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The cross section for the scattering of TT'^ and iT by nucleons in the energy range 300-700 MeV has been 
analyzed in terms of energy-independent parameters. The parameterization is based on a dispersion relation 
satisfied by the partial-wave amplitudes, by replacing the left cut by a superposition of poles and the in­
elasticity function Ri—<Ti{Xot)/<Ti{t\) by a ratio of polynomials in the momentum. Detailed results are pre­
sented for the real and imaginary parts of the phase shifts with / ^ 3 . The structure of the "second reso­
nance" is more complicated than has heretofore been thought, pn, sn, and dn waves all playing an important 
part. The width of the dn resonance is found to be considerably smaller than previous values from total 
cross-section measurements. The role of the (possibly resonant) amplitudes pn and sn is discussed. 

1. INTRODUCTION 

THE cross sections for the elastic scattering of 
pions by nucleons exhibit considerable structure 

over the whole energy range from threshold to 2 or 3 
GeV. This structure has been interpreted in terms of 
the existence of resonant states. The analysis of the 
cross section in terms of partial waves, which allows 
the quantum numbers of the resonant states to be 
assigned, is complicated, except at the lowest energies, 
first by the number of partial waves concerned and 
secondly by the presence of a high degree of inelasticity. 
At present, because of these complications, many 
assignments of quantum numbers are in considerable 
doubt; but the existence of accurate data in several 
energy intervals and promise of a rapid accumulation 
of new data in the near future from experimental teams 
at Chilton, Saclay, and Berkeley makes it possible to 
hope that a phase-shift analysis without too much 
ambiguity can be achieved. The experimental situation 
is that not all three independent elements of the spin-
density matrix are measured: differential cross sections 
have been measured to the order of 5% statistical 
accuracy; polarization, at fewer energies, to less ac­
curacy; and the R parameter has not been measured 
at all. In this situation, taking account of statistical 
errors only, phase-shift analyses at one energy lead to 
a number of different solutions among which it is 
difficult to distinguish. In addition to statistical errors, 
there are unknown systematic errors, such as errors in 
normalization of the cross section, which can distort 
solutions. An example of overt systematic error is the 
well-known difference in total pion-nucleon cross-section 
measurements at Berkeley^ and Saclay.̂  It is clear that 
if the experimental measurements considered as a 

1 T. J. Devlin, B. J. Moyer, and V. Perez-Mendez, Phys. Rev. 
125, 690 (1962). 

2 J. C. Brisson, J. F. Detoeuf, P. Falk-Vairant, L. van Rossum, 
and G. Valladas, Nuovo Cimento 19, 210 (1961); P. Bareyre, 
G. Bricman, G. Valladas, G. Villet, J. Bizard, and J. Sequinot, 
Phys. Letters 8, 137 (1964). 

function of energy contain systematic errors, then 
fitting the data at individual energies too closely with­
out regard to the smoothness of the energy variation 
may result in distortions due to having fitted the noise 
as well as the signal. 

The most promising way of reducing the number of 
solutions and in addition smoothly connecting the 
different solutions at different energies is to analyze 
the data over a range of energies simultaneously in 
terms of energy-independent parameters. Extensive and 
successful work based on these ideas in the case of 
nucleon-nucleon scattering has been reported by Stapp, 
Noyes, and Moravcsik.^ In the pion-nucleon case such 
a program has only been reported by one other group,^ 
in which the real and imaginary parts of the phase 
shifts are either expressed as polynomials in the mo­
mentum or in terms of Breit-Wigner forms. In the 
present work an entirely different method of parame­
terization is used, suggested by the analytic properties 
of the partial-wave scattering ampHtudes. The first 
application of this parameterization has been to the 
energy interval from threshold to 700 MeV, covering 
the region of the "second resonance."^ 

In Sec. 2, notation is established and necessary 
formulas connecting the phase shifts and the various 
cross sections are collected for references. In Sec. 3, 
the general method of parameterization that we have 
adopted is given, while in Sec. 4 the choice of data and 
its normalization is discussed. The phase shifts in the 

^ H. P. Stapp, H. P. Noyes, and M. J. Moravcsik, in Proceedings 
of the 1962 Annual International Conference on High Energy 
Physics at CERN, edited by J. Prentki (CERN, Geneva, 1962), 
p. 131. 

^ B. T. Feld and L. D. Roper, in Proceedings of the Sienna Inter­
national Conference on Elementary Particles, 1963, edited by G. 
Bernadini and G. P. Puppi (Societa Itahana di Fisica, Bologna, 
1963), Vol. l ,p . 400;L.D.Roper,Phys.Rev.Letters 12,340 (1964). 
L. D. Roper and R. M. Wright, University of California Radiation 
Laboratory Report No. 7846, 1964 (unpublished). 

^ Some preliminary results have been reported in B. H. 
Bransden, P. J. O'Donnell, and R. G. Moorhouse, Phys. Letters 
11, 339 (1964). 
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energy interval of interest, 300-700 MeV, must be 
connected with those at lower energies and this con­
nection is exhibited in Sec. 5, while in Sec. 6 the actual 
searches carried out between 300 and 700 MeV are 
described in detail. A summary of our conclusions will 
be found in Sec. 7. 

Future reports will describe further extensions of the 
energy range to cover first the region of the third 
resonance at 900 MeV and ultimately to the highest 
energies for which well defined resonances are observed. 

2. NOTATION 

In this section we define the partial-wave ampUtudes 
and give the connection between these and the cross 
sections both to establish notation and for ease of 
reference. 

The relations between the center-of-mass energy w, 
the pion laboratory energy T and the momentum q are^ 

>i^= (^^i)2^2mT (2.1) 
and 

q2= l^2_ (^+i)2][-^_ (^_l)2](2ze;2)-i, (2.2) 

where m is the mass of the nucleon. 
In the center-of-mass system the differential cross 
section can be written 

da­

do. 
L liffr 

(o-q2)(<r-qi) i \ | 2 
/2KI , 

qiq2 I / I 

(2.3) 

where qi (q2) denotes the initial (final) pion momentum, 
and the matrix element is taken between two component 
spinors. 

The amplitudes / i and /2 are related to the phase 
shifts in the appropriate eigenstate of isotopic spin by 

where the no-flip amplitude f(6) and the spin-flip 
ampHtude g(d) are given by 

/(^) = /i(^)+cos^/2(^), (2.12) 
and 

ig{e) = smef2{d), (2.13) 
The polarization P{d) of the final nucleon spin is 

defined as 

(d(T/dQ)P{e) = 2[Re/(^)g*((9)] sin(9. (2.14) 

The amplitudes for Tr~p scattering and charge ex­
change are obtained from those for the pure isospin 
channels r = f and r = | . 

For T~+p —»Tf+p, the combination of the / / is 

Hfi'''+2fi'^'), i=h2 (2.15) 

and for 7r~+p —» ir^+n, is 

(iv2)(/,3/2-///2), i = l , 2 . (2.16) 

If we write 
ni=exp(2i5z±), (2.17) 

then the total cross section ai^ and the elastic cross 
section (Ti±{e\) for the Idz partial waves are given by 

ai^= i27r/q')U+i){l-Re^i±), (2.18) 
and 

crj±(el)=(Vg^)(i+i) | l-r ,±|S j=il±h)- (2.19) 

The inelasticity coefficient Ri^ is related to ai and 
(Ti{eV) by the optical theorem 

Ri. 
ai^ Im(/z±) 

<ri±(d) q\fi^\' 
(2.20) 

/ i = E /i+Pi+i '(^)-E fi-PUix), (2.4) 
Z=0 Z=2 

and 

where 

and 

/ 2 = Z ( / l - ~ / ^ + ) P / ( ^ ) , 

::c=cos^ 

(2.5) 

(2.6) 

fi±=q-~^ exp(i5|±) sin5i±. (2.7) 

When 61^ is complex we write Eq. (2.7) explicitly as 

/z±= (2iq)-'lexp(-2l3i^+2iai^-1], (2.8) 

= i2iq)-'Lm± exp(2^a,±)~ 1] , (2.9) 
where 

5ii = a,±+^i^z±. (2.10) 
The differential cross section (2.3) becomes, on 

summing over spins, 

da/dQ=\m\'+\g(e)\', (2.11) 

so that Ri±^ 1. 
In the analysis of pion-proton experimental scattering 

data a modification has to be introduced to take into 
account the effects of Coulomb scattering. For the 
energy range, we consider in this paper the separation 
of Coulomb and nuclear effects that have been achieved 
by using the results of Solmitz.^ 

In this approximation, an ampUtude for Coulomb 
scattering correct to first order in a= (e^/kc) is added 
to the nuclear amplitudes f(6) and g{6). Explicitly, 

9(e)=ge(e)+g(e), (2.21) 
where 

fM = ^e'(2q(v^+v^) sin^J^)-! 

