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The Borgnis technique is used to solve the Maxwell equations under the following conditions: (a) Com­
plex field strengths are used such that H = d=*E, that is, circularly polarized waves of positive or negative 
helicity; (b) there is only harmonic time dependence through a factor exp(iWt), that is, a pure energy state 
of the photons; (c) there is no z dependence, that is, no kt component of the photons' momentum; (c) there 
is no restriction on the x, y dependence of the solutions. It is then shown that the Se component of the 
Poynting vector obeys the formula 

zt2WSt=dxSv-dySx 

and is in general nonzero. This fact, together with the postulated nullity of kz, is the expression of the "trans­
lational inertial spin effect." An experiment using the limiting case of total reflection is proposed to test 
the effect. A discussion of gauge-dependent expressions of the effect, using potentials, is also given, in connec­
tion with de Broglie's formulas for the current- and spin-density 4-vectors of the photon waves. 

I. INTRODUCTION 

IN a preceding paper1 the Dirac electron equations 
were explicitly solved under the following condi­

tions : (a) a velocity equal or nearly equal to c, so that 
the two spin states were longitudinal, that is, pure 
helicity states; (b) a pure energy state, with eigenvalue 
W; (c) no z dependence of the wave function, so that 
there was certainly no z component of the particle's 
momentum; (d) a bending of the beam parallel to the 
x, y plane as far as momentum (not necessarily velocity) 
was concerned, in such a way that a pure helicity 
state was conserved; (e) an x, y distribution of the wave 
amplitude such that the current- and spin-density 
vectors, j and ot (which are collinear in the extreme 
relativistic limit), had a nonzero z component obeying 
the formula 

Wj2=dx<Ty-

or, in integral form, 

W 
• / 

jzdxdy— (h ((Txdx+aydy). 

a) 

(2) 

The "translational inertial spin effect'' corresponds 
precisely to this transverse deflection of the two 
helicity states, in opposite z directions, together with 
the nullity of the kz momentum component of the 
particles. On the whole, with a contour integral taken 
outside the beam, the effect is zero; but it is predicted 
to be locally nonzero, and thus should be observable by 
a detailed exploration of the current lines describing the 
flux of the Dirac current, that is, the probabilities of 
transitions to the localized states of the particles. 

In the present paper a similar deduction will be 
carried out for the photon. The Maxwell equations will 
be solved using the Borgnis2 technique, which is quite 
suitable here; an essentially complex E, H wave function 

1 O. Costa De Beauregard, Phys. Rev. 134, B471 (1964). See 
also Ann. Inst. H. Poincare' 2, 131 (1965). 

2 F. Borgnis, Ann. Physik 35,359 (1939); the Borgnis technique, 
which we use with Cartesian coordinates, has been denned more 
generally for a class of curvilinear coordinates. 

will be taken (a) such that H = ± iE , that is, the 
polarization state will be purely circular, either with 
positive or negative helicity; (b) time-dependent 
through a common factor exp(iWt), with W>0 fixed; 
(c) 2-independent; (d) arbitrarily x-} ^-dependent. It 
will then be shown (Sec. II) that the components of the 
Poynting energy-density vector 

S=E*XH+EXH* 

obey the formula 

d= 2WSz—dxSy— dySx, 

(3) 

(4) 

that is, although the kz momentum of the photons is 
identically zero, the two pure helicity states are 
deflected in opposite z directions according to their sign. 
This is, of course, the gauge-independent formulation 
of the "translational inertial spin effect" in the photon 
case. 

In Sec. I l l an experimental test will be discussed 
briefly; it is based on the limiting case of total reflection 
which, according to classical optics, is the only reflection 
or refraction case in which a pure circular polarization, 
or photon helicity state, is preserved. 

In Sec. IV the transverse potential (tangent to the 
Borgnis2 surfaces) will be introduced; then using de 
Broglie's3 expressions for the current- and spin-density 
4-vectors, j and a, a formula similar to (1) will be 
deduced. As the j and rfco- 3-vectors turn out to be just 
1/W times the Poynting 3-vector S, this amounts to 
saying that formula (4) is precisely the expression of 
the photon's inertial spin effect. 

The above j and c's, which are collinear, are time-like, 
non-null 4-vectors. It is shown in Sec. V that using 
de Broglie's3 expressions with the longitudinal gauge 
potential yields other current- and spin-density 4-
vectors, k and ± r , which are collinear and orthogonal 
to y=dz(7, and which satisfy the same typical formula 
for the inertial spin effect as j and <r; this amounts to 
saying that the gauge can be adjusted in such a way 

8 L. de Broglie, La mScanique ondulatoire du photon (Hermann 
& Cie, Paris, 1940), Vol. 1, Chap. VIII. 
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that J=j+k and 2 = <r+r, which obey the typical 
formula, become null 4-vectors. 

