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A model is proposed, according to which a "deuteron," consisting of two identical particles, interacts 
with a "core nucleus," taken as an infinitely massive point particle which can form a bound state with either 
of the two particles. Assuming factorable interactions between the particles of all the three pairs, exact 
expressions for the scattering and stripping amplitudes are obtained. A comparison with the corresponding 
distorted-wave Born approximation (DWBA) amplitudes, which can also be obtained in the model, shows 
that DWBA is valid within the model. The model also predicts that the partial-wave scattering amplitudes 
ai are small compared with the corresponding stripping amplitudes bi. An (indirect) experimental test of 
this result is suggested on the basis of large angular momenta, which are needed to overcome the difficulties 
of finite nuclear size in actual situations. 

1. INTRODUCTION 

THE distorted-wave Born approximation (DWBA) 
for the treatment of direct nuclear reactions1,2 

and, in particular, (dyp) reactions3 has been one of the 
most successful tools in nuclear theory. DWBA calcula
tions which have been carried out by a large number of 
workers have found very impressive agreement with 
observations. The theory is continually being made 
more sophisticated in order to include more and more 
physical restrictions on the calculations, the latest being 
the inclusion of finite-range effects.4 The DWBA ap
proach, which has a strong intuitive appeal, was moti
vated mainly from considerations of practical interest, 
viz., to obtain improved fits to the data on nuclear 
reactions which the ordinary Born approximation could 
not provide. This might explain why a comparable 
degree of attention to the formal mathematical founda
tions of DWBA has not accompanied the development 
of the practical aspects of the theory during the last 
decade. In other words, the experimental success of the 
theory has generally tended to obscure the question as 
to precisely what effects are being ignored under this 
approximation. From a logical point of view, an estima
tion of the neglected effects could in principle lead to 
an understanding of DWBA. On the other hand, from 
a practical point of view, the mathematical formulation 
of a (d,p) reaction with a sizable nucleus, e.g., Zn60, with 
all its size and structure effects, would be an almost 
impossible task. An "exact" formulation can at most 
be made for a highly idealized situation in which many 
effects must necessarily be neglected. The limitations 
imposed by such ideal conditions would of course tend 
to move the problem away from reality. Yet models 
have frequently provided very useful backgrounds for 

1 N . Austern, in Fast Neutron Physics, I I , edited by J. B. Marion 
and J. L. Fowler (Interscience Publishers, Inc., New York, 1962). 

2 W. Tobocman, Theory of Direct Nuclear Reactions (Oxford 
University Press, London, 1961). 

3 S. T. Butler, Nuclear Stripping Reactions (John Wiley & Sons, 
Inc., New York, 1957). 

4 N. Austern, R. M. Drisko, E. C. Halbert, and G. R. Satchler, 
Phys. Rev. 133, B3 (1964). 

testing the validity of various approximations, the Lee 
model5 being a good example. Such considerations have 
motivated us to consider a model stripping process 
which is essentially soluble, so that it may provide the 
necessary background for comparison with the results 
of a corresponding DWBA calculation within the same 
framework. In other words, the "experimental material" 
for such a situation is represented by the exact expres
sions for the amplitudes, against which the "theo
retical" DWBA amplitudes can be tested. The model is 
of course not meant for application to actual stripping 
processes, though certain general features emerging 
from the model may be discussed in relation to experi
mental conditions. 

Our model consists of an infinitely massive point 
nucleus A, with no internal structure, playing the role 
of the "core." A "deuteron" d, consisting of two identi
cal spinless "nucleons" n\ and n^ interacting with A, 
can lead to any one of three possible processes of 
elastic scattering, stripping, or breakup reactions. For 
simplicity, it is further assumed that the core A can 
form only one bound state A' with either of nh or w2, 
brought about by the potentials V\ or V2 acting be
tween the pairs (Ani) or (An^), respectively.6 Similarly, 
a potential Vn acting between m and n^ leads to one 
bound state, viz., the deuteron (d). The problem is thus 
reduced to that of a three-body system under the in
fluence of the three potentials Vh F2, and F12. If these 
potentials are assumed to be factorable, our experience 
with the three-nucleon bound7 and scattering problems8 

shows that an exact solution can be obtained in terms 
of certain single-parameter "spectator functions" satis-

5 T . D. Lee, Phys. Rev. 95, 1329 (1954). 
6 This model has some points of similarity with a soluble one 

proposed by Amado [R. D. Amado, Phys. Rev. 132, 485 (1963)], 
in connection with n-d scattering and stripping processes. How
ever, Amado considers the force in only one of the pairs Ani, An2 
(corresponding to the nucleon that is being captured), and ignores 
the force in the other pair. The present model takes account of 
potentials in both the pairs Ani and An2, and is thus capable of 
generating many more connected graphs of higher order. 