XCl+K^p(l+cos^)^iV(2Mp~l) 
X(l-cos^)] (2.22) 

and 

gc(e) = ±eK2q(v,+v^) sinHiO))-' 
XCiMp^,^p+iV(2Mp~ 1)] sin^. 

« Natural units with WT = (; = ^ = 1 are used. 7 F. T. Solmitz, Phys. Rev. 94, 1799 (1950). 
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In these expressions, v^r and Vp are the pion and proton 
velocities in the center-of-mass system and /Xp is the 
magnetic moment of the proton in nuclear magnetons. 
At low energies, nuclear and Coulomb scattering can 
no longer be separated accurately in this way,^ but at 
300 MeV, our lowest energy, the error arising from the 
approximations of Eqs. (2.21) and (2.22) is negHgible. 

3. PARA.METERIZATION—GENERAL 
PROPERTIES 

In making an analysis of experimental data at many 
energies simultaneously, the energy dependence of the 
partial-wave amplitude poses a problem, especially if, 
as in the pion-nucleon case, the scattering process soon 
becomes very inelastic as the energy is increased. Our 
method has been to make use of the analytic properties 
of the partial-wave scattering ampUtude and, in par­
ticular, to make use of the unitarity relation at physical 
energies, between the imaginary part of the inverse of 
fi^ and the inelasticity coefficient Ri^j viz, 

Imfi^-^=-qRi^(q). (3.1) 

Our parameterization scheme will be based on this 
equation and on the following dispersion relation^ for 

Re/,±-'(9) 
TT Jo 

xRi^ix) 
dx^-

0 (o(y^—(f)(x^—qo^) 

iq'-qo') -go') r 
dx^-

{i^—f){y?—qif) 

+ ZX„ /g^" , (3.2) 

where 
a= ( I ~ l / 4 m 2 ) / ( l + l / 2 w 2 ) (3.3) 

and the \n are constants. A/j±~^ denotes the discon­
tinuity of — 2ifi^^ across the left-hand cut. For those 
cases in which the amplitude has a zero for physical 
values of energy additional poles may be added to the 
right-hand side of Eq. (3.2) for otherwise the expression 
is too restrictive. 

Since in the great majority of our searches for solu­
tions we are concerned with energies which are well 
away from the threshold region, we consider delta 
functions for Afi^"^ to be a reasonable form of parame­
terization and accordingly set 

value of K may be different for different I since for a 
given energy the number of poles needed increases as 
we describe lower angular momentum states. Apart 
from this consideration, there does not exist any a priori 
method of fixing the value of K, This choice of parame­
terization which replaces the left cut by a series of poles 
has found many applications, but in dealing with Ri^ 
on the right no such standard technique is available. 
Any parametric form chosen for this function must be 
of a sufficiently flexible form to allow quite different 
kinds of behavior to take place, since the inelasticity 
coefficient is virtually an unknown function. In the 
absence of any real knowledge about the behavior of 
jRi±, we have considered the ratio of polynomials, whose 
energy-independent constants are taken to be the 
parameters, to be a suitable form. The polynomials 
were chosen in such a way as to help keep computing 
time at a minimum while retaining the flexibihty noted 
above. In our searches we used particular cases of the 
following general expression: 

A/z±-^=En±"5(^2-f-gn^), (3.4) 

where rij^"* and qn^ are our parametric constants. The 

8N. F. Mott and H. S. W. Massey, Theory of Atomic Col­
lisions (Oxford University Press, London, 1948), p. 302. See 
also Ref. 10. 

9 J. W. Moffat, Phys. Rev. 121, 926 (1961). 

Ri^{q)=l+e{q-qi)\ai^ 
giq-Qi) 

+bi^- — : +^(^-"^2)U:z±-
(l+q'/B^) 

+5i,odi±-

(i+q'/a) 

qiq'-qi'Y''] 

{l+<f/D^) 
(3.5) 

where ai^, bi±, ci±, di^. A, B, C, and D are constants, 
qi is the first inelastic threshold, and 2̂ is the threshold 
for rj production. This form allowed analytic expressions 
to be derived for the integral in Eq. (3.2). 

This form of Ri±{q) does not exhibit the correct 
behavior at each inelastic threshold, and indeed there 
are many inelastic thresholds in our energy range, but 
the threshold dependence holds only over a small energy 
where, most probably, the contribution of the new 
process to the reaction cross section is completely 
unimportant. The only exception to this in our energy 
range appears to be in the r = J s wave at the 7?-pro-
duction threshold. For this state we have introduced 
the last term in Eq. (3.5), which has the correct 
behavior at this threshold. The parameterization of the 
inelasticity is discussed further in Sec. 6. 

4. DATA FITTING 

A list of all the experimental data used is given in 
Appendix A. As explained in later sections the results 
of analysis of low-energy data (energy less than 98 
MeV) by Hamilton and Woolcock^^ were taken into 
account in determining the s and p scattering lengths. 

Above 310 MeV most of the data used are the recent 

10 J. Hamilton and W. S. Woolcock, Rev. Mod. Phys. 35, 237 
(1963). 
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differential-cross-section (and polarization) data from 
experiments at Berkeley and Saclay.^^ Older experi­
ments of low accuracy were omitted; we did not make 
use of experiments where the results were presented 
solely as coefficients in a cos^ expansion. 

Having adopted these general criteria we attempted 
no further selection of data. In particular we did not 
exclude individual data points, as this might have 
introduced an unwarranted subjective element into the 
analysis. Where the authors of an experiment have 
given a forward point involving a dispersion relation 
calculation, we have included it. 

As explained in Sees. 2 and 3, the cross sections and 
polarizations at the energies and angles for which 
experiments exist can be calculated in terms of certain 
parameters. We then form the sum 

M= {N-f^r^ L ( ( 0 , - C , ) V A / ) , (4.1) 

where Oi and Ai are the observed quantity and error, 
respectively, and d is the corresponding calculated 
quantity. N is the number of data points and n the 
number of independent parameters. The best values of 
the parameters are now found by minimizing M. 

This formulation, while used in most of our fits, does 
not take account of normalization errors in the data. 
One standard method of doing this is to have a nor­
malization parameter for each complete differential 
cross-section experiment. Unfortunately, this would 
introduce too many extra parameters and lead to 
excessive computing time. In some runs an attempt to 
compensate for possible "common errors" in the data 
was made following a method due to Davidon,^^ which 
replaces Eq. (4.1) by the more general form. 

1 ^ ( 0 , - C , ) ( O y - Q ) 
M = Y.H,, ^ ^ , (4.2) 

where 
{N-n) u A.- Ay 

2-1-1 

''"='«-©(z}['+?©J- <*•'> 
This expression takes into account the possibility of 
common errors ti with the result that off-diagonal 
elements do not necessarily vanish as in Eq. (4.1). 
Experience has shown that the fits obtained using 
either method are not significantly different, so that in 
the future we propose to use merely the simpler Eq. 
(4.1). 

To find the parameters pertaining to the r = f 
ampHtude it is sufficient to fit the -n-'^p data. Having 
thus fixed best values of these amplitudes we use them, 
along with the still variable r = J amplitudes, to cal­
culate the Ci for the Tr~p data. The T=\ parameters 

and amplitudes are then found by minimizing M for 
the Tr~p data. The whole process may be performed 
repeatedly to find many possible sets of r = f , r = J 
solutions, out of which the best are selected with 
reference to the relative M values. 

5. PHASE SHIFTS AT AND BELOW 300 MeV 

There is a natural boundary zone in pion-nucleon 
scattering from 250 to 350 MeV; for below 250 MeV 
inelasticity can be neglected and pion-nucleon scat­
tering analyzed using real phase shifts only, while at 
350 MeV, inelasticity is already important and analysis 
in terms of real phase shifts only is no longer possible. 
With the consequent proliferation of parameters above 
this energy, it is important to use a method such as ours, 
or information from the peripheral pion-nucleon inter­
actions, or both, in order to limit the number of solu­
tions. In conducting our searches above this energy 
zone we could in principle proceed with no a priori 
information from within or below it. But our task is 
simplified if we can take some already known phase 
shifts within the zone as approximate boundary values 
in our searches, and it is fortunate that there are recent 
ir'^p scattering experiments^^-^^ at 310 MeV accompanied 
by extensive phase-shift analyses.^^'^^ 

Foote et al}^ have analyzed Tr^/^'data at 310 MeV, 
and, on the basis of their j e su l t s , ^ ik and Rugge^^ have 
fitted TT'^P and Tr~p differential cross sections, polari­
zation, total cross section, inelastic cross section, and 
charge-exchange differential cross section (this latter 
from an experiment^'' at 317 MeV). Phase shifts up to 
/ waves were included and the three final Vik-Rugge 
solutions are shown in Table I ; spdf I is the best fit 
while spdf I I is somewhat better than spdf I I I . 

