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compare this result with the results of the three-body 
Kez decays, ̂ ^ which proceed through the vector inter
action, because of the final-state interaction in Ke^ 
decays. If we assume Eq. (1) to be dominated by the 
axial-vector current, as predicted by most theorists, 
and if there were no final-state interactions, then the 
violation parameter 

X= [A (AS/AQ= - i)2/lA (AS/AQ== +1)] 

24 R. p . Ely, W. M. Powell, H. White, M. Baldo-CeoUn, E. 
Calimani, S. Ciampolillo, 0 . Fabbri, F. Farini, C. Filippi, H. 
Huzita, G. Miari, U. Camerini, W. F. Fry, and S. Natali, Phys. 
Rev. Letters 8, 132 (1962); G. Alexander, S. P. Almeida, and 
F. S. Crawford, Jr., ibid. 9, 69 (1962); B. Aubert, L. Behr, 
J. P. Lowys, P. Mittner, and C. Pascaud, Phys. Letters 10, 
215 (1964); M. Baldo-Ceolin, E. Calimani, S. CiampoUllo, C. 
Filippi, H. Huzita, F. Mattioli, and G. Miari, Proceedings of the 
Sienna International Conference on Elementary Particles (Societa 
Italionadi Fisica, Bologna, Italy, 1963); L. Kirsch, R. J. Piano, 
J. Steinberger, and P. Franzini, Phys. Rev. Letters 13, 35 (1964). 

corresponding to the parameter ao= 0 would be X < 0.25. 
On the other hand, if there is no T=2 final-state 
interaction but the T=Q 5-wave enhancement factor 
were as large as 4, then X<0.5. 
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Tests of spin for an unstable boson which decays into three spinless particles, or into a spin-1 and a spin-0 
particle, or into two spin-§ particles, are presented. The proposed spin tests should be useful for the spin-
parity determination of the new boson resonances. Spin tests linear in the experimental test functions are 
discussed in particular, in view of their general applicability independently of the production kinematics. 
Explicit expressions of the test functions are reported for the lower spin assignments. 

I. INTRODUCTION 

THE recent discoveries of many resonant states 
which decay strongly or electromagnetically into 

baryons and bosons have stimulated the search for 
convenient spin-parity tests, which may allow for a 
determination of the spin and parity of the unstable 
particle, possibly avoiding dynamical hypotheses on 
the mechanisms of production and decay. Particularly 
useful have been the tests based on simultaneous 
analysis of angular and polarization distributions.^ 

In this paper we consider some possible methods for 
determining the spin of an unstable boson. We discuss 
its modes of decay, into three spinless particles, into a 
spin-1 and spin-0 particle, and into two spin-J particles. 
In each case we look for relations among the coefficients 
of the final distributions which do not depend on the 
elements of the density matrix of the decaying boson. 
We obtain a general method for spin determination 

i R . Gatto and H. P. Stapp, Phys. Rev. 121, 1553 (1961); 
N. Byers and S. Fenster, Phys. Rev. Letters 11, 52 (1963); M. 
Ademollo and R. Gatto, Phys. Rev. 133, B531 (1964); N. Byers 
and C. N. Yang, ibid. 135, B796 (1964); S. M. Berman and 
R. J. Oakes, ibid. 135, B1034 (1964). 

which appears to be more powerful than methods based 
on the reconstruction of the density matrix. The rela
tions to be tested are in fact linear in the experimental 
averages and independent of the production process, 
making it possible to average on all the events, inde
pendent of the production kinematics. Such a possi
bility is especially useful when the number of events is 
relatively small. 

In Sec. II we discuss the decay of a boson into three 
spinless particles. The spin tests we derive for this case 
could be of use for the spin-parity assignments to 
recently found three-body resonances such as STT, rjwT, 
KTTT, etc. The final distributions are first expressed in 
terms of a suitable set of parameters which are subject 
to a number of constraints. Symmetry principles or 
possible identity between two of the final particles 
produce further relations. The different spin tests are 
discussed in Sec. 2.3 and are written down explicitly 
for spin one. Their explicit forms for spin two and three 
are reported in Appendix A. In Sec. I l l we discuss the 
mode of decay into a spin-1 and a spin-0 boson in view 
of appHcations to spin-parity tests of the wo) and wp 
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resonances. The spin tests are elaborated in terms of 
directly measurable quantities which must be expressi
ble in terms of geometrical parameters. In Sec. IV a 
very short account of possible tests applicable to decay 
into two fermions is given. 