It is well known that in photon theory the physical 
interpretation of both the current-3 and the spin-density4 

4-vectors is difficult. So, in the photon case, it may be 
safe to say that the unambiguous expression for the 
translational inertial spin effect in the siguation char­
acterized by postulates (a) to (d) is formula (4), which 
can be experimentally tested as explained in Sec. III. 

II. EXPRESSION OF THE EFFECT IN TERMS 
OF THE FIELD STRENGTHS ALONE 

According to postulates (a) to (e) above, and 
following Borgnis2 method, we consider essentially 
complex solutions of the equation 

(dx*+dv*+W*)U(x,y) = Ot (5) 

which is the corresponding reduced expression of the 
d'Alembert vacuum equation; units such that c= 1 and 
h=h/2w=l are used. Apart from the common phase 
factor txp(iWt), the Borgnis2 formulas for the "elec­
tric"- and the "magnetics-type solutions, (E) and (27), 
respectively, of the vacuum Maxwell equations are 

(E): Hx=iWdxU, Hy=-iWdxU, EZ=VPU; . , 
(o) 

(H): Ex=±WdvU, Ey=>^WdxU, H^±iW2U; 

according to postulate (a), the scalar function U is 
taken to be the same for both (E) and (27), and a 
relative phase factor =Li is introduced. 

The components of the Poynting density current 
3-vector [Eq. (3)] are 

Sx= 2iW*(U*dxU- UdxU*), 

Sy = 2W*(U*dyU- UdyU*) , (7) 

Sz= ±2iW2(dxU*dyU-dyU*dxU); 

thus, although the z component of the photon's momen­
tum is identically zero (owing to the postulated 
z independence of the E, H wave), the Sz component of 
the Poynting S vector is nonzero; the two helicity 
states of the photon, respectively, specified by the signs 
+ and —, are deflected in opposite directions of the 
z coordinate. 

One deduces easily from the expressions (7) the 
formula (4) which is, in integral form, 

W / jS2dxdy= ±i £{SJx+Sydy). (8) 

It should be noted that, being quadratic in U and its 
derivatives, formulas (4) and (8) would not hold if a 
real instead of a complex wave function were used. 

4 J. M. Jauch and F. Rohrlich, The Theory of Photons and Elec­
trons (Addison-Wesley Publishing Company, Reading, Massachu­
setts, 1955), Chap. 2-8, p. 40. 

III. A PROPOSED EXPERIMENTAL TEST OF 
THE PHOTON INERTIAL SPIN EFFECT: 

THE LIMITING CASE OF TOTAL 
REFLECTION 

According to classical optics, the only case of reflec­
tion or refraction where a pure circular polarization of 
a plane monochromatic incident beam is conserved is 
the limiting case of total reflection. The Borgnis method 
is easily adapted to that case: Following a well known 
recipe, one simply performs the substitition 

W->nW, E - > ^ 2 E , H->M
1/2H, »=fa*)1/f, (9) 

and thus obtains a solution for a medium characterized 
by the electric and magnetic permeability constants e 
and fi. 

Formula (4) would not be easily applied to the 
quasidiscontinuous case of reflection, for it would 
involve a delicate analysis of the E and H fields in 
the quasidiscontinuity region. Fortunately, the field 
strengths E and H have a very simple distribution both 
in the ingoing and outgoing beams, and inside the 
interference region; this will make it quite easy to use 
formula (8), which will automatically take care of the 
over-all effect. 

We will consider (Fig. 1) the case of a cylindrical 
beam of rectangular section aXb with rays orthogonal 
to the z axis, falling on a reflecting plane parallel to the a 
side, in the limiting case of total reflection. We take as 
the picture plane an x, y incidence plane, the x axis 
being parallel to the reflecting plane. Jx— 0 denotes the 
incidence and reflection angles, and thus 28 the angle 
between the incident and reflected Poynting vectors; 
these are constant inside the corresponding beams with 
a common magnitude So. 

Inside the interference region, projected in CAB on 
the x, y plane, the expressions of the complex field 
strengths may be written as 

Hx= dbiEx~ 2iB sin0 sinF exp(i<j>), 

Hy=dbiEy=2B cos0 cosF exp(i^>), (10) 

Hz=±iEz=db2iB cosF exp(itf>), 
with 

2B2=S0, Y=nWy sind, <t>=W(t-nxco$6). (11) 

Thus, according to (3), the expressions of the Poynting 
vector are 

S*=8£2 cos0 cos2F=450 cos<9 c o s 2 ^ ^ sin<9), 

Sy=0, (12) 

52= ±2J52 sin20 sin2F= ±S0 sin20 sin(2nWy sin0); 
formulas (4) and (8) are, therefore, verified, as they had 
to be. 