However, doubts have been cast^^ on the stabiHty 
of the method when / waves are included; it could be 
that there exist not only these three, but many more, 
solutions with a x^ of the same order. Kane and Spear-
man^^ have attempted to resolve this possible dilemma 
in the following way. From an analysis^^ of low-energy 
pion-nucleon scattering they are able to obtain the 
long-range forces acting on the pion-nucleon system, 
in the form of the branch-cut discontinuities nearest 
to the physical region in the cos^ plane of the invariant 
amplitudes. The higher partial waves can then be ob­
tained from these nearby discontinuities (that is, long-
range forces) and 310 MeV is a low enough energy for 

" See Appendix A for references. 
12 See U. E. Kruse and R. C. Arnold, Phys. Rev. 116, 1008 

(1959). 

i^E. H. Rogers, O. Chamberlain, J. Foote, H. Steiner, C. 
Weigand, and T. Ypsilantis, Rev. Mod. Phys. 33, 356 (1961); 
J. Foote, O. Chamberlain, E. Rogers, H. Steiner, C. Weigand, 
and T. Ypsilantis, Phys. Rev. 122, 948 (1961). 

" H. R. Rugge and O. T. Vik, Phys. Rev. 129, 2300 (1963). 
" J. Foote, O. Chamberlain, E. Rogers and H. Steiner, Phys. 

Rev. 122, 959 (1961). 
16 O. T. Vik and H. R. Rugge, Phys. Rev. 129, 2311 (1963). 
" J. C. Carris, R. W. Kenney, V. Perez-Mendez, and W. R. 

Perkins, Phys. Rev. 121, 893 (1961). 
" G. L. Kane and T. D. Spearman, Phys. Rev. Letters 11, 45 

(1963). 
" T . D. Spearman, Phys. Rev. 129, 1847 (1963). 
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TABLE I. The spdf solutions of Vik and Rugge, Ref. 16, at 310 MeV. 5 is the real part of the phase 
shift in degrees; T? is the inelasticity parameter. 

I 5 

II 5 

III 5 

53,1 

-14 .9 
1.00 

-21 .1 
1.00 

-15 .4 
1.00 

pz,\ 

+0.4 
1.00 

-11.8 
1.00 

- 0 . 4 
1.00 

pz,z 

135.1 
1.00 

137.0 
1.00 

135.6 
1.00 

<^3.3 

5.1 
1.00 

- 3 . 1 
1.00 
4.4 
1.00 

dz,^ 

- 6 . 5 
1.00 
1.2 
1.00 

- 6 . 2 
1.00 

/s,6 

0.8 
1.00 

- 1 . 7 
1.00 
0.7 
1.00 

fz,7 

- 1 . 8 
1.00 
3.1 
1.00 

- 1 . 4 
1.00 

5i , i 

- 5 . 9 
1.00 

10.9 
1.00 
3.7 
1.00 

i'l.i 

- 5 . 5 
1.00 

23.0 
0.94 

26.4 
1.00 

^ 1 , 3 

1.7 
0.99 

- 3 . 6 
1.00 
8.6 
0.98 

^ 1 , 3 

- 5 . 5 
0.99 
5.9 
1.00 

- 0 . 3 
1.00 

di,b 

15.3 
1.00 
0.3 

1.00 
3.1 
1.00 

/ l , 5 

- 0 . 1 
1.00 
1.8 
1.00 
0.6 
1.00 

/ M 

2.3 
1.00 

- 0 . 7 
1.00 

- 0 . 1 
1.00 

the / waves to count as ^'higher partial waves" and 
to be obtained in this way. With the calculated / waves 
a search can be made for a fit to the data varying the 
s, p, and d waves only. So far the results have only 
been published for the w'^pj r = | , state and are given 
in the first row of Table II , labeled KS. 

Donnachie, Hamilton, and Lea^^ have made a similar 
calculation predicting py d, and / waves (with the 
exception of pn) up to 400 MeV. Again they take the 
long-range, or peripheral interaction, from phenomeno-
logical studies^^ in pion-nucleon dispersion relation but 
in calculating the p, J, and / waves they use partial-
wave dispersion relations rather than the fixed-energy 
dispersion relation used by Kane and Spearman. Their 
results at 310 MeV are to be found in the second row of 
Table II , labeled DHL. 

I t is evident that both these calculations strikingly 
disagree with the solution spdj I and spdf I I I of Vik 
and Rugge, but are in fair over-all agreement with 
spdf II . The agreement is particularly good for the 
calculations of Donnachie, Hamilton, and Lea (as these 
authors have remarked), except for dz^ and the mag­
nitude of the / waves. Thus from the peripheral inter­
action work a solution at 310 MeV with the general 
characteristics of spdf I I is strongly indicated. As a 
note of caution it may be said that the two peripheral 
interaction calculations under discussion are not totally 
independent, as both are based on the same type of 
method^^ for extracting the peripheral interaction from 
pion-nucleon scattering. 

I t should be remarked that spdf I I is the only Vik-
Rugge solution with inelasticity in a r = J, / 
which appears to be required by other analyses.^^-^* 

A fit by the present authors to ir'^p data in the range 
100 to 350 MeV also gave support to the general 

2 State, 

20 A. Donnachie, J. Hamilton, and A. T. Lea, Phys. Rev. 135, 
B515 (1964). 

21 J. Hamilton, P. Menotti, G. C. Oades, and L. L. J. Vick, 
Phys. Rev. 128, 1881 (1962); J. Hamilton, Proceedings of the 1963 
Scottish Universities Summer School in Strong Interactions and 
High Energy Physics (Oliver and Boyd, London, 1964), p. 281. 

22 J. Hamilton, P. Menotti, and T. D. Spearman, Ann. Phys. 
(N. Y.) 12,172 (1961); J. Hamilton, P. Menotti, T. D. Spearman, 
and W. S. Woolcock, Nuovo Cimento, 20, 519 (1961); J. Hamilton, 
T. D. Spearman, and W. S. Woolcock, Ann. Phys. (N. Y.) 17, 1 
(1962); and Refs. 10 and 21. 

23 p . Bareyre, C. Bricman, G. Valladas, G. Villet, J. Bizard, and 
J. Sequinot, Phys. Letters 8, 137 (1964). 

24 P. Auvil and C. A. Lovelace, Nuovo Cimento 33, 473 (1963). 

correctness of spdf II . This search for a fit was per­
formed mainly as a test for the viability of our method 
and was subject to the following restrictions; 

(i) As a lower boundary condition, the s and p 
scattering lengths were fixed to the values given by 
Hamilton and Woolcock.^^ 

(ii) The d waves (J33 and J35) were restricted by the 
negative as indicated by the peripheral interaction 
work of Donnachie, Hamilton, and Lea.^^ 

(iii) The pzz phase shift was forced to pass through 
90° at 200 MeV. Under these conditions the amplitudes 
were expressed as a function of a total of 10 parameters, 
1 in each of the d and / amplitudes and 2 in each of the 
s and p amplitudes. 

Starting from zero values of the parameter, one 
search for a minimum yielded a reasonable fit to the 
data. In particular it was found that the pole positions 
and residues of the pzz inverse amplitude have adjusted 
themselves so as to yield the pzz amplitude in essentially 
the Layson^s generahzed Breit-Wigner form: 

ImyLCt 

where m is the mass of the nucleon and qn is the 
momentum at resonance. With resonance at 205 MeV, 
Layson's values were^^ a=0 .7 l4 , 7 L = 0 . 1 3 3 ; our values 
with resonance at 200 MeV were a=0.707, 7 L = 0 . 1 2 7 . 
The phase shifts at 310 MeV are given in the third row 
of Table II , labeled BMO, and agree very well with the 
spdf I I solution of Vik and Rugge. I t may particularly 
be noted that the dz^ phase shift, which is constrained 
to be negative, is, at 0°, as close as it can get to the 
1.2° of spdf I I ; and that the / waves agree in sign with 
both the results of Donnachie, Hamilton, and Lea and 
spdf I I , and in magnitude with spdf II . 