II. DECAY INTO THREE SPINLESS BOSONS 

1. Angular Distributions 

We consider here the decay of a boson B of spin j into 
three spinless bosons. Our results may be useful for the 
spin assignment to recently discovered boson resonances 
which decay into STT, lyr^r, Kinr, etc. We shall not discuss 
the properties of the Dalitz plots which have been 
widely discussed in the Hterature.^ The spin tests that 
we shall present are based only on the angular-distribu
tion analysis, and are, in a certain sense, complementary 
to the Dalitz-plot method. 

We briefly describe the basic idea of the method. The 
final state depends in general on 2j+l dynamical 
coefficients which depend on the energies of the final 
bosons. When we integrate over the energies, all inter
ference terms appear, giving a total of (2^+1)^ param
eters that we can arrange in a matrix of dimension 
2 y + l . This matrix has the properties of a density 
matrix. The number of independent parameters is 
greatly reduced by the possible symmetries (such as 
parity conservation in the B decay, or symmetry under 
the exchange of two final bosons) and in many cases the 
parameters can be completely determined. 

The final state of the three bosons in the center-of-
mass system can be labeled by the following parameters: 
the direction of the normal n to the decay plane; the 
azimuth (p of one of the final momenta, say pi, around n ; 
and the energies coi and co2 of two final bosons. Another 
equivalent set of parameters is: the unit vector Ui along 
pi, the azimuth ^ of p2 around ui, and the energies oji 
and C02. According to the two choices we shall indicate 
the final-state vector by \n<pwioi2) or by |ui^wia?2). We 
denote by P the complete density matrix of B and by 
M the transition matrix. The final distribution, for the 
first choice of parameters, is 

/(ii^wico2) = {n<fO)iO)2.1MPM^ I n̂ 3Ci;ico2) 

and is normahzed such that 

(2.1) 

/ 
I {n<p(joioo2)d<pdo)idoo2dQa~ 1 j (2.2) 

the corresponding normalization factor being included 
in M. To evaluate the matrix element (2.1), it is con
venient to make a rotation R of the frame of reference 
such that the normal n is directed along the z axis of the 
new frame. If D(R) is the corresponding operator, we 

^ An extensive analysis of the 37r-decay mode can be found in 
the paper by C. Zemach, Phys. Rev. 133, B1208 (1964). Many of 
the results of this paper can be extended to other three-body 
decays. 

have 

I{n(po)io)2) 
= ( n = k <pwio)2\D(R)MPM^D-'{R)\n=^k ^ 1 ^ 2 ) , 

(2.3) 

where k is the unit vector along the polar axis, D(R) 
=Z> (0,̂ ,7?) follows the convention of Edmonds,^ and 
^, rj are the polar coordinates of n in the original frame. 
By using the rotational invariance of M and inserting 
in (2.3) complete sets of angular momentum states 
of B, we obtain 

I(n(po)io)2) = 12 ( n = k (po)io)2\M\jn){jiJL\DPLt-^\jfi'} 
MM' 

X ( i ^ ' IM^ I n = k <po)icx32) 

X{JADPD-'\jl^'), (2.4) 

where we have called 

/^(^coiW2) = ( n = k <̂ wico21MI j / i ) . (2.5) 

By performing a rotation of X around z and using again 
the invariance of M, we easily obtain 

h{(p+\ W1C02) = e'''^f^{(p,o}i(x)2) (2.6) 

and therefore 

/M(<^IC^2) = e*''̂ VM(0coia)2) = e^^*'A(aJiaj2). (2.6') 

Using the properties of the rotation matrices, we have 

=Zi- l)'''-'p.,'SD^/'>aD_^'_,'('' 

= E(-1) '* ' - 'V ' E (JM-I^'\LM') 
vv' LMM' 

X{jv,j-v'\LM)^wM^'^\ (2.7) 

where we have denoted by p the spin-density matrix 
of B, (jfjtJ—fi^lLM^) are the standard Clebsch-
Gordan-Wigner coeflScients and ^M'M^^^ stands for 
^M'M^^KO,^>v)- By virtue of (2.6') and (2.7), the final 
distribution (2.4) can be written as 

/ (n^ia)2) = [(2i+l) / (87r2)] 