7 A. N. Mitra, Nucl. Phys. 32, 529 (1962); referred to as I. 
8 A. N. Mitra and V. S. Bhasin, Phys. Rev. 131, 1265 (1963); 

referred to as II. 
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fying as many one-dimensional integral equations, and 
appropriate boundary conditions. The mathematical 
validity of such potentials, when a two-body system is 
dominated by bound states or resonances, has been 
established by the work of Lovelace,9 on the basis of 
Faddeev's three-particle theory.10 The numerical ac
curacy with which such potentials can represent the 
effect of static potentials has been found to be rather 
close by Sugar and Blankenbecler11 on the basis of their 
theory of upper and lower bounds for scattering 
problems. 

Our three-body model thus automatically takes into 
account certain features of the stripping process, viz., 
the influence of the target on the deuteron internal wave 
function, the deuteron polarizability or breakup, and 
the residual proton-target interaction. The most serious 
drawback of the model in simulating the actual physical 
situation perhaps lies in the assumption of a point 
nucleus and (factorable) s-wave interactions between 
pairs. In an actual stripping calculation, on the other 
hand, the optical potentials that are used for the calcu
lation of the (Ad) and (Ap) wave functions are not only 
dependent on the finite size of the nucleus, but strongly 
affect many partial waves in any pair of particles. 

In Sec. 2 we spell out the model in some detail and 
obtain the exact amplitudes for stripping as well as 
elastic d-A scattering. A partial-wave analysis of these 
amplitudes is also carried out. In Sec. 3, the 
DWBA is first defined within the model and then 
used to calculate the corresponding scattering and 
stripping amplitudes. It is shown that it is possible to 
obtain the DWBA amplitudes without explicit refer
ence to any optical potential, unlike the customary 
procedures.1,2 In Sec. 4, a comparison of the two results 
leads to a simple condition on the validity of DWBA 
within the model. A possible way of testing this condi
tion on actual physical systems is suggested. 

2. EXACT AMPLITUDES ON THE MODEL 

Let Pi and P2 be the momenta of the two nucleons 
n\ and n2 (distinguished only by the magnitudes of 
these momenta, but otherwise identical) in the labora
tory frame in which the infinitely heavy nucleus A is at 
rest. The separable interactions Vi, V2, and V\2 in this 
3-particle space, have the following structures 

<PxP21 7i I P{P{) 

= - | (X1 /M)^(P1)g(P105(P2-P/) , (2.1) 

with a similar expression for V2, and 

(PtP*\ F1 2 | iViY)= - (\/M)f(p)f(p')5(¥- F ) , (2.2) 

9 C . Lovelace, Phys. Rev. 135, B1225 (1964). This paper also 
contains a very complete list of references to calculations with 
separable potentials. 

10 L. D. Faddeev, Zh. Eksperim i Teor. Fiz. 39, 1459 (1960) 
[English transl.: Soviet Phys.—JETP 12, 1014 (1961)]. 

11 R. Sugar and R. Blankenbecler, Phys. Rev. 135, B472 (1964). 

where 
2 p = P i - P „ P = P i + P 2 , (2.3) 

with corresponding definitions for p' and P'. The binding 
energy a2/M of the deuteron is given in terms of (2.2), 
in the usual way12 by 

X-i = 4TT f q2dq f(q) (q'+a2)-1 • (2.4) 

Similarly, the binding energy ai2/2M of either nucleon 
in the (single) bound state A1 of A and n is given by 
the solution of the two-body equation 

(Pl
2+a1

2)^(P1) = X1g(P1) J<%(g)<Kq), (2.5) 

whence 

Xr1 = 4x /" q2dq f (?) ((f+aft-1 • (2.6) 
Jo 

In terms of these binding energies, the total energy 
E of the full three-body system is given by 

2ME=ik2-2a2=k!2-ai\ (2.7) 

where k is the separation momentum between A and d, 
and ki is the corresponding quantity between the 
stripped nucleon and A'. The three-body wave function 
^(Pi,P2) can now be determined from the Schrodinger 
equation 