These results could be taken as further support for a 
solution at 310 MeV of the type spdf II . However, in 
view of the constraints, and the fact that there was only 
one search, the skeptical reader might consider that the 
result was partly forced and for the rest coincidental. 
We do not think that there is any force in the objection 
on the grounds of constraints; constraints (i) operate 

26 W. M. Layson, Nuovo Cimento 20, 1207 (1961). 
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TABLE II . Phase shifts at 310 MeV.* 

KS, S 
DHL, 5 
BMO, 5 

^3.1 

-19 .5 

-20.52 

pz,i 

- 6 . 3 
-13.0 
-13 .5 

Pz,2, 

134.4 
137.4 
135.9 

d3,3 

1.0 
- 1 . 3 
- 2 . 6 

ds^b 

- 3 . 1 
- 2 . 1 

0.0 

Phase shifts in degrees 
/a ,5 /a ,7 ^1,1 

-0 .04 0.49 
- 0 . 1 - 0 . 6 
- 0 . 1 3.2 

pi,I pi,z 

- 3 . 5 

^1,3 

5.7 

< l̂,5 

0.7 

/ l . 5 

0.8 

/ l . 7 

- 0 . 1 

» KS-results of Kane and Spearman, Ref. 18; DHL-results of Donnachie, Hamilton and Lea, Ref. 20; BMO-results of preliminary ten-parameter searches 
over energy range 100-350 MeV discussed in Sec. 5. 

strongly at the lower energies (^100 MeV) only, and 
are designed to provide a smooth join to pion-nucleon 
scattering below 100 MeV; constraints (ii) operate 
one for and one against spdf I I ; constraint (iii) must be 
(nearly) obeyed by any correct result and is not so 
much a constraint as an aid to quick solutions. 

Nevertheless, we ourselves prefer to invert the force 
of the argument, considering that spdf I I has already 
been chosen as the correct type of solution. So given 
already the correctness of the type spdf I I , the result 
of the search from 100 to 350 MeV shows that our 
method, provided additionally with lower boundary 
conditions and the fact of resonance in one partial 
wave, is likely to produce the correct solution. 

6. PION-NUCLEON AMPLITUDES: 
300 TO 700 MeV 

A. Form of Parameterization 

To use in our searches (for pion-nucleon scattering 
amplitudes between 300 and 700 MeV) we obtained in 
Sec. 3 a rather general analytic parameterization. The 
least physically possible number of parameters is large 
(with consequent long computing time involved in 
search for a minimum value of M), so that we used all 
available information to minimize the number of 
parameters and limit their range of variation. Three 
general limitations were imposed on the parameteri­
zation : 

(i) In the last section we gave reasons for believing 
that the spdf I I solution of Vik and Rugge is sub­
stantially correct. Consequently, in the range 300-700 
MeV, we principally searched on those parameteriza-
tions, and those regions in the subsequent parameter 
space, which, at 310 MeV, give rough agreement with 
spdf I I (and also represent a reasonably smooth com­
bination of our own fit to the ir-N experiments from 
0 to 300 MeV). This is not regarded as a strict limitation 
on our searches and we have performed one or two 
searches which do not conform to this condition. 

(ii) I t seems likely^® that the dn wave resonates 
near 600 MeV at the ^^second resonance." Our parame-
terizations, with one exception, have maintained a J13 
resonance between 550 and 650 MeV with the exact 

26 R. Omnes and G. Valladas, Proceedings of the Aix-en-Provence 
International Conference on Elementary Particles, 1961 (Centre 
d'Etudes Nucleaires de Saclay, Siene et Oise, 1961), Vol. 1, p. 467. 

position and the width being determined by the search 
for the minimum of If, that is by the fit to the 
experiments. 

(iii) I t is a reasonable physical assumption that, for 
a given partial wave, the energies for which inelastic 
scattering is important are greater that those for which 
elastic scattering dominates. We have assumed that 
there is no r = f /-wave inelasticity up to 700 MeV; 
this assumption, while probably never too far wrong, 
is open to question between 600 and 700 MeV. 

These are the general Kmitations imposed on the 
parameterization. However, there are more particular 
Kmitations, which may vary somewhat from one search 
to another, and whose object is to obtain the maximum 
physically reasonable variation in each partial wave for 
the minimum number of parameters. Consider first 
o'tot/o'ei which as described in Sec. 3 is parameterized as 

Ri±{q) = \+e{q-qMai^ 
qiq-qi) 

+ 0(q-q2)\ci^-

(l + q'/A^) 

qiq-q^) 

\i+qyo) 

'^i±-

-8i,Qdi±-

(q-qi) 

a+q'/B') 

qiq^—qiY'^ 

(i+gV^^) 

where qi is the first inelastic threshold and q^ the 
threshold for -q production, ai^, bi±, ci±, di^ are variable 
parameters in each search while (so that the search 
program does not require the computer to calculate a 
complicated expression very many times) A, B,C, and 
D are the same for each partial wave and fixed at the 
beginning of each search.^-, C-, andD-type inelasticities 
each rise to an asymptotic maximum (approximately 
attained for g » ^ , C or D) while the B type rises to a 
maximum at q greater than 2^i, (which corresponds to 
about 530 MeV), the exact position depending on the 
magnitude oi B. I t is of course important to remember, 
now and later, that the behavior of rn^ is not like that 
of Ri^. In particular, R is Hkely to remain constant or 
slowly varying over a resonance, while 77 may exhibit 
a sharp minimum at that point. Now, with this general 
parameterization, for all d and / waves except the du, 
one type of inelasticity, either A type or C type, was 
chosen; for the lower waves two types of inelasticity 
were allowed. 

Secondly, consider the rest of the parameterization 
which consists of the winding-point parameters Xn [see 
Eq. (3.2)] and the residues and positions of the left-
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hand poles. The coefficient X̂  of the leading winding-
point singularity is just the inverse scattering length 
for that partial wave. For the s and p waves these 
parameters were either fixed at the values given by 
Hamilton and Woolcock^^ or allowed to vary somewhat 
from them. In all partial waves the nonleading winding-
point parameters were almost always put equal to zero 
and not varied. Usually, the left-hand singularities were 

^ 8 

T T + 3 1 0 M e V 

I'lG. 1. The fit of solution 1 to the ir^-p differential cross section. 

TT'*' 3 7 0 M « V 

FIG. 3. The fit of solution 1 to the T^-p differential cross section. 

l ie 
• o l x 

FIG. 2. The fit of solution 1 to the w'^-p differential cross section. 

FIG. 4. The fit of solution 1 to the -n-'^-p differential cross section, 

represented by two poles oi fixed position, one at q^c^— 1 
and the other at q^i^—20 (units of pion mass) and 
variable residue. In some partial waves, for example, the 
pu amplitude, more poles were necessary. In all partial 
waves the pole positions were regarded as potentially 
variable, and in some searches actually varied. 

We give in Appendix B the form of the partial-wave 
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B. Solutions 

As explained in Sec. 4, our procedure is first to 
determine the r = f amplitudes by a fit to the ir^-p data 
and then to use these r = f amplitudes in a determi­
nation of the T—\ amplitudes by a fit to the Tr~-p data. 
Two solutions (I, I') have already been described^-^^j 

TF* 5SO MeV 

FIG. 5. The fit of solution 1 to the w^-p differential cross section. 

FIG. 7. The fit of solution 1 to the w^-p differential cross section. 

TT* 4 9 0 M«V 

•+I.O +o'.s ^ -6T5~ 
co»e 

FIG. 6. The fit of solution 1 to the ir^-p differential cross section. 

ampHtude that appeared in our computing program 
together with the particular application of it in the 
search that led to solution 1, described below. I t should 
be emphasized that even with the Hmitations described 
above, our method of parameterization was capable of 
giving very different types of energy-dependent be­
havior. In particular a resonance in a partial wave 
(either pure or of the type background and resonance) ^^^' -̂ ^^^ ^̂  ®̂  solution 1 to the w^-p differential cross section. 
does not need any special form of the partial-wave aru xr î  A T, r^ i.^ X. J ^ T ^ , ^ 
^^^ iu„^^ 27 B H . Bransden, R. G. Moorhouse, and P. J. O'Donnell, 
ampiiiuae. Rutherford Laboratory Report No. NIRL/R/79 (unpublished). 
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FIG. 9. The fit of solution 1 to the ir'^-p differential cross section. 

FIG. 10. The fit of solution 1 to the w^-p differential cross section. 

these solutions have been superseded by solutions 1 
and 2 which contain a term in the .y-wave inelasticity 
(term "J") with correct behavior at the threshold. 
Solution 1 corresponds to the old solution I and solution 
2 to the old solution I' . The fit to the experimental data 
for solution 1 is shown in Figs. 1-33. The fit to the 
TT^-p total cross sections is particularly interesting 
since there are only 5 7r~-p total cross sections in the 
data to be fitted (out of a total of 396 data for the 
determination of the r = J amplitudes). This means 
that they have negHgible weight and that our w~-p 
total cross section is predicated from the assumptions 
of our method and the differential cross section only, 

so that the good agreement with the Saclay total-cross-
section measurements^^ is noteworthy. 

