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For the case of a short-range central potential, the quantity ai, defined as the zero-energy limit of k2l+1cotf>i, 
vanishes whenever the range and depth of the potential are such that there is a state of zero binding energy. 
By solving the zero-energy scattering problem we obtain a* as a function of range and depth and thus 
determine the number of bound states supportable by a given central potential as a function of the potential 
parameters without having to solve the associated and more difficult eigenvalue problem. The method is 
applied to the Debye-Hiickel (Yukawa) and Woods-Saxon potentials. 

SEVERAL attempts have been made and reported in 
the literature1""3 to determine the number of bound 

states in the Debye-Hiickel (Yukawa) potential as a 
function of range and depth. These attempts usually 
involve considerable numerical work even though they 
yield solutions which are only approximate, and one 
may justifiably inquire why no effort is made to find an 
exact, though numerical, solution. We believe the 
answer lies, at least in part, in the cumbersome and 
time-consuming procedure required by the straight­
forward approach to this problem. This involves replac­
ing the radial-wave equation by an appropriate differ­
ence equation, guessing an eigenvalue and integrating 
the equation step by step from the origin to large values 
of the radial variable r, and then determining whether 
the resulting solution exhibits the proper asymptotic 
behavior. If it does not, the trial eigenvalue is changed 
and the process repeated until it does. This must be done 
for every negative energy state in the spectrum and for 
many sets of potential parameters in the desired range. 
In addition to being a lengthy process, this technique 
never provides complete assurance that all bound states 
have been found; one or more levels, especially loosely 
bound ones at the top of the spectrum, can easily be 
overlooked. 

If one desires to know only the number of states 
bound for each set of potential parameters rather than 
the eigenvalues themselves, there is another method for 
doing this which is both simple in concept and easy to 
carry out. To begin with, an appropriate scaling of the 
wave equation makes it possible to characterize some 
potentials by a single parameter. To make this discus­
sion specific let us deal with the Debye-Hiickel potential 
as an example. Thus we write 

F(r) = -ge2r-1exp(-r/X), 

where e is the electronic charge, X a range parameter, 
and g a dimensionless coupling constant. The reduced 
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radial-wave equation is thus 

^^ r 2 +[2w£/^ 2 +(2gAo)e -^ x A-^( /+ l )A 2 >z=0 , 

where ut is the reduced radial-wave function, m and E 
are the mass and energy of the particle bound in the 
potential, and ao=h2/mei. Introducing the variable 
x=r/\ and defining k2— — 2m\2E/fi2 and a) = 2g\/ao, we 
find 

&mldx2- [^-coe-Vx+/( /+l)A 2>z=0. (1) 

With the equation in this form the Debye-Hiickel 
potential is characterized by the single parameter co. 
Clearly there are many potentials which, by some 
scaling procedure, can be characterized in terms of a 
single parameter. For the present we assume that the 
potentials with which we deal are of this kind; later we 
shall generalize our methods to include potentials which 
must be characterized by more than one parameter. 

By assumption, the potentials we work with are short 
range and so, at large values of the radial variable x, the 
reduced radial-wave function at zero energy is 

ul(x)=(l/xl)+bi(w)xl+1
J (2) 

with arbitrary choice of normalization. The quantity bi, 
as indicated, depends upon the potential parameter co. 
Let us now suppose that for co=coc there is a zero-energy 
bound state of angular momentum /. For this value of co, 
the function ut must then be normalizable and the 
second term in Eq. (2) cannot be present. We conclude 
that 

W«e) = 0, (3) 

if there is a zero-energy bound state of angular mo­
mentum / for co = coc. Since all the bound-state levels 
enter the spectrum at zero energy for some value of co 
and, to quote Schwinger,4 ". . . a decrease of the 
potential in some region must lower the energies of the 
bound states and therefore cannot lessen their number," 
the procedure for counting the number of bound states 
is thus the following: We solve the reduced radial-wave 
equation at zero energy at a series of values of co. The 
function bi(co) is determined by joining the solution 
smoothly at each co to the asymptotic form given in 
Eq. (2). The number of bound states of angular mo-

4 J. Schwinger, Proc. Natl. Acad. Sci. U. S. 47, 122 (1961). 
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mentum / at any OJ=W0 is then the number of zeros of 
bi(a>) for values of o> less than or equal to CCQ. We shall call 
bi(<J) the counting function, which is inversely propor­
tional to the /th partial-wave scattering length. 