X E p(L,M)F*(L,M',c.ic.2)a)M'M(^>(^,?,^), (2.8) 
LMM' 

where 

pmM)= (L/j) E p.Ajy,LM\jp), 
vv' 

[ £ = (2L-M)i/2] (2.9) 

*A. R. Edmonds, Angular Momentum in^Quantum Mechanics 
(Princeton University Press, Princeton, New Jersey, 1957), 
Chap. 4. 
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Xijy^LM^lJfi), (2.10) 

F*{L,M\o}io:2)= ( - l )^ 'F(L, -M' ,a ; ico2) , (2.10') 

Ff,f,' (0^10)2) = / / {0)1(^2) fn' (CO1C02). ( 2 . 1 1 ) 

From the normalization condition (2.2), and since p is 
normalized to unit trace, we obtain 

2 I F^^{coio)2)do)ido)2=l. (2.12) 

From (2.8) we obtain in particular the distribution of 
the normal n by integrating over the other parameters: 

/ (n ) = E a a , M ) F i ^ ( n ) , (2.13) 
LM 

aiL,M) = A(L)piL,M), (2.14) 

A (L) = 1(2j+1)/4^]'/2 Z FUjt^,LOI JM) , (2.15) 

Fnn'= j Ffjifi'{o) 10^2)do)ido)2. (2.16) 

The energy distribution is 

I{cx)iO)2) = Y. F^f,{0)i0)2) . (2.17) 

The calculation of the final distribution /(uii/'ajia;2) can 
be carried out exactly along the same lines. In the 
above equations we must only make the substitutions 

n ( f , ^ ) - ^ U i ( a , / 3 ) ; ^^x^; D{0,^,rj)-^ D(0,a,l3); 

ffi{o)io)2) —> gfi{o)i(j02); F^p —^ G^j,, 

where 
gM(<̂ î 2) = (ui=k,i/' = 0,wico2|M|j». (2.18) 

For example the distribution of Ui will be 

/ (UI) = L K 4 ^ ) F L ^ ( U I ) , (2.19) 

bmM) = B{L)p{L,M), (2.20) 

/2i+1x1/2 
B(L) = ( i:G,,{j,.,LO\jf,). (2.21) 

\ 47r / M 

In the angular distributions (2.13) and (2.19), the 
coefficients a(L,M) and b(L,M) are products of a factor 
p{LjM) depending only on the production process, and 
of a factor depending only on the decay. The matrix 
elements F^^y or equivalently Gftv play the role of decay 
parameters and are unknown, apart from relations 
among them, unless the decay process of B is specified. 

The matrix F is a Hermitian non-negative definite 
matrix and its elements satisfy the conditions 

and the Schwartz inequahties 

I F | 2 < F F (2.22') 

as it follows from (2.11) and (2.16). The same holds 
for G. Furthermore F and G are related by a similarity 
transformation. In fact by comparing (2.5) with <̂  = 0 
and (2.18), we see that the final-state vector of (2.18) 
is obtained from that of (2.5) by a rotation of the 
reference frame oi R^ (7r,7r/2,7r/2). Therefore, 

gM^2) = i: /,'(a>ico2)2D,./^>(i?) 

or 
(2.23) 

0<F,,<1, TTF=1, (2.22) 

G=D-'FD, 

where D stands for ^^^'^(Tr,7r/2,w/2). 

2. Symmetry Properties 

The final angular distributions are thus dependent 
on the matrix elements of F, Taking into account the 
Hermiticity of F and the condition (2.22), the matrix 
elements depend in general on 4:j{j+l) real inde
pendent parameters. However, this number is reduced 
in many cases because of symmetry properties. 

Let us suppose, for instance, that parity is conserved 
in the decay of B. Then from (2.5), caUing e the product 
of the intrinsic parities of the initial and final particles, 
we have 

ff,{(p,0)10)2) = ^fpi{(p+Tr,0)10)2) (2.24) 

and, by virtue of Eq. (2.6), we have the selection rule 

For the matrix elements F^y we thus have 

F^y=0, unless ( - l ) ^ = ( - l ) ' ' = € . (2.25) 

The corresponding property for G is 

G^,= €(-1)^~^G_;..= {-l)^^^G-,-y. (2.26) 

In this case we see that F depends on j(j+2) real 
independent parameters for e=(—1)^' and on f—1 
parameters for €= (— 1)̂ "+̂ . 