The phases, 5^^^, and absorption parameters, 7?z±'̂ , 
for solutions 1 and 2 are shown in Figs. 34-37 and Tables 
I I I and IV. The r = f solution 2 is just a small per­
turbation of the r = f solution 1, but the two solutions 
for T 
solution 2 the 
through ITT, but in solution 1 it does not. This and other 
aspects of solutions 1 and 2 are discussed and compared 
in Sec. 7 below. 

= I apparently differ strikingly in the s wave. In 
real part of the ^n phase shift goes 

TT* 698 Me V 

;ir'> 48 

FIG. 11. The fit of solution 1 to the ir'^-p differential cross section. 

1.2 

I .O 

i 
E 

ha 

0.8-

0 .6 

0.4 

111, 

\ { 

V 
\} 

\ * 

TT~ 310 M.V 

Ar'=7a 

\} / 

/ 
1̂  

p 

FIG. 12. The fit of solution 1 to the ir^-p differential cross section. 
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TABLE III . Solutions 1 and 2 for states with r = J.» 

Energy (MeV) 

6'u 5 

V 

pn 5 

V 

pn 5 

V 

du 8 

1 

dn 5 

1 

hi 5 

f] 

fu 5 

V 

1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 

310 

9.3 
10.9 
0.998 
0.985 

- 6 . 0 
- 5 . 4 

0.983 
0.997 

16.9 
19.42 
0.952 
0.296 

-0 .29 
0.4 
1 
1 
4.2 
4.3 
0.999 
0.994 

-0.47 
- 0 . 5 

1 
1 
0.9 
1.1 
1 
1 

370 

10.9 
12.7 
0.995 
0.977 

- 6 . 5 
6.8 
0.969 
0.993 

34.7 
36.38 
0.767 
0.725 
0.53 
0.63 
1 
1 
7.1 
7.3 
0.994 
0.981 

-0 .78 
- 0 . 8 

1 
1 
1.7 
1.8 
1 
1 

410 

12.4 
14.5 
0.992 
0.970 

- 6 . 8 
- 7 . 8 

0.950 
0.988 

46.2 
45.1 
0.559 
0.584 
0.74 
0.9 
1 
1 

10.0 
10.2 
0.987 
0.963 

-0 .94 
-0 .97 

1 
1 
2.4 
2.3 
1 
1 

450 

14.5 
17.1 
0.987 
0.957 

-7 .2 
- 8 . 8 

0.947 
0.981 

55.2 
50.7 
0.461 
0.480 
1.0 
1.3 
1 
1 

14.3 
14.3 
0.968 
0.928 

- 1 . 0 
- 1 . 0 

1 
1 
3.0 
2.8 
1 
1 

490 

17.8 
21.4 
0.978 
0.935 

- 7 . 3 
-10.0 

0.934 
0,972 

61.8 
53.3 
0.365 
0.410 
1.4 
1.8 
1 
0.999 

20.8 
20.0 
0.926 
0.861 

- 1 . 1 
- 1 . 0 

1 
1 
3.5 
3.4 
1 
1 

533 

24.7 
30.3 
0.953 
0.877 

- 7 . 4 
-11.4 

0.919 
0.959 

64.3 
53.4 
0.297 
0.364 
1.9 
2.4 
1 
0.997 

32.3 
29.3 
0.813 
0.725 

- 1 . 1 
- 1 . 0 

1 
1 
3.9 
4.0 
1 
1 

572 

37.9 
48.2 
0.657 
0.591 

- 7 . 6 
-12 .8 

0.903 
0.942 

64.2 
51.5 
0.259 
0.342 
2.7 
3.4 
1 
0.994 

50.0 
42.7 
0.613 
0.504 

- 1 . 1 
-0 .97 

1 
1 
4.1 
4.6 
1 
1 

600 

39.6 
63.7 
0.428 
0.336 

- 7 . 7 
-13 .8 

0.889 
0.927 

62.3 
49.4 
0.241 
0.338 
3.5 
4.3 
1 
0.990 

70.0 
56.5 
0.449 
0.311 

- 1 . 1 
-0 .97 

1 
1 
4.2 
5.0 
1 
1 

650 

27.0 
127.7 

0.159 
0.276 

- 7 . 8 
-16 .1 

0.861 
0.890 

56.3 
44.6 
0.236 
0.351 
5.7 
6.8 
1 
0.975 

112.9 
108.3 

0.412 
0.170 

- 1 . 0 
-0 .91 

1 
1 
4.3 
5.9 
1 
1 

698 

- 1 . 6 
147.8 

0.186 
0.520 

- 7 . 9 
-18 .8 

0.822 
0.837 

48.5 
39.4 
0.267 
0.393 

10.8 
11.7 
1 
0.928 

133.2 
133.8 

0.535 
0.299 

- 1 . 0 
-0 .91 

1 
1 
4.3 
6.7 
1 
1 

5=real part of phase shift in degrees; ?7=absorption parameter. 

TABLE IV. Solutions 1 and 2 for states with r = f . 

Energy (MeV) 

^31 5 

V 

Pzz 5 

n 
pzi 5 

n 
dsB 8 

V 

^33 5 

V 

hi 5 

/35 5 

1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 

310 

-20.7 
-20 .9 

1.0 
1.0 

137.4 
137.5 

1.0 
1.0 

-11.7 
-11 .4 

0.965 
0.972 

- 0 . 3 
- 0 . 3 

1.0 
1.0 

- 1 . 2 
- 1 . 4 

1.0 
0.999 
2.8 
2.1 

- 0 . 9 
- 1 . 3 

370 

-23.2 
-23.5 

1.0 
1.0 

146.3 
146.5 

1.0 
1.0 

-12.7 
-12 .5 

0.937 
0.949 

- 0 . 6 
- 0 . 6 

1.0 
1.0 

- 0 . 6 
- 0 . 7 

1.0 
1.0 
3.8 
3.1 

- 1 . 0 
- 1 . 1 

410 

-24 .5 
-24 .9 

1.0 
1.0 

150.2 
150.4 

1.0 
1.0 

-13 .1 
-13 .0 

0.917 
0.932 

- 0 . 9 
- 0 . 8 

0.998 
0.999 

- 0 . 5 
- 0 . 5 

1.0 
10 
3.9 
3.5 

- 1 . 0 
- 1 . 0 

450 

-25.5 
-25 .9 

1.0 
1.0 

153.2 
153.4 

1.0 
1.0 

-12.2 
-13 .3 

0.898 
0.916 

- 1 . 3 
- 1 . 1 

0.994 
0.998 

- 0 . 4 
- 0 . 4 

1.0 
10 
3.9 
3.6 

- 1 . 0 
- 0 . 9 

490 

-26 .1 
-26 .5 

1.0 
1.0 

155.6 
155.8 

1.0 
1.0 

-13 .4 
-13 .5 

0.879 
0,898 

- 1 . 7 
- 1 . 4 

0.998 
0.996 

- 0 . 4 
- 0 . 4 

1.0 
1.0 
3.8 
3.5 

- 0 . 9 
- 0 . 8 

533 

-25.9 
-26 .4 

1.0 
1.0 

157.6 
157.8 

1.0 
1.0 

-13 .4 
-13 .6 

0.837 
0.879 

- 2 . 3 
- 1 . 9 

0.974 
0.992 

- 0 . 3 
- 0 . 4 

1.0 
1.0 
3.6 
3.4 

- 0 . 8 
- 0 . 7 

572 

-23 .6 
-24.2 

0.982 
0.981 

159.2 
159.4 

1.0 
1.0 

-13 .4 
-13 .8 

0.835 
0.860 

- 2 . 7 
- 2 . 4 

0.953 
0.985 

- 0 . 3 
- 0 . 3 

1.0 
1.0 
3.4 
3.3 

- 0 . 8 
- 0 . 7 

600 

-22 .5 
-23.0 

0.898 
0.897 

160.2 
160.4 

1.0 
1.0 

-13 .5 
-13 .9 

0.818 
0.845 

- 3 . 0 
- 2 . 8 

0.930 
0.977 

- 0 . 3 
- 0 . 3 

1.0 
1.0 
3.3 
3.2 

- 0 . 7 
- 0 . 6 

650 

-21 .3 
-21 .8 

0.762 
0.759 

161.7 
161.9 

1.0 
1.0 

-13 .6 
-14 .1 

0.783 
0.814 

- 2 . 6 
- 3 . 7 

0.880 
0.952 

- 0 . 3 
- 0 . 3 

1.0 
1.0 
3.1 
3.1 

- 0 . 7 
- 0 . 6 

698 

-19 .4 
-20.0 

0.624 
0.617 

162.9 
163.1 

1.0 
1.0 

-13.7 
-14.5 

0.736 
0.773 

- 1 . 1 
- 4 . 5 

0.845 
0.905 

- 0 . 3 
- 0 . 3 

1.0 
1.0 
3.0 
3.0 

- 0 . 7 
- 0 . 6 

i is the real part of the phase shift in degrees; J? is the absorption parameter. 