The above line of reasoning is not applicable to 
s states because binding in attractive short-range central 
potentials results from the centrifugal barrier which, of 
course, is absent when 1=0. Thus, rather than a true 
bound state at zero energy, for s waves we have a 
"zero-energy resonance" which, when the well is 
deepened by an arbitrarily small amount, becomes a 
true bound state with a small negative eigenvalue. 
However, the criterion for a zero-energy resonance and, 
therefore, for counting s states is &o(«) = 0, the s-wave 
version of the general statement (Eq. 3). This can be 
made evident from the following alternative derivation 
of the criterion. 

For energies different from zero the scattering (i.e., 
k2> 0) wave function outside the range of the potential is 

ui(x)~ — kl+1x[ni(kx)—ji{kx) cotSj, 

where 8i is the /th wave phase shift, j t and m are the 
regular and irregular spherical Bessel functions, and 
the normalization has been chosen for convenience. We 
now take the limit of this expression as k approaches 
zero. To do this we use the forms of the two Bessel 
functions at small argument5 as well as the generalized 
finite range expansion,6 

k21*1 C0t8i=ai(a>)+I3i(a))k2+ • • • , (4) 

where the constants ai, fii, etc. depend upon the 
potential parameter o>. Thus in the zero-energy limit 
we find 

Wj(a ; )=(2 / - l ) ! !A^(wy + 1 / (2 /+ l ) ! ! . 

By comparing this form with the one given in Eq. (2) 
we see that 

fti(«) = [(2H-l)!!(2/- 1)!!]-W"). (5) 

This way of looking at the problem relates the function 
bi(oi) to the leading term of the finite-range expansion, 
ai(w), and shows that our method of counting bound 
states actually involves solving the associated zero-
energy scattering problem, and this is generally far 
easier than attempting an eigenvalue problem, especially 
if the latter must be carried out many times. 

Now for the .y-wave case. Levinson's theorem7 tells 
us that if there is a zero-energy resonance then, provided 
the phase shift is normalized to zero at infinite energy, 

«o(0)=(»+l/2)x, 

where n is an integer (the number of bound s states, as 

6 See, for example, L. Schiff, Quantum Mechanics (McGraw-Hill 
Book Company, Inc., New York, 1949), 1st ed., p. 78. 

6 See, for example, M. Goldberger and K. Watson, Collision 
Theory (John Wiley & Sons, Inc., New York, 1964), p. 289. 

7 Reference 6, p. 284. 

a matter of fact) and S0(0) is the s-wave phase shift at 
zero energy. Clearly, then, cot50(0) = 0 under these 
circumstances. But from the finite-range expansion, 
Eq. (4), 

lim cot50 (k) = lim[ao (u>)/k~] • 
fc-»0 fc-+0 

If these two results are to be compatible, it is clear that 
ao(co) must be zero for any value of co for which there is 
a zero-energy resonance. Our expression relating bi and 
ai [Eq. (5)] thus establishes that the counting procedure 
for ^ states is the same as in states of higher angular 
momentum. 

It may have occurred to the reader that Levinson's 
theorem might be applied directly to count the number 
of bound states. This theorem asserts that the difference 
between the phase shift at zero and infinite energies is 
equal to nw where n is the number of bound states. (For 
s states this statement must be modified in a way in­
essential to the following discussion.) Thus it appears 
that we need only solve the scattering problem at zero 
energy and at some large ("mfinite") energy, take the 
difference of the two resulting phase shifts, and divide 
by 7r. Unfortunately, the solution of a scattering problem 
does not provide the phase shift itself but some function 
of it, such as the tangent, from which the phase shift 
can be determined only to within an additive integral 
multiple of T. But this multiple of w is clearly crucial in 
this context. For a direct application of Levinson's 
theorem it is necessary to solve the scattering problem 
over the entire range of energy for each value of co so as 
to obtain the entire history of tan5* (or whatever 
equivalent function is determined) and from it re­
construct the phase shift without any ambiguity. The 
method of counting bound states put forth in this paper 
is clearly preferable, since it requires only the solution 
to the zero-energy scattering problem at each value of 
the parameter w which varies over a finite range. 