£M~lPi2+W-lPi+ Vi+ V2+ 7 w - £ ) ¥ = 0 , (2.8) 

where, for any operator K, 

K*(Pi,P2) = fdQldQ2(¥1¥2\K\QxQ*)*(Qi,Q2). (2.9) 

Following the techniques of I, the solution of (1.8) 
which is symmetrical in the momenta Pi and P2 may 
be read off as 

D(E)^=g(P1)G(P2)+g(P2)G(F1)+2f(p)F(¥), (2.10) 

where 

D(E) = Pii+Pi!-2EM=iP2+2f-2EM. (2.11) 

The single-parameter functions G and F satisfy the 
equations 

[Xr1-/ii(P2)]G(P2) = 2Lqii:(P2,q)IF(q) 

+ dqS(Pi)g(q)G(q)(qi+F^-2ME-ier\ (2.12) 

[A-'-/z(P)]F(P) = 2 j JqK(q,¥)G(q), (2.13) 

12 Y. Yamaguchi, Phys. Rev. 95, 1628 (1954). 

file:///K/QxQ*)*
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where 

*i(ft) = / dqg\q){Pi+(?-2ME-h)-', (2.14) 

h(P) = / dqf^qKf+lP-ME-ie)-1 (2.15) 

and 

K(x,y) = g(x-y)f(x-±y) 
X(y2-2x-y+2x2-2ME-ie)~1. (2.16) 

Using (2.4), (2.7), and (2.15), it is easily seen that the 
factor \~l—h{P) multiplying P(P) in (2.13) vanishes 
when P*—k2 so that one may write 

\~l-h{P)= (P*-k2)l{P). (2.17) 

Similarly, the definition 

\r1~h1(P2)^ (P2
2-£i%(P2) (2.18) 

extracts the zero of the corresponding factor on the 
left-hand side of (2.12). 

The meaning of the poles in the functions F(p) and 
G(p) becomes clear in terms of their respective inter
pretations on the lines of I. Thus F(P) is the wave 
function of d with respect to A, and G(P2) that of n2 

with the composite Ar of A and n\. The internal wave 
functions of the composites d and A' are of course 
described by the factors 2f(p)/D(E) and g(Pi)/D(E), 
respectively. The pole of F(P) at P2=k2 therefore in
corporates the physical condition that at infinite sepa
ration, the momentum of d with respect to A is k. 
Similarly, the pole of G(P2) at P2

2=ki2 is associated 
with a momentum ki at infinite separation of n2 from 
A''. For an incident deuteron of momentum k we have 
thus the boundary condition 

F(P)= (27r)35(P-k)+47ra(P)(P2-^2-^)-1 , (2.19) 

where a(P) with P2=&2 is the elastic scattering ampli
tude of d by A. The deuteron stripping amplitude 
#(ki) is similarly defined by the boundary condition 

G ( P 2 ) = 4 7 r ^ P 2 ) ( P 2
2 - & i 2 - ; € ) - (2.20) 

in conjunction with (2.19). Similarly, the elastic scat
tering amplitude b(¥2) with P2

2=ki2 of a nucleon by A' 
is incorporated in the boundary condition 

G(P2)=(27r)35(P2-k1)+47rKP2)(P2
2-^i2-i€)-1,(2.21) 

where the plane wave term of (2.19) must now be 
absent from P(P). 

These results, being all exact within the model, enable 
the elastic scattering [a(P)] and stripping p>(ki)3 
amplitudes of d with respect to A to be calculated from 
the following integral equations obtained from the 

substitution of (2.19) and (2.20) in (2.12) and (2.13) 

/ l ( P 2 ) K P 2 ) = 47T2^(P2 ,k) 

+ /jq#o'(P2,q)Kq) (2.22) 

+2JdqK(¥2yq)a((i)(q2-K2-ier\ 

l(P)a(¥) = 2fdQK(Q,F)b(Q)(Q2-h2-ie)-\ (2.23) 

where K(x,y) is already defined as in (2.16), and 
i£Y (P2,q) is a pure s-wave kernel given by 

K0
f(P2jq) = g(P2)g(q)(q2-kl

2~ie)~' 

X(f+Pt+ai*-ki*-ie)-K (2.24) 

A partial-wave decomposition of Eqs. (2.22) and (2.23) 
now goes through in the usual way according to 

