (15) 
satisfying 

\_As ,AV J — ov
rAs os

uAv
r, (/i s J = i 4 r , 

and contain in particular Ar
r=n(r) (r not summed). 

Isospin components and hypercharge are to be identified 
as 

r+=r1+ir2=^1
2, r,=§(»a)-»c8)), 

F = i£» ( r ) -» ( S ) , 
r 

and are thus created by the oscillatory motions of 
normal axes. They commute with both XM and PM. 
One has 

D=i(A^-Ai) = 2F7, D=-2F5, 
(16) 

D=2T2=2F2, 

where Ft are unitary spins in Gell-Mann notation.9 

The U(3) symmetry contains the invariance under 
the internal reciprocity 

x/-*h2p,J, PS-^-xS/k2. 

Really observable quantities are not x/ and p/ 

9 M. Gell-Mann, Phys. Rev. 125, 1067 (1962). 

themselves but are quantities such as unitary spin, 
spin, and mass, which are all self-reciprocal. The theory 
is also invariant under the "multiplicative triality" 
a/—^o)afl

r (co=e2iri/3) induced by the unitary operator 

Ut= e x p ( 2 x i a / V / 3 ) , (Ut)
z= 1. 

The U (3) breakdown is connected with the situation 
that the full equivalence among the four points is 
partly violated so that yM

4, say, becomes inequivalent 
with the other y / ( r= 1, 2, 3). Then the 0(3) symmetry 
is reduced to 0(2) corresponding to the equivalence 
among the three y / alone, and along with it the 27(3) 
symmetry, for which the 0(3) is a specified subgroup, 
must also be reduced to isospin and hypercharge 
conservation, as can be verified by consideration in 
the standard coordinates (4). 

To complete the theory (on the one-particle level) it 
is essential to impose the subsidiary condition10 (d/dXM) 
X a / t y = 0 . This is rewritten as 

A ^ = 0 , A r = P M V f - (17) 

Clearly (17) is a U(3) vector equation having 27(3)-
invariant meaning, and is compatible with the wave 
equation (10) [or (21) below]. The subsidiary condition 
effectively reduces the internal degrees of freedom from 
12 to 9, and at the same time eliminates the difficulties 
of infinite degeneracy of mass levels and of negative 
squared mass, which otherwise would have occurred. 
Let us first assume that PM is time-like. Then one may 
take the center-of-mass rest frame in which all Pk have 
vanishing eigenvalues and (17) reduces to a^\f/=0, so 
^4 r =0 (recall that a4

rt are annihilation operators), so 
that the relative-time motion is restricted to the zero-
point oscillation, resulting in nir) = J2k nk

r^0 [see Eq. 
(12)]. But since n{r) is a scalar quantum number it 
must be positive semidefinite in any frame. Thus the 
subsidiary condition ensures the positive-definite prop
erty of the operator M2 [Eq. (13)], and the wave 
equation (10) assures in turn that the quantity 

P= — P 2 
r — jr ^ 

must be positive definite for any physical state, in 
accord with the original assumption of time-like PM. 
On the other hand if one assumes a space-like PM, then 
one can prove that there exists no normalizable solution 
satisfying the subsidiary condition (17). I t is thus 
verified that PM must be time-like as a consequence of 
the wave equation and the subsidiary condition. 

If one considered the limit l0—> 0, the subsidiary 
condition (17), which is re-expressed as P^xZ—i^p/)^ 
= 0, would tend to Pftxfi

r\f/=Oi meaning that in the 
center-of-mass rest frame all four "events" yM

a occur 
simultaneously :y0

1 =yo2=yo3=yo4 (yoa=y4a/i). In fact, 
however, because of the finiteness of Z0, the subsidiary 
condition (17) suppresses time-like extensions to a 

10 This condition is analogous to the Lorentz condition (dA^/dx^) 
X^=0 in the case of electrodynamics. 
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minimum but finite degree such that there always 
persist zero-point oscillations in relative times. Thus 
in our theory the unitary symmetry is necessarily 
related to the minimum violation of causality inside 
the particle. 