To apply our counting procedure to the Debye-
Hiickel potential, we require solutions of 

(Pul/dx2+lcoe-x/x--l(l+l)/x22ui=0 

which is Eq. (1) now written for zero energy. This 
equation, which must be solved numerically, is replaced 
by an equivalent difference equation by standard means8 

and then integrated once and only once at each w in the 
desired range from the origin to large values of x. At 
large x the function ut is joined smoothly to the zero-
energy asymptotic form given by Eq. (2) and bifa) is 
thus determined. 

The counting functions ij(«) for the Debye-Hiickel 
potential are plotted in Fig. 1. Since only the positions 
of the zeros of these functions are relevant to us here, we 
have not calibrated the vertical scale. It will also be 
noticed that, except for s waves, no counting function is 

8 See, for example, B. J. Scarborough, Numerical Mathematical 
Analysis (Johns Hopkins Press, Baltimore, Maryland, 1955) 
3rd ed., pp. 265 ff. 
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TABLE I. Critical values of « as a function of principal quantum number (n) and angular momentum (/) as given 
(a) by present calculation and (b) by Harris' variational calculation. 

\ J 
w \ 

1 
2 
3 
4 
5 
6 
7 
8 

0 
(a) 

1.68 
6.45 

14.3 
25.4 
39.5 
56.8 
77.3 

101 

(b) 

1.74 
5.00 
6.78 
9.09 

11.3 
13.8 
15.9 
18.5 

1 
(a) 

9.08 
17.7 
29.5 
44.3 
62.2 
83.2 

107 

(b) 

9.52 
18.2 
25.0 
33.3 
38.5 
43.5 
50.0 

2 
(a) 

21.8 
34.4 
50.0 
68.5 
90.2 

115 

(b) 

22.2 
40.0 
50.0 
58.8 
69.0 
80.0 

3 
(a) (b) 

40.2 40.0 
56.5 57.1 
75.9 74.1 
98.2 95.2 

124 111 

4 
(a) 

63.8 
84.0 

107 
134 

(b) 

66.6 
87.0 

111 
125 

plotted for values of o) less than a minimum value 
below which no binding is possible. This minimum a> 
is determined by observing that the effective potential 
in a state of angular momentum I, 

Vi(x) = -a>e-*/x+l(l+l)/c<?, 

cannot give rise to binding unless its minimum is 
negative. The limiting value of o) in any angular-
momentum state / is that value for which Vi{x) and its 
first derivative V/(x) are zero at the same value of x. 
Carrying out the algebra we find that oomin

l=l(l+l)e 
= 2.718/(/+l). No counting function need be computed 
for any value of w less than this minimum value. 

The critical values of co for the Debye-Huckel 
potential (that is, the values for which states are just 
bound at zero energy) are presented in Table I. To the 
best of our knowledge the only entry fisted in the table 
which has been at all accurately determined earlier is 
the value a>=1.68 at which the ground (Is) state is 
first bound.9 The remaining values are to be compared 
with those obtained by Harris1 using a variational 
method; these also are presented in Table I. We see 
that (1) for fixed angular momentum, agreement be-

\\\A V̂ 

1 1 1 I 1 1 1 1 i i 

s STATES 

p STATES 

d STATES 

1 1 
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FIG. 1. The counting function bi((a) versus <a for sf pt and d waves 
in the Debye-Huckel potential. 