Z(x,y) = f; XI(*,y)(2/+l)PI(f •£), (2.25) 
0 

*(Pt) = f bl(P2)(2l+l)Pl(Pi-k), (2.26) 
0 

a(T) = tal(P)(2l+l)Pl(P-k), (2.27) 
0 

where k, the direction of the incident deuteron, is taken 
as the polar axis. The corresponding equations for the 
Ith partial-wave amplitudes bi{P2) and ai(P) are 

h{P%)h{Pi) 
/•OO 

= 4TT5J q2dqKQ
f(P2yq)bl(q) 

Jo 

+WKl(P2,k)+&Tr J tfdqKAPtf) 
Jo 

Xai(qW-K>-u)-i, (2.28) 
l(P)a,(P) 

/•oo 

= 8x / QVQKi(QfMQ)(&-lii*-ie)-1. (2.29) 
J o 

The physical partial-wave amplitudes for d-A scattering 
and stripping are now, respectively, ai(k) and bi(ki). 
The functions Ki(x,y) can be explicitly calculated for 
simple shapes of f(p) and g(p). For example, with 

f(p) = (P+P2)-1, g{p) = (Pi2+P2)-1, (2.30) 

the formulas for Kh /(P), and /i(P2) are listed in the 
Appendix.13 

13 Similar formulas have been given by R. Aaron, R. D. Amado, 
and Y. Y. Yam, Phys. Rev. 136, B650 (1964). 
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3. THE DWBA STRIPPING AMPLITUDE 

To simulate the distorted-wave Born approximation 
within this model, we may again appeal to the inter
pretation of the various terms of SF, as given by (2.10). 
Thus, the term 

+u = 2f(p)D-i(E)F(V) (3.1) 

represents the part of the wave function which takes 
full account of the distortion of the deuteron wave 
function in the field of the nucleus. However, (3.1) 
still contains some effect of the coupling of the internal 
motion of d with its bodily motion, through the P 
dependence of the factor 

±D(E) = l(P2-k2)+(f+a2), (3.2) 

which goes against the spirit of DWBA. This P de
pendence may be dropped through the approximation 
of putting P2 on the "energy-shell/' viz., P2=k2 in 
(3.2), so that the (unnormalized) DWBA wave func
tion of the deuteron is finally given by 

^ D W W = ^ ( ^ ) [ ( 2 : r ) ^ ( P - k ) 

+bra(P)(Pi-ki-ie)-1l, (3.3) 
where 

<f><t(p) = f(p)(f+c?)~l (3.4) 

is the deuteron internal wave function and the boundary 
condition (2.19) has been incorporated in (3.3). In a 
similar way, the distorted wave function of the nucleon 
n% with respect to the bound state of A and m is ob
tainable from the term 

^ = g(Pl)D-1(E)G(P2). (3.5) 

The decoupling of the internal motion of A' is again 
effected through the replacement 

D(E) = a1
2+P1

2+(P2
2~kl

2)^a1
2+Pl

2, (3.6) 

so that using the boundary condition (2.21), we have 

f w W = <t>A> ( P I ) [ ( 2 T T ) 3 5 ( P 2 - kx) 

+4arb(P*)(Pf-k1*-ie)-1'], (3.7) 
where 

</>Af(P1) = g(P1)(P1
2+a1

2)~' (3.8) 

is the internal wave function of A'. 
The foregoing considerations show how the present 

model can accommodate DWBA without explicitly in
voking an "optical model" for each of the deuteron and 
nucleon motions, in the sense that it is traditionally 
used for practical stripping calculations. The "optical 
potential" in this approach is of course present, but in 
a highly implicit form. Thus the inelastic effects on the 
distorted deuteron wave function F(P) are taken into 
account to the extent of inclusion of the stripping and 
breakup reaction channels, in addition to the elastic 
channel. Similarly, the "optical potential" for the dis
torted function G(P2) of n2 with respect to A' includes 
the (inelastic) effects of the pickup and breakup re
action channels. On the other hand, in a practical 

stripping calculation with a medium-sized nucleus, most 
of the contribution to the optical potential arises from 
the finite size and internal structure of the nucleus, and 
the latter has no analog in this model. 