The orbital angular-momentum tensor y^aqp]a of 
our system (the square brackets denote antisym-
metrization with respect to the indices) is separated into 
that of the center of mass and the part due to relative 
motion: 

The covariant relative angular momentum11 is defined 
by 

= (-i/Pl*hfi,KxyK«qxaPv,
 { } 

which commutes with PM and is space-like because 
WpP^Q. This Wy, means the infinitesimal operators 
of the little group with respect to PM, and its magnitude 
is positive semidefinite, taking integer eigenvalues 
W,?=W(W+1), TF=0, 1, 2, • • -. In the rest frame it is 
reduced to 

Wi= —iuik<if^akr-> W1—L2Z etc., PF4=0. 

Evidently, ZM„ is the antisymmetric part of the ^7(3)-
invariant tensor 

namely L^— — i{K^—Kvv). The three quantities TFM
2, 

W3j and 

0 = WrKrW,** Wr*W, (W'seoSWJ 

are all U (3) -invariant and mutually commuting, and 
they correspond to the three degrees of freedom of 
rotation of our extended object with respect to an 
inertial frame.12 

The KnV themselves do not commute with the 
subsidiary condition. However, we define the associated 
space-like tensor 

with the aid of the projection operator 0M„= 5M„+PMP,,/ 
P, which has the properties 

OM„P„=0, Oxfi^O^\ (19) 

then KJ satisfies [irM / ,A r]=[iTM / ,^/]=0. Since W » 
and © can be written as PFM=— ^K\KK\PV/\/P and 
© — WpKn/W,,, they also commute with Ar. Now K^' 
constitute the generators of the group U(3)'. In 
particular, in the center-of-mass rest frame the space 
components satisfy £Ki/yKki2==^jkKuf—8iiKjk and 
(Ki/)*=Kj/, while all time components vanish: K^ 

11 Cf., e.g., W. Pauli, lecture note, CERN, 1956 (unpublished). 
12 Precisely speaking O is a quantity related to couplings 

between oscillations and rotation and not one related to rotation 
only. Clearly © is also positive semidefinite. 

= ir4l/ = 0. This U(3)f is the symmetry characteristic of 
an oscillator-type model. 

Moreover both the wave equation (10) and the 
subsidiary condition (17) are invariant under the U(9) 
group containing U (3) 0*7(3)' as subgroup. The U(9) 
generators are 

with the properties PfiA8
r
fliV=PvAa

r
tflv=0J [-4/tM„,Aw] 

= 0, and 
*• A u 1 = £ (1 4 u —fr O A r 

8 tUPj^-v ,pcrj VrtA/pv-n-8 ,p<r v8U\Jfi<r-^v ,pv 

This Aa
r
tliV really contains the £7(3) and U($)f genera

tors because 

•A- 8 ,pn='l-/ paGp '#0- , A r , f t v = **- fiv j 

where the former is equivalent to A/ of (15) in so far as 
it operates on any state satisfying the subsidiary 
condition (17): 

Opcdp^a/^AM. 

BARYONIC STATES 

To deal with baryons more closely we assume that 
all (free) baryonic states are described by the funda
mental spinor wave equation 

(*Y, L q»a+M)Hy\f,f,yA)=o, (20) 
a 

where \p is a Dirac spinor depending on four points, and 
M is a certain operator invariant under inhomogeneous 
Lorentz transformations, depending on y^—y/ and 
qf^—id/idyn"). By the transformation (1), Eq. (20) 
is rewritten as2 

(iy^+M)f(X,&,x*,c<?) = 0, (21) 

where M now depends on # / , p/y and possibly on PM, 
and means the mass operator. 

The ground state (of internal motion) ^o is specified 
by imposing the additional condition 

0 ^ / ^ o = 0 . (22) 

This is compatible with (17), and also has £7(9)-
invariant meaning, since (22) implies 

[4.r,M*Ax0A t t>o= dsuO ^(0^^0=0. 

In the center-of-mass rest frame Eq. (22) reduces to 
aictyo—O so that for \po all relative motions are in their 
oscillator ground states. 