Furthermore, in many cases, at least two of the final 
particles are identical or are simply related by charge 
conjugation or isospin rotations. We can then exchange 
the two particles in the amplitudes (2.5). We can see 
this in two examples. The resonance KKw of 1410 MeV^ 
with Q = S=0 is supposed to decay strongly satisfying 
charge independence. In each_ of the two observed 
decay modes, K^K~Tr'^ and K'^K^7r~, the KK system is 
in a pure triplet state of isotopic spin and therefore the 
decay amplitude is even under the exchange of K and 
K. We also remark that since the resonance is neutral, 
the final states of the two decay modes are related by 
charge conjugation in a definite way and therefore, the 

^ R. Armenteros, et aL, Proceedings of the Sienna International 
Conference on Elementary Particles (Societa Italiana di Fisica, 
Bologna, Italy, 1963), Vol. 1, p. 287. 
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amplitudes are equal, apart from the sign. Next, let us 
consider the T'^w~rj resonance of 960 MeV^ called X^. 
Charge conjugation exchanges the two pions and the 
decay amplitude takes a factor of ± 1 under this ex
change depending on the X^ charge-conjugation 
number. 

Now, if the final distribution is symmetrical under 
the exchange of two final particles, say 1 and 2, we 
must have 

2.3. Spin Tests 

There are different ways of using the results of the 
preceding subsections to derive tests for the spin of B. 
Let us consider for example the angular distribution of 
the normal n given by Eq. (2.13). The conditions that p 
and F be non-negative and of unit trace, give some 
limitations on the angular distribution coefficients with 
M = 0 . From (2.14), (2.15), and (2.9) we have explicitly 

(2.27) aiL,M)^Li2L+i)/iwJ'' E F,,{m,LO\m) 

where 6=6(0)10)2) is the angle between the two particles 
and coi,aj2 are their energies. From (2.8), (2.10) we then 
obtain the conditions 

F^^' (wia;2) = ^~*^-^'>^F-;._M' (0^2,0)1). (2.28) 

The same conditions could also have been obtained 
directly from (2.5) and (2.11). However, when Eq. 
(2.28) is integrated over the energies any symmetry 
property of the nondiagonal matrix elements of F 
disappears, and we get only 

which in turn implies A (L) = 0 for odd L in Eq. (2.15), 
as necessary for /(ii) = / (—n) . 

To exhibit simpler symmetries it is convenient to 
consider the distribution of the bisector of the momenta 
of the particles 1 and 2, instead of the two momenta 
separately. Referring to Eq. (2.8) we label the final 
state by the azimuth of the bisector, x=<;^+l^j ^.nd 
we have 

/(nxc.ico2) = [ ( 2 i + l ) / 8 x 2 ] 

X E pmMW(L,M\o)io)2)^M'M^'^Hx.^,v), (2.30) 
LMM' 

where 

HL,M','^io,2) = (Z / i ) E %.' (<«'i"2) (j,x',LM'I iM), (2.31) 

fin' 

%^' (a;ia)2) = ê ^̂ -ẑ '̂ /̂̂ ^̂ .̂ (coicos). (2.32) 

From (2.28) we have for the new matrix $ : 
S r ^ ^ ' — ' M r — f n — f i ' yZdmOOj 

to which we must add the analog of (2.25) when parity 
is conserved. These relations greatly reduce the number 
of decay parameters. The number of real independent 
parameters is now i [ 2 ( y + l ) 2 + ( - 1 ) ? ' - 3 ] for e= ( -1)^ 
and i C 2 / - ( - 1 ) / - 3 ] for e= (- ly+K 

The angular distribution of the bisector is given by 
a formula analogous to (2.19) which is obtained by 
replacing G in Eq. (2.21) with a matrix F given by 

T = D-'^D, (2.34) 

where D is the same as in Eq. (2.23). 

^G. R. Kalbfleisch ei al, Phys. Rev. Letters 12, 527 (1964): 
13, 349 (1964); M. Goldberg et at,, ibid. 12, 546 (1964); 13, 249 
(1964); P. M. Dauber et al, ibid. 13, 449 (1964). 