To proceed further, the DWBA stripping amplitude 
which is defined by 

bD(k1) = C(^^(n2) I F12 |^DW(<*)), (3.9) 

is after some trivial integrations reducible to the form 

bD(k1) = C f JdFdTxiPMWt+at)-1 

X[(2x) 3 5(P 2 -k 1 )+4^&*(P2)( i 5 2 2 -*i 2 +«)- 1 ] 

X [ ( 2 7 r ) 8 5 ( P - k ) + 4 x a ( P ) ( i > 2 - ^ - « ) - 1 ] , 
(3.10) 

where 

P=P>-P2, P!=P-P2. 
The constant C must be adjusted so that the lowest 
Born approximation to (3.10) normalizes to14 

bB(k1) = AirHrl(ki)K(khk), (3.H) 

in agreement with the inhomogeneous term of (2.22). 
This gives, according to Eqs. (2.4) and (2.16), 

C={2ir)~Hrl(ki)- (3.12) 

A straightforward integration of (3.10) yields 

h(k1)b
D(k1) = h(k1)b

B(k1) 

• / • 
+ 2 dP K(khF)a(?)(P2-k2-u)~1 

+2 dP2K"(?2,k)b*(¥2)(P^-k^+ie)-1 

- ' / / d'Pd?2K"(P2,?)b*(?i)a(P) 

X ( / V - f t i M - M ) - 1 ^ - * * - ! * ) - 1 , (3.13) 
where 

^ , ( x , y ) = / ( x - | y ) ^ ( x - y ) [ ( x - y ) 2 ± a 1
2 ] ~ 1 . (3.14) 

Using Eq. (2.22), the first two terms on the right of 
(3.13) are re-expressible as 

Z i f o W k O - [dqK0'(khq)b(q). (3.15) 

As for the last two terms of (3.13), their meaning be-

14 The reason why a normalization is required in Eq. (3.9) is 
that the functions ^Dw(d) and xfDW(n) denned by (3.3) and (3.7), 
respectively, are not normalized as they stand. On the other hand, 
the exact stripping amplitude b(P2) defined by (2.20) is a fully 
normalized quantity, whose Born term, (3.11) can be read off 
from Eq. (2.22). The constant C in Eq. (3.9) which expresses the 
normalization of the DWBA amplitude is most easily determined 
from the requirement that the Born approximations to the exact 
and DWBA amplitudes agree. 
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comes slightly more transparent if an approximation is 
made in the K" functions. A comparison of (2.16) and 
(3.14) shows that the "propagator factor" in iT'(P2,k) 
differs from the corresponding factor in i£(P2,k) to the 
extent of an additive term {Pi—h2) which is present 
in the latter. The same additive term accounts for the 
difference between iT'(P2,P) and i£(P2,P). Replace
ment of K" by K in the last two terms of (3.13), 
therefore, amounts to a modification of the propagators 
of K" to the extent indicated, thus making them dif
ferent only off the energy shell for P2. This may not be 
a serious error since (1) P2 is an integration variable in 
these terms and (2) the poles of the modified propaga
tors of K" that would now be present in the region of 
integration are far removed from the poles of the other 
factors (P2

2-ki2+ie)-1 or (I^-tf-ie)-1 which produce 
the dominant effects. Making these replacements, the 
resultant expressions can be simplified with the use of 
Eq. (2.23), so that (3.13) reduces to the more trans
parent form 

/lOW^Cki) 

= /i(*i)ft(ki)+/(ft)a*(P)|(P..^ 

dqKQ'(khq)b(q) 

-Ir+fdQnQ) I <*(Q) IHC2-*2-

(3.16) 

itjr1. 

A partial-wave analysis of this equation as in (2.25)-
(2.29), yields the DWBA partial amplitudes hD(ki) in 
the form 

= / i ( f t i )*i(*i)+/(*)«i*(*) 

—47r5 

+ 2*-

where 

k[ fdqWuqMq) (3.17) 
Jo 

/.CO 

-1*«. / QNQ l*(GVei(Q) (Q»- V-»«)-», 
J 0 

«r.i«2) = £(2/+l) |f l .(G)|1 (3.18) 

may be interpreted as the total elastic scattering cross-
section off the energy shell. This is obvious since accord
ing to Eq. (2.29) the quantities at(Q) of Eq. (3.18) are 
defined off the energy shell except when Q2—k2. The 
analogy of the last term of (3.17) with a dispersion 
formula is thus only a formal one. 

4. VALIDITY OF DWBA FOR THE MODEL 

The relations (3.16) and (3.17) express the deviations 
of the DWBA amplitudes from their exact counterparts. 