9 R. G. Sachs and M. Goeppert-Mayer, Phys. Rev. 53, 991 
(1938); C. Lovelace and D. Masson, Nuovo Cimento 26, 472 
(1962). 

tween the two sets of numbers deteriorates as the 
principal quantum number increases; while (2) for 
fixed principal quantum number, it improves as angular 
momentum increases. The first of these observations is 
to be understood from the fact that for the most 
tightly bound state of a given /, and for that state only, 
the variational method yields a lower bound on the 
energy. In the remaining cases the variational method 
leads to uncontrolled and apparently unreliable ap­
proximations. The second observation is to be under­
stood by noting that Harris' trial wave functions are 
chosen to be eigenstates of angular momentum. As the 
angular momentum increases, the centrifugal barrier 
becomes the increasingly dominant contribution to the 
effective potential. Therefore, as long as the trial func­
tion is the appropriate angular-momentum eigenstate, 
its specific form becomes less important as / increases. 

Another aspect of our results concerns the order in 
which levels appear as a function of w compared with 
the order of the levels in a Coulomb potential. We find 
(see Table I) that the levels enter as o) increases in the 
same order in which they appear in the Coulomb well 
for all states up to and including the 4d. This is in 
accord with one's intuition as to how these levels should 
be ordered, since a low-lying state has a large overlap 
with the region of small x where the Debye-Huckel 
potential has a Coulomb-like behavior. Harris' results 
deviate from the Coulomb order at an earlier stage, the 
3s state making its appearance before the 2/>. 

Before discussing potentials of a somewhat different 
type, we mention two difficulties encountered in apply­
ing our counting method to the Debye-Hiickel potential. 
The first of these occurs because for large / the term 
bi(o))xl+1 in Eq. (2) very strongly dominates the term 
1/xK Thus as one goes to larger / values it becomes 
increasingly difficult to extract the counting function 
from the reduced radial-wave function. It might be 
suggested that one could overcome this problem by 
taking advantage of it and writing for x and / large 

whence 
Ui(x)^bi(o>)xl+l, 

bi(u)^x-l~lui(x). 

The objection (not necessarily insuperable) to this is 
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that it will yield a counting function which is arbitrarily 
normalized (since m is arbitrarily normalized) and, 
worse, normalized differently at each co, making it 
impossible to construct a continuous curve of bi versus «. 
Perhaps a better way out of this problem is to note that 
near any critical value of a, bi is small so that in this 
range bi(w)xm will, in fact, not dominate \/xl. This 
requires knowing in advance at least the approximate 
location of the critical w and leads directly to the second 
of the two difficulties. This is the observed fact that as I 
increases each branch of bi consists of two very steep 
sections separated by a very flat section. The critical 
value of o> always appears near the beginning or the end 
of the flat section. Thus the "neighborhood of the 
critical co" is a region containing steep sections of two 
adjacent branches of bi and the precise position of the 
critical value is as a consequence hard to locate. For 
/>4, we found, however, that the location of this range 
can be determined by taking finite differences con8— conp, 
conp— oind, etc., and using the resulting succession of 
numbers to locate the approximate position of the 
critical co. Construction of the counting function in this 
region with a sufficiently fine mesh in w enabled us in 
every case to locate the critical co accurately. 

One fact already alluded to makes the two difficulties 
discussed in the preceding paragraph less important 
than they might otherwise be: Both occur for large 
values of angular momentum where the variational 
method of Harris works quite well. Hence, even if our 
scheme became irremediably defective for states of high 
angular momentum, an accurate approximate scheme 
is available as a substitute. 

We turn our attention next to potentials which, 
unlike the Debye-Hiickel well discussed above, cannot 
be characterized by a single parameter. We take as an 
example the Woods-Saxon potential which we write in 
the form 

F(r) = -Fo [ l+exp( r - r 0 ) / a ] -S 

in which V0, r0, and a are all constants. The reduced 
radial-wave equation at zero energy is now 

d2ui r(2mVQ/h2) / (H-l) i 
+ U = 0 . 

dr2 Ll+e<M»>'a r2 J 
(6) 

Defining a new variable x=r/a and two constants, 
xo=r0/a and o3=2mVoa2/h2

t we find that Eq. (6) can 
now be rewritten in the form 

d2m r « KM-1)1 

-+ r~ 
dx2 Ll+e*-*0 

- « i = 0 

and we see that the potential is characterized by two 
parameters, co and x0. All statements made earlier in the 
one-parameter case are valid here, except that functions 
of co become functions of co and XQ. In particular, then, 
our counting criterion still rests upon determining the 
zeros of the counting function, the precise statement 
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FIG. 2. Curves of zero counting function (parameter plane) 
for the Woods-Saxon potential. 