We now define 

R^b^+lP^/P, 

which is the operator reflecting an arbitrary vector with 
respect to the hyperplane normal to PM, and accordingly 
has the property of an (improper) Lorentz transforma
tion: RxyR^ dxp. In terms of PM„ Eqs. (17) and (22) 
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are put in a unified equation 

(V+^)2iW/¥o=0. 
The plane-wave solution is given by the internal 
minimum wave packet with space-time extension of 
order U: 

lAo= (wh^uiP^e^iiPt/X^-^lo^R^x/x/). (23) 

Here PJ and R^J denote respective eigenvalues, 
satisfying P / 2 = — mi, where mo is the (lowest) eigen
value of the mass operator M; and u{PJ!) is the 
constant spinor satisfying (iYMPM'+*Wo)w(P/) = 0. From 
(22) one immediately obtains ^4/,M»^o=0, so Asfo 
= W^//o= @^o=0. In the center-of-mass rest frame, \po 
damps in a Gaussian manner with respect to relative-
time coordinates xtf^xf/i as well as relative-space 
coordinates.13 This ^o does not vanish in the region 
where # / is time-like, but it is normalizable with 
respect to integrations over internal coordinates 
including relative times, and, in fact, expression (23) is 
exactly normalized to unity. Also each # / is space-like 
in its expectation value, with (0V)2)o=V (r not 
summed). 

If one considered the limit lo —» 0, then \//Q would 
tend, aside from the external factor, to a & function for 
space- and time-relative coordinates, and one should 
approach the local theory. 

We classify baryonic states under the additional 
restriction14 U^=\f/y meaning Ar

r=zYLrn{r) = 3v (v 
= integer). For simplicity we consider the more restric
tive condition 

K^==Arr==Ytn(r) = 3} (24) 
r 

to allow the "first" excited shell only. This condition is 
U (9) -invariant and is rewritten as 

a/t#MV=0, i.e., K^\f/=0. 

Then a wave function consistent with subsidiary condi
tions is generally written as 

Za/ia/Wtyoim), (25) 

where ^o(w) is a "generalized ground-state function"15 

and the summation is to be made over r, s, t and /x, v, K 
with appropriate coefficients such that (25) becomes 
an eigenstate of the mass operator M with the eigen
value m. Note that each individual term in (25), 
denoted ^ /* < (w) = a/ta/t^K<t^0(w)> satisfies P^^S*1 

13 This point was emphasized by H. Yukawa, Progr. Theoret. 
Phys. (Kyoto) 31, 1167 (1964), for the case of bilocal model. 

14 A possibility can be suggested of interpreting this restriction 
in terms of parastatistics regarding permutations among the four 
points. [Cf. Ref. 8]. 

15 One generalizes ^0 given by (23) mathematically by dropping 
the condition that wo should be an eigenvalue of M; namely, one 
replaces PIQ by an arbitrary parameter m and denotes it by ^o(w). 
This "generalized ground-state function" (or "core function," 
say) does not itself satisfy the wave equation but continues to 
satisfy (17) and (22). 

X(m) = Pv\f/^/8t(m) = PK\//^K
r8t(m)==0 as a consequence 

of the subsidiary condition (17). 
Owing to the Dirac spinor character of ^, the total 

angular-momentum tensor is 

MM,=X[MPv]+L^+|o-My, (<7>=7[M7„]/2i) 

so that the covariant particle spin is J^M^Py/^P 
= TFM+SMwith 

2M=-€^x7vT.Px/(4V
/^) J V = f . 

Its magnitude, 

/ M 2 = ^ M 2 + ! + 2 T F M 2 M , (26) 

has eigenvalues J(J+l) with J=W±i. The last term 
in (26) means covariant "spin-orbit coupling" and is 
written also as 

and in the rest frame W^^ W- 2 = — (i/2)eijkair1ajr<rk. 
The magnitudes of relative angular momentum and of 
the total / spin are good quantum numbers, while W% 
is not, and in its place one may employ the helicity 
Jo=Ji/i. 