The "correction terms,, in these formulas are therefore 
convenient for a discussion of the validity of DWBA 
within the model. The first correction term of either 
equation is the one that is proportional to the complete 
elastic scattering amplitude a(k) in (3.16) and the one 
with the corresponding partial amplitude in (3.17). The 
last two corrections are pure isotropic effects (2=0), as 
is clear from (3.17). Of these the last one involves an 
integration over the total elastic cross section on and 
off the energy shell. An interesting feature of this term 
is that it does not involve the potentials at all [except 
through the normalization factor /(())], so that this 
part of the "correction" may well be independent of 
the particular model considered. On the other hand, the 
third term on the right of Eq. (3.16) or (3.17), is a 
model-dependent "correction." Indeed, the latter may 
be interpreted as arising from an off-shell exchange 
scattering of an s-wave nucleon (n2) by the bound state 
of A with the other nucleon (#i). While the appearance 
of the s wave in this term is traceable to the assumption 
of factorable potentials between pairs, the isotropy of 
the last term in (3.16) or (3.17) is a more fundamental 
effect, involving, as it does, the total cross section. 

As for the magnitudes of these corrections, it is in
structive and indeed possible to draw certain qualitative 
conclusions based on the mere assumption of usual 
short-range potentials. For this purpose, it is useful 
to recall the numerical results obtained recently by 
Bhasin, Schrenk, and Mitra15 for low-energy n-d scat
tering. The n-d system, which represents a true three-
body problem, can be counted upon to provide im
portant information as to the nature of the results 
expected from "three-body approximations" to more 
complicated systems. The present model has some ob
vious points of similarity to the n-d system except for 
the neglect of recoil effects and nonidentity of the 
nucleus A with either nucleon. For an n-d system of 
course, stripping and elastic scattering are formally 
identical processes, and cannot be distinguished experi
mentally. On the other hand, there is a profound 
difference in their physical mechanisms, a correct in
terpretation of which should be of great value in the 
present context. Indeed, it was shown in III that n-d 
scattering proceeds via either of two mechanisms, (1) 
exchange of a nucleon line (Fig. 1 of III), termed as 
"exchange scattering," and (2) a "triangle diagram" 
(Fig. 2 of III) in which two nucleon lines are simul
taneously exchanged between the two particles, termed 
"potential scattering." The matrix elements of poten
tial scattering are characterized by the appearance of 
integrals with a greater number of "shape factors" 
pike g(p) or f(p)2 than those of exchange scattering. 
Because of the short range of the forces concerned, the 
former are expected to be much smaller than the latter. 
This was indeed found to be the case in III, where the 

15 V. S. Bhasin, G. L. Schrenk, and A. N. Mitra, Phys. Rev. 
137, B398 (1965); referred to as I I I . 
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contribution of potential scattering to the quartet 
scattering length turned out to be almost entirely 
negligible ( « 1 % ) compared with that of exchange 
scattering which already gives beautiful agreement with 
experiment.15,16 This result has a direct bearing on the 
present model when it is recognized that our stripping 
amplitude b(ki) corresponds precisely to the n-d ex
change scattering amplitude, and the elastic A-d scat
tering is the exact analog of "potential scattering" in 
the n-d problem. Now, since the Yamaguchi-type po
tential shapes12 listed in the appendix are essentially 
the same as those used in I I I , except for recoil effects, 
it is clear that for such shapes at least, the relative 
numerical magnitudes of the various terms in the pres
ent problem should have a close parallel to the corre
sponding estimates in the n-d case. Thus it should be 
possible to estimate the order of magnitude of each 
term in (3.16) or (3.17) simply by examining the 
structure of the integral in each (in terms of shape 
factors). The stripping amplitude &(ki) involving the 
smallest number of shape factors must be the dominant 
term. The elastic scattering amplitude a(k) which, ac
cording to (2.23), is given by an integral involving 
b(Q) as well as the shape factors, must, on the three-
body model, be an order of magnitude smaller than the 
stripping amplitude. The same remarks apply to the 
third and fourth terms on the right of (3.16), vis-a-vis 
the stripping amplitude. Thus we conclude that within 
the framework of the three-body model, DWBA is a valid 
approximation. An identical result holds for (3.17) ex
pressing the corrections to the DWBA partial ampli
tudes, including the (algebraically worst) case of 1=0. 