now being that there is a bound state of zero energy and 
angular momentum / (or a zero-energy resonance in the 
s-wave case) for all pairs of co and x0 which satisfy the 
equation 

bi(o)ixo) = 0, 

If we take co and xo as defining a pair of orthogonal axes 
in a "parameter plane," then this equation defines a 
family of curves co=co(#o) any one of which is a locus of 
points for which the counting function is zero. In Fig. 
2 we plot these curves for a Woods-Saxon potential, 
confining our attention to s states. The number of bound 
states supportable by this potential for any pair of 
values (co,#0) is equal to the number of curves to the left 
of (or below) the point (co,#0) on the parameter plane. 

The actual process of counting bound states in a two-
parameter potential like the Woods-Saxon well does not 
require a knowledge of the family of curves co=co(#0) 
such as those shown in Fig. 2. If, for example, we wish 
to know the number of states in the Woods-Saxon well 
for co=co, x0=x0, we could simply fix the value of co at 
co and determine the zeros of bi(a>,xo) as x0 varies from 
zero to Xo. Alternatively, we might determine the zeros 
of bi(o),Xo) as co varies from zero to co. In fact, there are 
obviously infinitely many paths ending at (co,z0) any one 
of which could be used, the only restriction being that 
the path be traversed in the direction of increasing 
parameter values. For this procedure to yield a unique 
result for the number of bound states requires that the 
curves in the parameter plane be monotonic and single 
valued, and that two such curves never intersect. To 
establish that the curves are, in fact, monotonic and 
single valued we observe that if the contrary were true 
we would be dealing with a situation in which a state 
moves in and out of the discrete spectrum as the 
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FIG. 3. Number of bound single-neutron 5 states as a function of 
atomic weight using a Woods-Saxon potential with the parameters 
of Ross et al. (Ref. 10). 

potential is made more attractive (say by steadily 
increasing the range at a fixed well depth). But 
Schwinger's statement4 quoted earlier precludes this 
possibility. To show that two curves in the parameter 
plane do not intersect, we observe that if such an inter­
section were to occur, then two linearly independent 
states of the same angular momentum would be 
degenerate at zero energy: 

u"+\ V(r) — L(r) = 0 

and 

t>"+[V(r)-~7"J v(r) = 0. 

Since «(0) = fl(0) = 0, we have at once that u(r)vr(r) 
— u'(r)v(r) = 0 whence u(r) = cv(r), contradicting the 
assumption of linear independence. 

Although we have performed our calculations merely 
to illustrate the counting method, we can attach some 
physical significance to the results for the Woods-Saxon 
potential, since this is the central nuclear part of the 

average field assumed in many shell-model calculations. 
Thus the results plotted in Fig. 2 can be used to deter­
mine the number of neutron s states as a function of the 
atomic weight A. According to Ross et a/.,10 single-
particle neutron states are described by the parameters 
co=0.468, x0=2.73A^ (i.e., F0=42.8 MeV, f0=1.3^1/3 

X10"13 cm, and a=0.4766X10~13 cm). Thus, fixing o> 
at the value 0.468 and letting x0 vary from zero, we can 
determine the values of xQ at which the 1$, 2s, • • • states 
become bound. Then with A = (xo/2.73)3, we can 
calculate the corresponding atomic weight. Our results 
are shown in Fig. 3. 

To count neutron states of angular momentum greater 
than zero would require two generalizations of our 
method, for we would need, in addition to the central 
Woods-Saxon well, a spin-orbit term in the potential. 
Thus, first of all, we would require an analysis of a 
potential characterized by more than two parameters, 
but this could be accomplished by a straightforward 
extension of the methods we have been discussing. 
Second, because of the spin-orbit force, we could no 
longer label eigenstates of the system by / alone, but 
would require j= | /db| | as well. However, in each such 
state there is an effective radial potential, and the entire 
method described here is directly applicable. We shall 
not consider these matters in detail here, however, since 
our purpose is merely to describe a method and illustrate 
it in a few cases. 
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