In our model the rest mass should originate in general 
from the excitation of oscillatory motions of normal 
coordinates and their couplings, as illustrated in (8). 
For the mass operator of baryons the first approach 
will be to require that the wave equation (10) should 
still be fulfilled, to obtain M=Mo(a/t<J/+6)1/2. How
ever, it is more reasonable for baryons to assume the 
oscillator formula for M itself 

M= iuo(V tV+6)=iuo(^r r+3) (27) 

to begin with, where the theory has U(9) symmetry. 
The additive constant 3 in (27) corresponds to zero-
point oscillations. The U(9) IR (3,0,0,- • -,0) with the 
dimensionality D=165 exactly represents the "first 
shell" defined by (24), with completely degenerate 
mass. Such full symmetry will be reduced successively. 
Here we consider the problem merely in a formal 
manner. 

First we introduce couplings among different normal 
axes by (AA)z=A8

rAr* and (AAA)=±As
r{Au*,Ar

u}. 
These U{3) Casimir operators and the respective ones 
of J7(3)' are equal for any physical \j/ satisfying (17): 

{AA)+= K,JKV^, (AAA)+= ±K^f{K„'\KV^. 

In place of them one may employ 

(BB)=B9'BS, (BBB)^B/{Bu*,Br«}, (28) 

in view of (24), where B8
r=A8

r— \brsAu
u are generators 

of the SU(3) subgroup. By the above couplings the 
full U(9) symmetry is reduced to U(3)®U(3)'. The 
quantities (28) are related to the signature of SU(3) 
IR (\!,X2) by <^)=|{(X1

2+X2
2)+X1X2+3(X1+X2)}, 

<^JB^)=i(X1-X2)(2X1+X2+3)(X1+2X2+3). 
Next the £7(3)' symmetry is reduced to the usual 
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rotational invariance. Without going into the possible 
mechanism of such reduction, we simply assume that it 
effectively brings to the mass a new contribution repre
sented as the couplings of angular momenta, in con
formity with the requirements that it should be com
patible with the subsidiary condition (17) and preserve 
the usual £7(3) symmetry as well as the relativistic in
variance. Then such a contribution must depend on IFM

2, 
PFM2M, and @ alone [or equivalently on W^2, JM

2, and 
© alone, in view of (26)]. The simplest mass formula 
under the above assumptions is M=M\+M2 with 

M^^+AS+axiBB)), 

M 2=fio(a2Wli
2+2azWl^lt), 

where in particular we have neglected terms depending 
on (BBB) and ©. 

On account of the M% term the wave equation now 
involves, via W^ explicit couplings between the 
internal x{tl

rpvf and the external PM, and it further 
implies a higher order differential equation in XM. 
(Another way of looking at the equation is to regard it as 
simply applying for each eigenstate of PFM

2 and JM
2.) 

By analogy with the case of the rotator model16 it is 
natural to assume that a2>0 [see (35) below]. The 
formally introduced "spin-orbit coupling" should be of 
different origin from similar ones such as occur in 
atomic physics. It explicitly contains y matrices, but 
still M formally maintains the meaning of mass operator. 
In fact, from (21), one gets by iteration {PM

2+M2 

— ^ M [ T M ^ ] } ^ = 0> which is the Klein-Gordon equation 
(10), provided that Pfly^M^O. But this condition is 
really satisfied by the spin-orbit coupling term since 

PP [7P,JFM2M ]= (i/4P1/2)6M,lcxPp[7p,^]?FKPx= 0. 

Finally the £7(3) symmetry is broken in a fashion 
analogous to that of Gell-Mann and Okubo (GMO),M7 

to obtain M=Mi+M2+Mz with 

M3= -KXY+K2{T{T+\)~IY2-1{BB)} . (30) 

The average of M3 over any SU(3) IR vanishes. 
Baryonic states (25) under the shell condition (24) 

are now classified according to simultaneous eigenstates 
of (28) and18 

( F ^ r ^ V i W o ) , (31) 

as shown in Table I, where identifications with known 
levels are indicated. 