The next question is whether this model has any 
bearing on the validity of DWBA stripping calculations 
in actual nuclei. The principal difficulty of confronting 
this model with experiment lies in the absence of size 
or structure in our model nucleus. A direct manifesta
tion of nuclear size in the context of experiment is the 
appearance of elastic cross sections several orders of 
magnitude larger than the stripping cross sections.17 

Even for a d-d reaction, the elastic cross section bears 
a ratio of 10-12 to the stripping cross section.18 To 
understand this fact it must be remembered that most 
of the elastic cross section is a result of diffraction scat
tering from the rim of the nucleus, a process to which 
many / values contribute. This feature is absent in our 
model, not only because of the assumption of a point 
nucleus but also because of the assumption of s-wave 
interactions in pairs. As a result of these assumptions, 
the conclusion in the previous paragraph, concerning 
the relative magnitudes of the elastic and stripping 
cross sections, is the exact opposite of what holds in 

16 A. G. Sitenko and V. F. Kharchenko, Nucl. Phys. 49, 15 
(1963); see also, R. Aaron, R. D. Amado, and Y. Y. Yam, Phys. 
Rev. Letters 13, 574 (1964). 

17 See, for a recent reference, J. Testoni el al.. Nucl. Phys. 50, 
479 (1964). 

18 e.g., L. Lyons et al, Phys. Letters 3, 359 (1963). 

practice. This is a formidable handicap which must be 
overcome before any conclusion bearing on the actual 
situation may be attempted on the basis of the model. 

A possible solution may lie in the consideration of 
the partial wave amplitudes rather than of the complete 
amplitudes. For this purpose we must fall back on Eq. 
(3.17) which, for / ^ 0 , takes a particularly simple 
form, viz., 

fc»(*i) = M * 0 + # i W ^ a * ( * ) , (4.1) 

where N2 and Ni2 are just the normalization constants 
for the internal wave functions of the d and Af states 
according to 

N~2 = l(k) = fdq f(q) tf+orV, (4.2) 

Nr2 = h(h) = fdQ g2(e)(g2+a!2)-2 . (4.3) 

From (4.1), the criterion for the validity of DWBA is 
deduced as 

iV-*|ai(ft)|«iVi-«|4i(*i)l, (4.4) 

i.e., the Ith. partial amplitude for elastic scattering 
should be small compared with the corresponding 
stripping amplitude. Of course, within our three-body 
model, the inequality (4.4) is valid. However, we now 
want to explore the possibility of using (4.4) as a probe 
in actual physical situations. A particular advantage of 
this form lies in the appearance of physically measurable 
quantities only (possible only for /T*0) . Moreover, un
like the conditions on the complete amplitudes (which, 
as we have just seen, can never be satisfied for physical 
situations), condition (4.4) involves amplitudes for only 
a particular / state, and it should be useful to see if this 
condition can be reconciled with the difficulties of finite-
size effects. Now a basic difference between the strip
ping and elastic-scattering mechanisms is that the 
former depends on the shape of the wave functions in 
the nuclear interior while the latter depends only on 
the logarithmic derivatives of the radial wave functions 
at the nuclear surface. One may therefore expect that 
the / dependence of a partial scattering amplitude is 
much stronger than that of a partial stripping ampli
tude. Thus it is likely that elastic-scattering amplitudes 
die off faster with / than do the stripping amplitudes. In 
this way one may try to overcome the size effects by 
choosing a sufficiently large / in (4.4) before putting it 
to "experimental test." The precise magnitude of the 
critical / needed for a particular case must, of course, 
depend on the nuclear size, the larger the nucleus the 
larger the / value required. Of course, it might then be 
argued that since, for large /, the partial-wave scattering 
amplitude falls off rapidly anyway, the condition (4.4), 
which would be automatically satisfied at some stage, 
would hardly serve the purpose intended for it. To 
answer this objection it should be remembered that the 
effects due to the size and structure of the deuteron, 
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which have been fully taken into account in our model, 
have also played a role in the derivation of (4.1)-(4.4). 
Indeed, in a sense our model is largely complementary 
to the assumptions made in normal DWBA calcula
tions, where the greatest emphasis has generally been 
on the proton or deuteron optical potential with respect 
to the (finite-sized) nucleus, with successive refinements 
like spin-orbit, tensor, finite-range, nonlocal, collective, 
etc., effects. On the other hand, conventional DWBA 
calculations have hardly taken account of the deuteron 
internal structure and polarization effects on the strip
ping and scattering amplitudes. Our purpose in choosing 
a large / is just to overcome the nuclear size effects but 
not the effects of deuteron structure which in fact we 
want to test. We claim that this is possible through the 
artifice of partial-wave amplitudes if we consider a 
fairly small and tight nucleus. A good example might 
be provided by the a particle, for which scattering and 
stripping data are available,19-20 though much more 
data exist for medium-heavy nuclei. 