C. Goodness of Fit 

The x '̂s for the fit of solution 1 to each set of experi­
mental data are given along with the corresponding 
graphs in Figs. 1-33. (Solution 2 fits the experiments 
rather better.) These x '̂s are somewhat larger (up to 
about a factor 2.5) than those obtained in orthodox 

phase-shift analyses at a single energy, which is not 
surprising since we have a small number of parameters 
(15 in the 7r+ case, 26 in the TT") to fit the data at all 
energies; our x̂  are comparable with those obtained by 
Roper.^ Nevertheless, the goodness of fit requires some 
discussion. 

In principle, our method of parameterization is 
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FIG. 13. The fit of solution 1 to the w'^-p differential cross section. 

FIG. 14. The fit of solution 1 to the ir'^-p differential cross section. 

capable of reproducing behavior of any degree of com­
plexity ; in practice we can only reproduce a reasonably 
smooth behavior with energy of each partial wave since 
we are limited by computer speed in our number of 
parameters. If the partial waves in fact have such a 
smoothness, then we have here a strong feature of the 
method, for our parameterization cannot follow even 
slightly wrong or inconsistent excursions by the ex­
perimental data. In that case our larger x̂  would repre­
sent faults in the data such as errors of normalization, 
assignment of too small "errors," etc. On the other hand, 
if the physical partial-wave amplitudes are not smooth 
in their energy dependence, then we must have a larger 

X̂  because of our paucity of parameters. In this latter 
case, however, we would still expect our results to 
reproduce the grosser features of the amplitudes while 
ignoring the fine structure. 

FIG. 15. The fit of solution 1 to the ir'^-p differential cross section. 

FIG. 16. The fit of solution 1 to the ir'^-p differential cross section. 
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7. DISCUSSION AND CONCLUSION 

In the neighborhood of the *^600-MeV resonance" 
we obtain three large amplitudes with T=^ (sn, du, 

FIG. 17. The fit of solution 1 to the ir'^-p differential cross section. 

FIG. 19. The fit of solution 1 to the ir'^-p differential cross section. 

sis 

8 . 0 

7 .0 ; 

6 . 0 -

5 . 0 -

*X> 

3;o 

2 . 0 

i .O 

\l 

TT" '5'^'^ iJic'^/ 

i N . ^ ^ ^ ^ ^ ^ ^ ̂ ^'' 

FIG. 20. The fit of solution 1 to the ir^-p differential cross section. 

and pn). In Figs. 38 and 39 we plot £q Im/ (g ) ] versus 
[g Re/(g)] for these amplitudes in the case of solutions 
1 and 2, respectively. In such a complex amplitude 
diagram, if a certain partial-wave describes an anti­
clockwise circle with increasing energy, then we say 
that partial wave has a resonance and we provisionally 
ascribe the energy at the top of the circle as the reso­
nance energy.28 The circle may be displaced and even 
distorted by background, and the smaller the radius of 

28 See the article by R. H. DaUtz, Ann. Rev. Nucl. Sci. 13, 
FIG. 18. The fit of solution 1 to the w'^-p differential cross section. 346 (1964) for a general discussion of resonant states. 
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the circle the more inelastic is the resonance. Among 
other effects of background the resonance position 
(defined as that energy where the point tracing the 
circle moves fastest as a function of energy) may be 
displaced from the top of the circle. A completely 
elastic resonance is represented by the circle of radius 
0.5, center (0,0.5i) which bounds Iqfiq)^^ 

The diagrams show, as expected, that both solutions 
have an inelastic du resonance. In 1 the resonance 
energy is 625 MeV with a full width of 170 MeV while 

•OITJ 

TT 650 M«V 

FIG. 21. The fit of solution 1 to the w'^-p differential cross section. 

TT"" 69 8 McV 

FIG. 23. The fit of solution 1 to the polarization in ir'^-p scattering. 

X'.: 

FIG. 22. The fit of solution 1 to the w^-p differential cross section. ^ i i and Sn ampl i tudes . 

FIG. 24. The fit of solution 1 to the polarization in ir'^-p scattering. 

a more inelastic resonance with resonance energy 630 
MeV with a full width of 180 MeV is found in 2. 

)These correspond to masses and mass widths of 

Solution 1: M= 1527 MeY/c^, r = 105 MeV/c\ 

Solution 2: M= 1530 MeV/c^, T = 111 MeV/c^. 

The indication is that the mass of this resonance is 
greater, and the width considerably smaller, than 
values obtained by inspection of total cross sections.^*' 
The reason for the unreliability of the estimate from 
total cross sections is evidently the occurrence of large 

29 If we draw a line from the center of the circle to the amplitude ^̂  See, for example, A. H. Rosenfeld et al., University of 
point qf, then the length of this fine is T? and it makes an angle 25 California Radiation Laboratory Report No. UCRL 8030, 1963 
with the downward radius. (unpublished). 
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FIG. 25. The fit of solution 1 to the polarization in •K'^-p scattering. 

^*-4€ 

FIG. 26. The fit of solution 1 to the polarization in ir^-p scattering. 

Both the sii solutions show the 77-threshold cusp at 
558 MeV; unfortunately, as this cusp is in an s wave 
in a region where other waves are strongly varying, 
direct experimental observation of it is almost im­
possible. The Argand diagrams reveal that, despite 5 
passing through T̂T for the solution 2 -̂u wave and 
through 0 for the solution 1 ^u wave, the two solutions 
are quahtatively similar. The circular form is strongly 
suggestive of resonance (particularly for solution 2) 
though consideration is complicated by the cusp at the 
7} threshold. I t is probably desirable to examine these 
solutions in a multichannel formalism, using the ??-
production data,^^ to decide whether or not an ^-wave 
resonance exists.̂ ^"^ 

The Pn amplitude is similar in both solutions and in 
neither is it easy to interpret. I t has some characteristics 
of a resonance, but the distortion and slowing down of 
energy variation after 410 MeV make such an identifi-

31 F. Bulos et aL Phys. Rev. Letters 13, 486 (1964). 
31* Such an analysis has been carried out by A, W. Hendry and 

R. G. Moorhouse, Phys. Letters 18, No. 2 (1965), and it was con­
cluded that such a resonance exists. 

cation extremely doubtful. I t could be a resonance with 
fairly rapid variation of background and inelasticity, 
and if the resonance were placed at the point of fastest 
energy variation this would be at T^f^^f^^d or Mc^\?>10 
MeV/cl The inelasticity in this state is probably 
associated with the reaction 

TT+N -> 7r+7r+iV 

with the two pions in a relative s state.^^ 
In both solutions the J15 and /15 waves are becoming 

FIG. 27. The fit of solution 1 to the polarization in w^-p scattering. 

FIG. 28. The fit of solution 1 to the polarization in ir^-p scattering. 

22 M. B. Watson, M. Ferro-Luzzi, and R. D. Tripp, Phys. Rev. 
131, 2248 (1963). 
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FIG. 29. The fit of solution 1 to the polarization in ir'^-p scattering. 

A.0' 

3.0' 

2.0' 

1.0} 
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H.0 
Cos 9 
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FIG. 30. The fit of solution 1 to pion-nucleon 
charge-exchange cross sections. 

appreciable at 700 MeV, and it is certainly not possible 
to say for example that the /15 will resonate at 900 MeV 
and the dn will not. Both amplitudes may well be large 
at 900 MeV; for example, the fu may resonate while 
the du amplitude may be large (mainly imaginary) and 
slowly varying. Such a behavior is compatible with the 
latest charge-exchange results^^ (which indicate du-fu 
interference rather than J35-/15 interference) and with 
the rather rapid rise of our du phases round 700 MeV.̂ ^̂  

33 R. J. Cence (private communication); F. Bulos ef at., Phys. 
Rev. Letters 13, 558 (1964). 

33a Further differential cross sections and polarizations in the 
region of 750-1450 MeV are now available; P. J. Duke et al. 
Rutherford Laboratory Report No. RPP/H/8 (unpublished). 