Xi:p.Ajy',LM\jv), (2.35) 

from which we easily obtain 

1 a{Lfi) I <1{2L+1)/Awji' max, | {jfi,LO\ JUL) | 

Xmax, \{jv,LO\jv)\ (2.35') 

and the stronger limitation 

E | a ( L , M ) [ 2 < [ ( 2 Z + l ) / 4 x ] m a x , | Uf^,LO\jfx)\' 
M 

Xmax, | ( 7 V , Z 0 | » | 2 , (2.35") 

where max,,^ means the maximum value of the argu
ment with respect to the allowed values of /z and v in 
(2.35). For example, if parity is conserved in the B 
decay, n must satisfy (—1)^=€, as we know from 
(2.25). Analogous limitations hold for the coefficients 
b{Lfi) of Eq. (2.19). 

More precise tests can be obtained by determining 
the parameters F,^ as we shall see in a moment. We 
define the test functions 

r ( L , i f , l f O = / d<p sin^dU drj 
Jo Jo Jo 

X/(?,r?,^)3^M'M^^^*(^,?,r?), (2.36) 

where /(S,>7,^) is the distribution (2.8) integrated over 
the energies aji,co2. As is clear from the derivation of 
Eq. (2.8), the angles f, 7/, cp have to be measured as 
follows: ^, Tj are the polar coordinates of the normal to 
the decay plane, 

n = ( p i X p 2 ) / | p i X p 2 | , 

in a ^ rest frame defined from the production reaction^; 
(p is the azimuth of pi measured in the frame obtained 
from the B rest frame by a successive rotation of r? 
around the z axis and of { around the new y axis, in such 
a way as to carry the z axis of the new frame in the 
direction of n. 

® For example, if B is produced in a two-body reaction such as 
ir+N —> N-j-B, one first takes the reaction center-of-mass system 
with the X axis along the incident pion and the z axis normal to 
the production plane; then one goes to the B rest frame by a pure 
time4ike Lorentz transformation. 
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From Eq. (2.8) we obtain 

r(L,ikr,MO=C(2i+i)/(2i:+i)]p(z,M)r(L,ikro. 
(2.37) 

The coefficients T{L,M,M^) determine in particular the 
angular distributions of n and of Ui as given by Eqs. 
(2.13) and (2.19), respectively. In fact, by comparing 
(2.14), (2.15), and (2.37) we have simply 

a(L,ikf) = [(2Z+l)/47rJ/2r(L,M,0). (2.38) 

Also using (2.20), (2.21), and (2.23) we find after some 
manipulations 

h{L,M) = i: r(L,M,M0F;,^'(7r/2,7r), (2.39) 
M' 

where 

Yr{ir/2,Tf) = cos[(/+w)7r/2] 

1 / 2 ; + l \ ' ' ' [ ( /+OT)!(/-OT)!]I /2 
X 1 /2l+\Y I 

a+m)]ea-m)]! (2.40) 

To determine the matrix elements F „̂ one can proceed 
as follows. One first determines the experimental values 
of the ratios 

R{L,M',M'') = T{L,M,M')/TmM,M'') (2.41) 

for all the independent values of L, Af', and M". These 
ratios are independent of the B density matrix and are 
given, from (2.37), by 

R {L,M',M")=F* mM')/F* {L,M"). (2.42) 

By virtue of Eq. (2.10) this is equivalent to a system 
of linear equations in the Fy,v of the kind^ 

L F,.{j^,LM'\jv)=^RmM\Mn 

XZF.'Aj^^LM'^ljy)^ (2.43) 

Let us briefly discuss the utilization of this method 
in the different situations. In the general case of parity 
nonconservation, and provided that p(L,M)7^0 for all 
the values of L, l<L<2j, the independent equations 
are at most 2y(2y+l) (taking into account also the 
complex conjugate of each equation) and they are not 
enough to determine the 4^(^+1) parameters. A total 
of 2j real parameters will remain undetermined and we 
may choose them to be the diagonal elements F^̂ ,. The 
test will then consist in the verification that a solution 
exists such that the conditions (2.22) and (2.22') are 
satisfied and the whole matrix is non-negative definite. 
The situation is quite different for a parity-conserving 
decay. In this case, because of (2.25), we have 

r(L,lf,M0 = O, for odd If' (2.44) 

and the independent complex Eqs. (2.43) are f or, 
equivalently, 2f real equations, which will in general 
be sufficient to determine all the parameters. In some 
cases the number of equations is larger than the number 
of parameters and we have a number of consistency 
relations to be verified. Finally, we consider the case of 
parity-conserving decay with an additional symmetry 
under exchange of two final particles, as discussed in 
subsection 2.2. Here we may refer to the matrix ^ 
instead of F, replacing (p in (2.36) by the azimuth of 
the bisector x- From (2.31) and (2.33) we have now, 
in addition to (2.44) : 