16 This model corresponds to one for which x/ are no longer 
independent variables but are subjected to the constraints 
(*/#/—$$o*«)^ = 0, which are equivalent to the restriction that 
all the six invariant squared distances among four points ya 

are equal and constant: (y^-y^^s^X-b^) [«, 0 not sum
med]. For this model the U(3) symmetry reduces to the 0(3) 
symmetry (5) with the conservation of Lr of (16) only. 

17 S. Okubo, Progr. Theoret. Phys. (Kyoto) 27, 949 (1962). 
18 Note that on account of the conditions (17) and (24) on the 

one hand, and of the additional degree of \p polarization on the 
other, one needs the set of 9 commuting quantities for a complete 
classification of internal eigenstates. 

TABLE I. Baryonic states in the first shell. 

d (\h\2) (BB) (BBB) W © Jp Baryon 

0 

3 

10 

0 

0 

i+ 

/1+ 

r0*(1405) 

(tf,A,2,3) 

iV1/2*(1688), F,,*(1815), ••• 

tf,/,*(1920), • • • 

For example, the totally antisymmetric eigenfunction 

*(0)= WV^)^xP^a2W^o(nt) 

yields the unitary singlet, which is identified with the 
known F0*(1405). According to the mass formula (29) 
and (30) its mass is given by 

m(F0*) = 6Mo, (32) 

from which one may fix the unit /x0 as /i0= 1405/6 
« 234.2 MeV. It is remarkable that this exactly agrees 
with the basic mass unit which we previously introduced 
from empirical mass systematics of baryons and 
mesons.19 

We assign by convention odd intrinsic parity (Jp= §~) 
to the "ground state" ^o; then all baryonic states in 
the "first" shell should have even parity.20 The feature 
of the "first shell" is that once an SU(3) IR and relative 
angular momentum are specified, © takes on a unique 
eigenvalue, and that for every 5(7(3) IR its dimen
sionality d equals the multiplicity due to W to be 
accommodated therein: d=2w(2W+l). In fact, 

165= (1,1)+ (8,8)+ (10,10). 

Although experimental identifications are not yet 
complete,21 it is the characteristic feature of our model 
that our super-supermultiplet 165 accommodates the 
usual octet and decuplet together with their supposed 
(first) Regge recurrence supermultiplets, by grouping 
different relative orbital angular-momentum states into 
a single 17(9) representation. 

The usual baryon octet and the f+ decuplet are 
comprised in an "18-plet," or, say, 56-plet, according 
to the />-state nature of the internal motion, W=l. 
This positive-pairty 18-plet has further properties 

/ ( / + l ) - i = 3 C 7 - J ) = 2+W«r, (33) 

i W = 3 ( / + i ) = / ( / + l ) + 9 / 4 , (34) 
19 T. Takabayasi and Y. Ohnuki, Progr. Theoret. Phys. (Kyoto) 

30, 272 (1963); T. Takabayasi, Nuovo Cimento 30, 1500 (1963). 
In this latter paper the relation (32) was pointed out. 

20 This implies that F0*(14O5) should have / p = i + , which 
assignment was also adopted by J. Schwinger, Phys. Rev. Letters 
12, 237 (1964). The "second shell" with A/= 6 yields odd-parity 
states. 

^ Considerations about the predicted states (i.e., those left 
unidentified in Table I) , for which some evidences exist, will be 
given elsewhere. 
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which allow us to reduce our baryon mass formula to a 
simpler form for the 18-plet. 