There is a good measure of general agreement with 
the results of the analyses of Roper and Wright* and 
of Auvil et al.y^^ the agreement with the latter authors 
being better. One of the most interesting differences is 
in the pn wave, the real part dn of the phase shift for 
which Roper and Wright find to pass through 90°, 

2.0 + 

E 

^< 
1.0 

IT' 600 MeV 
X'=56 

+1.0 0 
Cos 0 

-1.0 

FIG. 31. The fit of solution 1 to pion-nucleon 
charge-exchange cross sections. 

Cose 

FIG. 32. The fit of solution 1 to pion-nucleon 
charge-exchange cross sections. 

From inspection of the coefficients of the Legendre expansions, 
P. G. Murphy (private communication) suggests that both waves 
are resonant, the dn being very inelastic. Preliminary results of 
the extension of the work of this paper, by the present authors, 
confirm this. 

3* P. Auvil, A. Donnachie, A. T. Lea, and C. A. Lovelace, Phys. 
Letters 12, 76 (1964). 
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Auvil et aL find to touch 90°-100° and we find not to 
exceed 70°. However, if one considers the amplitudes, 
looking at them in the Argand diagram, one sees that 
these three solutions are not very dissimilar.^^ The 
reason is that for rx>500 MeV the absorption parame­
ter rjn is very small and thus small changes in the 
amplitude can lead to large changes in 8n, Additionally 
it is in this region that the pn ampHtude of Auvil et aL 
is least well determined.^ When these authors make a 
fit to their solution using dispersion relations, they find 
that the resulting dn does not now reach 90° and that 
their solution approaches quite closely to the Pn solu­
tions of this paper.̂ ^ 

FIG. 33. Comparison of solution 1 with the Saclay (Ref. 21) 
(solid circles) and Berkeley (Ref. 11) (crosses) 7r~-p total scat­
tering cross sections. 

FIG. 34. The real part of the phase shifts 5 for the 
larger amplitudes of solutions 1. 

300 350 400 450 500 550 600 650 
In MeV 

FIG. 35. The absorption parameters rj of solution 1. 

36 R. H. Dalitz and R. G. Moorhouse, Phys. Letters 14, 159 
(1965). 

*<̂  A. Donnachie, A. T. Lea, and C. Lovelace, Proc. Roy. Soc. 
(London) (to be published). 

FIG. 36. The real part of the phase shifts 5 for the 
larger amplitudes of solution 2. 

It is intended to carry out further investigations in 
the 7rÂ  system with this method of partial wave 
analysis. The possibiHty, however unlikely, of a pn 
resonance (rather than du) at 600 MeV has not been 
fully explored and searches with a more general parame­
terization of the pn inelasticity are probably also 
desirable. 

These and further refinements are probably best 
carried out in conjunction with an extension of the 
energy range up to the "fourth resonance" from 300 to 
1400-MeV pion laboratory energy. Further experi­
mental results of differential cross sections, including 
charge exchange, and polarization are becoming 
available in the range 700-1400 MeV. 
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FIG. 37. The absorption parameters rj of solution 2. 

Re Cqf) 

FIG. 38. The Argand diagram of qf= {l/2i){'ne^'^-l) for the 
^11, pu, and du amphtudes of solution 1. 

- 0 . 5 O -J-o.S 
ReCqf)—* 

FIG. 39. The Argand diagram of qf= {l/2i){'ne^'^—l) for the 
^11, pn, and dn amplitudes of solution 2. 
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APPENDIX A 

We list here references to all data considered for our 
analysis. The type of data given in each reference is 
indicated by the appropriate symbol (defined below) 
and numbers given in brackets give the energy at which 
the observation was made. 

Symbols used. We use the following: 7r+, TT", and w^ 
indicate that the reference gives results of T'^p, Tr~p, 
and charge-exchange differential cross sections; a 
subscript " T " denotes total cross sections, subscript 
'^el" denotes total elastic cross section, and a suffix 
' '/?" denotes polarization measurements of the out­
going nucleon. Thus, 7rr~(310) would indicate that a 
measurement was made at 310 MeV of the total cross 
section for the scattering of negative pions on protons. 

Al. H. L. Anderson, E. Fermi, R. Martin, and D. E. Nagle, 
Phys. Rev. 91, 155 (1953). 7r+ at 78, 110, 135 MeV. 

A2. H. L. Anderson and M. GUcksman, Phys. Rev. 120, 268 
(1955).7r+, TTT+at 165 MeV. 

A3. H. L. Anderson, W. C. Davidson, M. Glicksman, and U. E. 
Kruse, Phys. Rev. 100, 279 (1955). 7r+ and 7rr+ at 189 MeV. 

A4. J. Ashkin, J. P. Blaser, F. Feiner, and M. O. Stern, Phys. 
Rev. 105, 724 (1957). 7r+ and 7rr+ at 220 MeV. 

A5. J. Ashkin, J. P. Blaser, F. Feiner, and M. O. Stern, Phys. 
Rev. 101, 1149 (1956). x+ at 150 and 170 MeV. 

A6. P. Bareyre, C. Bricman, G. Valladas, G. Villet, J. Bizard, 
and J. Sequinot, Phys. Letters 8, 137 (1964). Try- in the 
range 300 to 700 MeV. 

A7. F. Bulos, R. E. Lanou, A. E. Pifer, A. M. Shapiro, M. 
Widgoff, R. Panvini, A. E. Brenner, C. A. Bordner, M. E. 
Law, E. E. Ronat, K. Strauch, J. Szynansky, P. Bastien, 
B. B. Brabson, Y. Eisenberg, B. T. Feld, V. K. Fischer, I. A, 
Pless, L. Rosenson, R. K. Yamamoto, Cz. Calvelli, L. 
Guerririo, Cz. A. Salandin, A. Tomasin, L. Ventura, C. Vico, 
and F. Waldner, Phys. Rev. Letters 13, 558 (1964). TT", 7^^^ 
545, 588, 619, 659, and 755 MeV. 

A8. R. J. Cence (private communication), TT̂ . 
A9. T. J. DevHn, R. W. Kenney, P. G. McManigal, and B. J. 

Moyer, Phys. Rev. 136, B356 (1964); 136, B1187 (1964). 
Trp+, TTp- Sit 523, 572, 689 MeV. 

AlO. L. K. Goodwin, R. W. Kenney, and V. Perez-Mendez, Phys. 
Rev. 122, 655 (1961). x" at 370 and 427 MeV. 

All . J. A. Helland, T. J. Devlin, D. E. Hagge, M. J. Longo, B. J. 
Moyer, and C. D. Wood, Phys. Rev. Letters 10, 27 (1963). 
7r+, 7rr+, TT", 7rr+ at 533, 581, and 698 MeV. 

A12. S. J. Lindenbaum and L. C. L. Yuan, Phys. Rev. 100, 306 
(1955). Trr"̂  at 146, 157, 166, 171, 173, 181, 189, 214, 222, 
262, 263, 298, and 335 MeV. Phys. Rev. I l l , 1380 (1958). 
TTT-^ at 143, 162, 170, 173, 177, 183, 195, and 205 MeV. 

x\13. A. E. Muklin, E. B. Ozerov, and B. M. Pontecorvo, Zh. 
Eksperim. i Teor. Fiz. 31, 371 (1956) [English transL: 
Soviet Phys.—JETP 4, 237 (1957)]. 

A14. A. Muller, E. Pauli, R. Barloutand, J. Meyer, M. Bene-
ventano, G. Gialanella, and L. Paoluzzi, Phys. Letters 10, 
349 (1964). TpO at 600, 650, and 728 MeV. 

A15. P. M. Ogden, University of California Report No. UCRL-
11180 (unpublished), 7r+ at 370, 410, 450, 490, 550, 600, and 
650 MeV. X- at 370, 410, 450, 490, 550, 600, and 650 MeV. 

A16. E. H. Rogers, O. Chamberlain, J. Foote, H. Steiner, C. 
Wiegand, and T. Ypsilantis, Rev. Mod. Phys. 33,356 (1961). 
7r+, 7rp+ at 310 MeV. 

A17. H. R. Rugge and O. T. Vik, Phys. Rev. 129, 2300 (1963). 
X-, TTp- at 310 MeV. 

A18. H. D. Taft, Phys. Rev. 101, 1116 (1956). xr+ at 217 MeV. 
A19. I. M. Vaselevskii and V. V. Vishnyckov, Zh. Eksperim. i 

Teor. Fiz. 38, 1644 (1960) [EngUsh transL: Soviet Phys.— 
JETP 11, 1185 (I960)]. TTp- at 300 MeV. Zh. Eksperim. i 
Teor. Fiz. 38, 441 (1960) [EngUsh transL: Soviet Phys.— 
JETP 11, 323 (I960)], x" at 300 MeV. 