Having decided on some reasonably large / values, in 
relation to a particular nucleus, an indirect experimental 
test of (4.4) may be suggested on the following lines. 
Suppose that a "good" optical potential has been fitted 
to each of the data for elastic deuteron and proton 
scattering by a given nucleus. Suppose further that a 
successful DWBA fit, using the same potentials, has 
been found for the (d,p) reaction data on the same nu
cleus. The partial wave DWBA amplitudes (with the 
above restrictions on /), which can now be calculated 
for both scattering and stripping, may be taken to 
represent the "experimental data" for testing (4.4). 
While such a program is not in the conventional DWBA 
spirit (DWBA calculations have been generally con
cerned with differential cross sections rather than 
partial waves), it can certainly be regarded as well 
within its scope. A possible snag could arise out of the 
ambiguities in the optical potential parameters all of 
which fit elastic-scattering data equally well. The sensi
tivity of the stripping results to such ambiguities was 
studied for medium and heavy nuclei by Smith21 who 
found that these could cause deviations in the so-called 
"spectroscopic factors" to the extent of as much as 
200%. A second source of ambiguity is that in many 
cases the available data are incomplete, leading, e.g., 
to uncertainties in the normalizations chosen for the 
scattering data.21 A point in favor of a condition like 
(4.4), however, is that it is a highly qualitative state
ment, not likely to be strongly affected by such varia
tions. As such it may yet be worthwhile to confront it 
with experiment in the sense described above. 

To summarize, we have shown that within our three-
19 See, e.g., H. J. Erramuspe and R. J. Slobodrian, Nucl. Phys. 

49, 65 (1963), which gives references to the earlier experimental 
papers. 

20 For a three-body optical potential approach to scattering, 
see J. L. Gammel, B. J. Hill, and R. M. Thaler, Phys. Rev. 119, 
267 (1960). 

21W. R. Smith, Phys. Rev. 137, B913 (1965). 

body model of stripping, DWBA is a valid approxima
tion. The model also predicts a condition (4.4), in terms 
of partial-wave amplitudes for scattering and stripping, 
which is amenable to an indirect experimental test for 
actual situations. A possible way of overcoming the 
nuclear size effect in actual cases is suggested through 
the use of large / values in the above condition, which is 
most likely to remain unaffected by ambiguities in the 
conventional DWBA parameters. 
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APPENDIX 

The results of this appendix refer to the form factors 
defined by Eq. (2.30) of the text. 

With the notation 

A1(x,y) = x2+f+p1
2, 

A2(xyy) = x?+if+p, (Al) 

Az(x,y) = 2x2+f-2ME-ie1 

and 
ai=%Ai/xy, (A2) 

Eqs. (2.16) and (2.30) of the text yield 

4xyi£(x,y) = X) {ai—aj)~l{ai—ak)~l{ai—yL)~1 

ijk 

(i,j,k=l,2,3), (A3) 
where 

The expansion 

(a-n)-1=Z(2l+l)Qi(a)Pl(ji) (A4) 
I 

finally leads to the expression 

* z f e y H a r V 1 E C 4 ~A,)-*{A , - 4 *)-*&(*)• (AS) 
ijk 

Here only Qt(az) has a branch cut on which it must be 
evaluated in the sense (Al). The remaining functions 
are evaluated as 

l(P) = fr2fi-i(a+y+2p) (a+/3)-* 
X(fi+y)-2(a+y)-\ (A6) 

h(P2) = 7r2
i91-

1(ai+7i+ 2/80 (ai+£i)-2 

XGSi+TO-^ai+Yi)-1, (A7) 
where 

y = y(k2+ie) = [a2+l(P2-k2--ie)J/2
i (A8) 

yi=yi(ki2+ie) = Zai2+P2
2-k1

2-ieJ/2, (A9) 

thus specifying how these functions are defined on 
their respective branch cuts. 