The mean values of Sx and Sz as functions of y are 

&;=2SoCOS0, & = 0 , (13) 

the first expression implies that the flux through the 
AH and BK cross sections is conserved. 
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FIG. 1. Integration contours for calculation of the photon's transla-
tional inertial spin effect in the limiting case of total reflection. 

We are interested in the over-all effect of the abrupt 
variations of the field strengths through the boundaries 
AB, AC, and BC. A contour such as PQRS, cutting 
orthogonally the incoming and outgoing beams and 
closed outside the beams, yields a zero total effect, 
due to an over-all compensation of the inner sources of 
Sz by those existing on the sides of the beam. Thus, to 
find the effect existing inside the beam, we must use 
the IJLMN contour traced just inside the beam, and 
just outside the sources of Sz which are present inside 
the beam. Setting 

l=b/&D2B=\AB\ = \AC\ (14) 

the contribution of the NMLJI part of the contour is 
written as — 2/5o cos20. 

The contribution of the IN part of the contour 
depends on the value chosen for F , that is, for y. Owing 
to the physically active character of the reflecting 
surface BC, it is a priori unlikely that the value of Sz 

along the IN segment should be Bx defined by (13), 
because the physically appropriate result could then be 
obtained as the mean value corresponding to arbitrary 
positions of the horizontal IN segment inside the 
interference region. So we denote by 17, O ^ T J ^ 1, the 
appropriate value of cos2F along the IN segment, and 
will fix it a posteriori. The contribution of this segment 
is thus written 8^/So cos20. 

Finally, in the case we are considering, the line 
integral in (8) is, with w denoting the power transported 
through the 2=const planes, 

±2nWw= 2lS0(4rj cos20-cos20). (15) 

Another expression for w involves the deflection bz 
of the photons in the z direction, due to the "transla-
tional inertial spin effect," and is written as 

VT = ISO8Z sin20. (16) 

From (15) and (16) one deduces the /- (or b-) independ­
ent expression 

bz = zfc (4iy cos20-cos20)/wPF sin20. (17) 

I t is physically obvious that, if n 7-* 1 and thus 6 —> 0, 
bz must —» 0; this will be the case if, and only if, ^ = J , 

a value which, as expected, differs from the mean 
value § of cos2F. Thus 

bz=±(\/2nW)tznB. (18) 

Instead of the energy of the photons, it will be more 
significant to introduce the wavelength of the beam in 
the medium 

\ = 2w/nW 

and, instead of the deflection bz per helicity state, the 
linear separation 

Az=2bz 

between the two states or, even better, its ratio to X. 
Moreover, the significant quantity Az/X will be multi­
plied by N if N additive (or quasiadditive) deviations 
of the kind just described are produced. Finally, 

Az/\ = N(l/2w)ttmd. (19) 

In the case where 6 is infinitely small, this formula is 
the same as the one found for the extreme relativistic 
spin-J particles.1 

Figure 2 shows the linear separation Az of the two 
pure helicity states inside the outgoing beam (right), 
as compared with the arbitrary polarization state 
inside the incoming beam (left). 

IV. EXPRESSION OF THE EFFECT IN TERMS 
OF THE FIELD STRENGTHS AND THE 

TRANSVERSE POTENTIALS 

In both cases of (E) and (H) type of Borgnis solutions 
(6), a potential satisfying the Lorentz condition is 
easily found, namely 

( £ ) : Ax=Ay=V=0, Az=iWU, 6Vl 2 =0; 

(H): Ax=±idyU, Ay=^FidxUy (20) 

Az=V=0, dxhx+dyKy=Q. 

These are transverse potentials; that is, the complex A 
vectors are orthogonal to the complex U (x,y) = const 
surfaces. 

Inserting (6) and (20) in the de Broglie3-type formulas 
for the current- and spin-density 4-vectors in photon 

4kZ 

i * * i * 1 » 

_a m • t t „.tt 

-feli::::::::Hi**p' 

\Ax(n) 

FIG. 2. Separation of the two-photon helicity states in the 
limiting case of total reflection. Cross sections of: left, incoming 
beam, right, outgoing beam; (a) any polarization state, (p) 
positive helicity, (n) negative helicity. 
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theory, 

j = i ( A * X H + P E ) + c . c , 

a = E * X A + F H * + c c , 

7 t= iA*-E+c . c . , 
at— A*-H+c.c . , 

yields 

jx= ±ax= 2iW2(U*dxU- UdxU*), 

jy= ±*y = 2iW2(U*dyU- UdvU*), 

±jz~az = 2iW(dxU*dyU-dyU*dxU), 

j z = = ± < T < = 2W(W2U*U+dxU*dxU+dyU*dyU). 