A20. V. G. Zinov and S. M. Korenchenko, Zh. Eksperim. i Teor. 
Fiz. 38, 1099 (1960) [EngUsh transl.: Soviet Phys.—JETP 
11, 794 (I960)]. TT- at 307 and 333 MeV. 
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APPENDIX B 

The following expressions for the real and imaginary parts of the inverse partial-wave scattering amplitude are 
those used in the computer program : 

Re/,±- ' = / dx'^ Z + Z •— , (B2) 
TT Jo {x^—q^){x'^—qi) ir q^+qj »=o ĝ n 

where 
I q{q-qi) iq-qO 1 , ( qiq-q^) , qiq^-qi'y^] , ^ 

I (1 + ?V^2) *( l + 92/£2)] \ (l + g2/C2) (1+?VZ)2)) 

Equation (B2) is a modified form of Eq. (3.2). The second (left-hand-cut) integral of (3.2) is evaluated by 
approximating A/i^"^' by a sum of poles (3.7) and absorbing part of the integral in Xo. In the first (right-hand-cut) 
integral of (3.2) the upper limit of x^ has been replaced by a finite cutoff Q, where Q is larger than any center-of-
mass momentum in the energy range to be analyzed, as explained in Sec. 3. 

Define 
((/2-g,r) /•« xR^ix) 

Ii^{q\qi,Q) = dx^^^ 
T Jo {x^—f){x'^—qi) 

The forms of (B2) (for each partial wave) that were actually used in the computer program are as follows: 

\ dr dx \ dif(,(f—q^^) 
sn. ReJV-'(g) = / o ( g ^ g o ^ 0 - V ( O , g o ^ 0 + X o + — - — ^ + - —-; (B4) 

l ( g 2 - f l + a i ) ( 1 + ai )) ( g 2 + l + a^ 

diq^ d^qKq'-bOiq'-h) 
5„: ReU~^{q)^Io+{q',qo',Q)-W{0,qo',Q)+\o-

l+g2 (q^+\a^\)iq^+\a,\)(q'+\a,\) 

Xi di d2{(f-2MS1) 
Pn • Re/i+- ' (g) = h+ ( g ^ g o ^ 0 + X o + - + - —7+- \ ; 

t ( g 2 + l + ai ) ( g 2 + l + a2 ) 

(B5) 

pzy,pn: 'R^h±-'{q) = h±{q\qo\Q)+\o+-+- ^——+^2(5^-4.23)/(g2+la^j) ; (B6) 
(f ( g ^ + l + l o i l ) 

Pn- Ref,^-^iq) = F{q^)-F{-gJ) ^_ " ; (B7) 

where Xi di{q^—bi) 
F{q) = h_{q\qo\Q)+\o+-+- • . (B8) 

q' (q^+l+\ai\) 

This is a special form which, by means of the pole in Re/~^ ensures that the pn amphtude has a zero at 200 
MeV. 
d and / amplitudes: 

X2 X2 di d2(q'-4.23) 
Refi^~^ = h^iq\q,\Q)+-~+-+- — - + . 

The units in (B4)-(B8) are pion-mass units. When the maximum power of q^ in a numerator is greater than or 
equal to the maximum power in the corresponding denominator, as in (B5), it may appear that we have departed 
from our prescription of poles on the left-hand cut. However, for the energy range 300-700 MeV considered 
q^< 13, so that the situation is in fact that of the quite harmless approximation of putting distant poles at infinity. 

The various quantities, such as Xo, Xr • •, are different in each partial wave. The computer program contains a 
subprogram which expresses the quantities above in terms of the parameters xi, 0̂ 2, • • • which are actually varied 
in the search for a minimum. We now give the actual expressions for these quantities which were used in the search 
leading to solution 1. 

T==f Parameterization, 

J31: a = Q.2S\x,\/{\+\x,\)] 6 = 0; c^2\xs\/{\+\x^\)', 
Xo=-11.36; J i=-9 .04+4^ :14 / (1+I a:i4|); 
a i=0.283; di=-Xi/(\+\xi\)\ a2=20. 
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^33: a = 0 ; 6=0; c=^2{xioy/{l+\xio\'); 
Xo=-1142; Xi = 4.65; J i= 1579 000 
ai=1381; ^2=1.8:^3/(1+1:^31); ^3=20. 

Pn: a=O.S\xn\/{^+\xn\); Z> = 0; c=0; 
Xo=3W(l+l^i5 | ) ; Xi=-26.32; di=-20; 
^1=0.0025; cf2=100V(1+1^2!); a2=20. 

dz^: a=4+3a;i2/(l+la;i2|); 6=0; (;=0; 
X2=-10 000; X3==0; Ji = 700+300^(1+1 ^4!); 
a i=0; (/2==0; a2=20. 

^33: a-=OA\xu\/{l+\xu\)', 6 = 0; c=0; 
X2=~1000; X3=0; 
J i=0 ; a i=0; 4=30000:5/(1+ksl); a2=20. 

fzr: a=6 = c=0; 
X2=0; X3=4098; 
^1=0; a i=0; C/2==400|A;61/(1+1^:61); a2=20. 

/35: a=6==c=0; 
X2=0; X3=-12210; 
J i=0 ; a i=0; d'2=-1500la;7l/(l+|:vH)-

T = | Parameterization. 
sn: a=0.2S\xi^\/{\+\xu\)\ 6=0; ^=0; f/= la:io|/(l+|xio|); 

Xo=5.58; J i=5.63(l+0.8W(1+I^i5l) ; 
J2=4000+8(X)0:vi/(l+lxil); 6i=4.23; 62= 2 . 0 + 0 , 8 ^ ( 1 + k i e l ) ; 
ai=21.0; fl2=41.0. 

pu: a^^Xu\/{\+\xu\)', 6=0; c=0; 
Xo=-21.94+18.0V(l-0+1^6l); Xi=-34.48; 
c?i=0; a i=0; d:2=-30.0+180.0V(l+k6|) ; a2=21.0; 

#11: a=0.30 |a : i i | / ( l+ |^n | ) ; 6=4.0l:ri2|/(l+Ixisl); c^O-
Xo=7.0a;2/(1.0+0:2); Xi=-9.9; 
j ,=:-4 .0+8.0V(l-0+| i^3l) ; 6i=4.23; ai = 20.0; 
^m=1.41. 

du: a=0.25lxi8|/(1.0+l:^i8l); 6 = 0; c^\x2,\/{\+\x2,\)] 
X2=9296.0+929.6W(l-0+^2o); X3=0; 
^, = 0; (̂ 2= 250.0+500.0:^7/(1+1:^7 1); ^2=20.0. 

du: a=0.075+0.075W(1.0+ki3l); 6=0; (;=0; 
X2=403.8+40.38W(l-0+|x2i|); X3=0; 
Ji=50.0+30.0V(l-0+|x4l); a i=0; 
c/2=~18.91-0.445(^i+7.0:x:i7/(1.0+|:^nl); ^2=20.0. 

/17: a = 0 ; 6=0; c= |:r24l/(l+1^^241); 
X3=~ 18830.0+15064.0^(1-0+IX22I); X2=0; 
Ji=1500.0V(l-0+i^9i); ^1=0.0; ^2=0. 

/15: a = 0 ; 6 = 0; c= 1x251/(1+i:^25l); 
X2=0; X3=7324.0+7032.0W(1.0+k23|); 
(/i= 280.0+120.0V(l+1^sl); a i=0; 4 = 0 . 

Also ^ = 7.194; ^=2.878; C=10.791; P=10.791; go=1.0; Q=-^.^, ^i=1.53, ^2=3.09. 
The searches were conducted in x space. We give here the values of x at the minimum corresponding to solution 1 • 

{xuX2,-' ',xn)= (0.0028, -0.5702, -0.8609, -0.3477, -65.99, -2.006, 3.808, 1.273, 
-0.0006, 0.002, 2.181, -2.000, -0.0027,-0.1892, 0.4965). 

(a;i,X2,' • ',X26)^ (-2.9421, -0.1669, 2.7053, 14.343, 2.0110, 0.0094, -5.2662, -101170.0, 0.9705, 0.2981, 
0.3545, 0.1310, 0.3080, 0.2505,10.355, -131490.0,440.0, 0.0003, 0.1682, 0.0913, -1.1633, 

-1.0500,11.7100, 33440.0, 0.0000, 0.0000). 