^ ( L , - l f ) = ( - l ) ^ ( Z , i k r ) . (2.45) 

The Eqs. (2.43) are therefore real and their number is 
j{j—l)+l, (i>:l). The parameters %v can in general 
be determined, except for special cases. The matrices F 
and $ constructed by the above method, must be non-
negative and have to satisfy the limitations (2.22) 
and (2.220-

We illustrate the method for the 3-body decay of a 
j=l boson. For positive parity €= + 1 (e.g., co—>37r), 
by virtue of (2.25), the only nonzero matrix element is 
Foo= 1. The angular distributions are completely deter
mined from the density matrix and contain only the 
even-L terms. From (2.14) and (2.15) we get 

ai2,M) = -i3/107ryi'p(2,M), (2.46) 

From (2.26) the diagonal matrix elements of G are 
Gii=G_i_i = J and we obtain, by use of (2.20) and (2.21) 

b (2,M) = J (S/IOTYI^P (2,if). (2.47) 

These results essentially coincide with those found by 
several authors,^ using different techniques, for the 
decay co —> ST. From (2.46) and (2.47) we also obtain 

ai2,M)/b{2,M) = -2 (2.48) 

independent of the production process. 
Let us consider the case € = ~ 1 . F^^ has now four 

nonzero matrix elements, those with p,,v7^0. We have 
only one ratio of the kind (2.41), namely, i?(2,2,0) =a 
and the corresponding Eq. (2.43) gives 

F i - i=a /V6 . (2.49) 

Since (2.22) and (2.22') imply 

\F,A<h. y^^v (2.50) 

we have the condition 

| a | < \ / f . (2.51) 

The coefficients of the angular distribution of the 
normal are given by 

a(l,M)= {y%iryi\Fii-F^i^MUM), (2.52) 

a(2,M) = K3/107r)i/2p(2,ilf). (2.53) 

^ The system of Eqs. (2.43) is actually nonhomogeneous because 
8 G. Feldman, T. Fulton, and K. C. Wali, Nuovo Cimento 24, 

278 (1962); M. Jacob and A. Morel, Phys. Letters 7, 350 (1963); 
see also Ref. 9, Eq. (3) and footnote 13. 
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We can find the limitation: 

E |a(l,lf)|2<(l/167r)(3-2|ai2). (2.530 
M 

We notice that, if there is exchange symmetry, we have, 
by use of (2.29), Fii=F_i_i=J and a(l,if) vanishes. 
The angular distribution of the momentum Ui can be 
expressed in terms of the ratio a. From (2.39), (2.38), 
and (2.40) we obtain 

^(2,ikr) = Ja(2,lf)[(A/6) R e a - 1 ] . (2.54) 

The limitation (2.51) gives 

~2<^(2,M)A(2,M)<1 (2.55) 

and the value of the ratio b/a is the same as for €= + 1 
when Re«=0. 

In Appendix A the discussion is extended to j=2 
and y=3. We conclude this Section by the following 
remarks: 

(1) We have always disregarded the energy de
pendence in the final distribution. However, the same 
analysis can be carried out for each value of the energies 
coi,aj2. Of course Eqs. (2.22) and (2.22') will then be 
replaced by (2.17) and (2.11), respectively. In this case 
all the parameters Fnp{o)i,o)2) are expressible by the 
ffi(03l0}2)' 

(2) Spin tests additional to those considered above 
can be carried out from analysis of the density matrix. 
Once the parameters Fftp have been determined, the 
density matrix itself can be obtained, by use of Eq. 
(2.37), for events having a given production kinematics. 

is the bi angular distribution. Since M is invariant 
imder spatial rotations, its matrix elements have the 
general expression 

(v,HM|iM)=E rK/^,iHiM)Fz-(v), (3.4) 
Im 

where \v}, (—l<v<l), and Ijtj.) denote the spin state 
of bi and of B, respectively, and Ti are the reduced 
matrix elements for B decay. They satisfy 