By comparing formulas (7) and (22) one notices that 

S=JF j = ±Wcr . (23) 

The Poynting energy-density 3-vector S equals W 
times the current-density 3-vector j defined above. 
Assuming that the photon's energy W is positive, one 
finds that the fourth component of the j 4-vector is 
positive definite, as was expected for a position probabil­
ity density. One also deduces from formulas (22) that 

2Wjz = dxay-dy<rXJ (24) 

which is the canonical formula for the "translational 
inertial spin effect/' with a factor 2 which was absent 
in the electron case.1 

Finally, the above formulas (4) and (8) are directly 
interpretable in terms of the general theory of the 
translational inertial spin effect. 

The only property of the collinear 4-vectors j and <r 
which is not satisfactory is that they are time-like, not 
null 4-vectors [see below, formula (38)2- We will show 
now that it is possible to adjust the gauge in such a way 
that this feature disappears. 

V. THE LONGITUDINAL GAUGE POTENTIAL 

Now we consider the gauge potential 

«»==fcW7, %w=±dvU, H . = 0 , %=±iWU, (25) 

with the same U(x,y) function as above, and the same 
correspondence between the two signs and the helicity 
states; this potential is longitudinal in the sense that 
the SI complex vector is normal to the U(x,y) = const. 
complex surfaces. 

Inserting (6) and (25) in the de Broglie-type formulas 
(21) yields the new current and spin gensity 4-vectors 
k and r, 

kx=dorx~-2W2dy(U*U), kx=±ry=2W2dx(U*U), 

±k2 = Tz=2W(dxU*dxU+dyU*dyU-W2U*U), (26) 

kt=zkTt=2iW(dxU*dyU-dyU*dxU). 

They satisfy the same canonical formula as j and cr, 
that is 

2Wh=dxTy-dyTx; (27) 

so any choice rj% rj%$ of the gauge (25) will yield a 

current and a spin density 4-vector 

J=j±vk, 2 = cr±i7r, (28) 

satisfying the "canonical formula" for the "translational 
spin effect" 

2WJz=dx2y-dy2x. (29) 

From formulas (22) and (26) one deduces 

j . k - 7 > ^ = 0 (30) 
and 
jt

2~i2=k2~kt
2=W"(U*U)2+W4{(U*dxU)2 

+ (UdxU*)2+ (U*dyU)2+ (UdyU*)2} 

+W2{ (dxU*dxU)2+ (dyU*dyU)2 

+ (dxU*dyU)2+ (dyU*dxU)2} . (31) 

The j and k 4-vectors are orthogonal, with squares of 
opposite signs. Thus, there is one and only one choice of 
| rj | that renders the J and 2 4-vectors defined by (28) 
null 4-vectors: |r?| = 1 . This yields two determinations 
of the / and 2 4-vectors. 

The Jt component of / is easily calculated as 

jt= 2WtW2U*U+dxU*dxU+dyU*dyU 

±iv(dxU*dyU-dyU*dxU)l. (32) 

Since it is positive definite, and owing to the double 
determination of k, it turns out that the j and k 
4-vectors are, respectively, time-like and space-like. 

VI. CONCLUSIONS 

In its gauge-independent form as given in Sec. II , 
the photon's "translational inertial spin effect" is 
unambiguously deduced under the hypothesis that, on 
the quantum level, the components of the photon's 
wave function are essentially complex; thus, exper­
iments such as the one proposed in Sec. I l l should 
be tests of both the "translational inertial spin effect," 
and the complex or real character of the photon's 
wave function. I t should be recalled that very strong 
theoretical arguments have been given in favor of the 
complex rather than real character of the physical 
wave function of the photon.5 

The introduction of the transverse potential waves, 
which was performed in Sec. IV, shows a connection 
between the formulas of Sec. I I and those of the theory1 

of the inertial spin effect with moving particles of spin \. 
An adjustment of the longitudinal potential waves, 

or gauge waves, is possible, which renders the current-
and spin-density 4-vectors, as defined by de Broglie, 
null vectors, as they ought to be; but the double 
determination of the corresponding gauge, together 
with other known arguments,3-4 tends to give a merely 
formal character to the gauge-dependent expressions of 
the new effect. 

5 P. A. M. Dirac, Quantum Mechanics, (Clarendon Press, Oxford, 
England, 1947), 3rd. ed., Chap. I. 