CONCLUDING REMARKS 

(i) Within the limits of the preceding arguments 
the parameters occurring in the mass formula (29) and 
(30) are not calculated, but one may estimate their 
values by comparison with observations. In fact, if 
one takes the choice 

o i = - i , «.= «.= *, ( 3 5 ) 

KI=6K2, MO=KI+AC2, 

and notes (33) and (34), one obtains the mass formula 
for the 18-plet22 

M = K 2 { 2 8 + 6 ( / + | - F ) + [ r ( r + l ) ~ i F 2 ] } (36) 

which is in good agreement with observations. We note 
that this semi-empirical formula contains, besides the 
GMO relations,9-17 the following simple relations: (a) 
The central mass of the octet and that of the decuplet 
stand in the ratio (mJB)/(mB*)=f. (b) The isosinglet 
masses belonging to the octet and to the decuplet are 
in the ratio mjm&~\. Both of these relations are 
in excellent agreement with observations.23 (c) The 
common spacing within the decuplet is related to the 
octet spacing by 5io= f (wH—PIN), which yields 5io= 143 
MeV as compared with the experimental value 8\o^ 145 
MeV. 

(ii) In the present multilocal scheme, leptons will 
be assigned to a trilocal configuration; for mesons an 
appropriate configuration is one which consists of eight 
points subjected to special constraints so that they again 
have nine internal degrees of freedom. 

(iii) This paper is mainly devoted to establishing a 
concrete model verifying that elementary-particle sym
metry should follow naturally from the hypothesis of a 
space-time configuration of the particle, such as 
described by a nonlocal framework. Clearly, our theory 
is still quite restricted in its scope, as we have established 
it merely on a one-particle level. However, this is the 
important step, since the quadrilocal theory means a 
rather drastic theoretical extension, and since our treat
ment already manifests characteristic features of the 
theory, including the qualitative prediction of the ex
istence of broken U(9) symmetry with its definite 
irreducible representation to be realized. 

The treatment of interactions is the main problem to 

22 This formula is essentially the one presented in T. Takabayasi, 
Phys. Letters 5, 73 (1963). 

23 T. Takabayasi. Progr. Theoret. Phys. (Kyoto) 32,981 (1964): 
Nuovo Cimento 35, 666 (1965). 

be pursued in a further study, in which one must perform 
second quantization. The interesting point then will be 
to see how the assumed finite extension of the particle 
should modify the interactions. 

The process of symmetry-breaking, which was 
regarded as being of internal origin, should be reconsid
ered from the standpoint of interactions; the electro
magnetic interaction is related to this problem also. 

(iv) It is interesting to note that our broken U(9) 
symmetry has a character similar to the SU(6) recently 
discussed,24 although the original ideas and standpoints 
are quite different. 

Our theory is based on the set of three internal 
vector variables a/ together with their adjoints a / t 
derived from the assumed quadrilocal structure. If one 
postulates instead that the particle has internal 
structure represented by three 2-component spinors 
aa

r ( r= l , 2, 3 ; a = l , 2), one can construct a model 
embodying U(6) symmetry with the U(6) generators 
A6

r
tap=aa**apr. This contains the spin represented by 

Ji—%aa
r*(<ri)a0apr and unitary spins corresponding to 

A/=aa**aar- Since this model has six internal variables 
only, it is much more restrictive than the quadrilocal 
model, and it indeed gives the relation (34) for the 
18-plet. This scheme [like the usual SU(6) theory] is 
not Lorentz-covariant. To remedy this deficiency we 
start with the internal variables consisting of the set of 
three 4-component spinors f p

r (r = 1, 2, 3) and impose 
the commutation relations [fp

r,f/]=5rs5p<r, (fr=r"*Y4). 
The model then embodies U(6) symmetry in a covari-
ant way with the generators A8

r
%llv=0}ipOV(T{lsypy<rt;r) 

+ 25rsOM„. This model resembles a composite system of 
three rotators rather than a multilocal one. 

All these points, including a more detailed treatment 
of the mass-formula problem, will be discussed further 
elsewhere. 

Note added in proof. The investigation of the quadri
local model referred to in Ref. 7 is presented by Y. 
Katayama, E. Yamada, and H. Yukawa, Progr. Theo
ret. Phys. (Kyoto) 33, 541 (1965). The unified model 
of baryons and mesons based on three spinor internal 
variables fp

r (which are equivalent to three triads), 
referred to at the end of the text, is given in detail in 
T. Takabayasi, NUDP-Report, T-8, 1965 [Progr. 
Theoret. Phys. Suppl. (Kyoto) (to be published)]. 
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