E \Ti\'=l. (3.40 

From angular-momentum and parity conservation we 
have 

/=y for 6 = ( - l ) s 
l=j±l for € = ( - l ) ' + S (3.5) 

having denoted by c the product of the intrinsic parities 
of B, bo, and ^i. From (3.2) we have, by use of (3.4) 

IV nn' mm' 

X (/'w',1/1 iMOFr(v)F,.-"(v). (3.6) 

It is convenient to introduce the expansion of the 
density matrices p and a in terms of irreducible tensor 
operators, in analogy with (2.9): 

p{M= (f/j) E PMM'OVJ^liM), (3.7) 
nn' 

m. DECAY INTO A SPIN-l AND A 
SPIN-0 BOSON 

We consider the decay process 

B-^bo+bi, (3.1) 

where B is boson of spin j , bo is a spin-0 boson, and bi 
is a spin-1 boson. We also assume that parity is con
served in the decay process (3.1). Our considerations 
apply in particular to the TTOJ resonance and to the irp 
resonances. We have already discussed the decay of 
the B meson in a recent letter^ and we shall mainly 
refer to the results contained there. 

We call p and a the density matrices of B and bi in 
their respective rest systems and we denote by M the 
transition matrix in spin space. We have 

I(y)a=MpM\ (3.2) 

where v is the unit vector along the bi momentum in 
the B rest system and 

/(v) = Tr(iJfilft) (3.3) 

9 M. AdemoUo, R. Gatto, and G. Preparata, Phys. Rev. Letters 
12, 462 (1964). See also S. U. Chung, Phys. Rev. 138, B1541 
(1965). The coefficients 0.3586 in the expression for ^(42,2^) 
in Table II of the first paper should be replaced by 0.4811. We are 
grateful to Dr. Chung for pointing out this error to us. 

In (3.6) we also use the formula 

F,-(v)F,.-'*(v)= (-l)-iny(47r)i/2] 

1 
X Z -TW'^I ^0) {ImJ.'-m' ILM)FL^(V) (3.9) 

LM L 

and we obtain, after summation on the magnetic 
quantum numbers in the standard way, the following 
expression for the polarization distribution of bi: 

/ (v) ( r (M= E a{kK,LM)YL''{y). (3.10) 
LM 

a(kK,LM)=(4^)-^i^H2j+l) 

Xi:pif,<fi)(.kK,LM\f<f>) 
If 

xE (-i)T,rr'2 (̂/o,/'o|z,o)x-
'I j 

V J 

L f 

1̂  

1 

kj 

(3.11) 

where X is the Wigner 9—j coefficient. We notice that 
the angular distribution (3.10) contains only even-L 
terms, due to the presence of the Clebsch-Gordan 
coefficient (10,VO\LO) in (3.11), as it must for a parity-
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conserving two-body decay. For ^ = 0, <T(0,0)= l/vS, 
Eqs. (3.10), (3.11) give the ^i angular distribution. 

The coefficients a{kKjLM) satisfy the relation 

a*(kK,LM)== (-l)'^^a(k-K,L-M). (3.12) 

They can be obtained directly from experiment by the 
following procedure. To each event one associates a B 
rest frame and a bi rest frame. These rest frames have 
to be obtained from the center-of-mass system for the 
reaction in which B is produced, by two successive pure 
time-like Lorentz transformations,^ in order that our 
noncovariant formalism be relativistically correct. In 
the ^1 rest frame one measures the polarization coeffi
cients (r(k,K) from the bi decay. In the B rest frame the 
coefficients a(kK,LM) are obtained as the averages 

a(kK,LM) = {a{k,K)YL''"{y))y (3.13) 

over the bi angular distribution. The coefficients cr(̂ ,fc) 
are also obtained as averages over the angular distribu
tion of the bi decay products. We consider the examples 
of p decay and OJ decay. For p —» 27r we have^° 

cr(2,.) = -(107r/3)i/2{F2**(u))u (3.14) 

where u is the direction of any one of the final pions. 
For the decay oj —> 37r we can apply the equations (2.46) 
and (2.47), respectively, for the distribution of the 
normal and of the momentum. In both cases the 
coefficients vanish for ^ = 1. With the aim of obtaining 
spin tests independent of the density matrix, it is 
convenient to introduce the test functions^^ 

T{LkJcp)= (127r)i/2 X; aikK,LM){kK,LM\f<p), (3.15) 
MK 

the normalization being such that 7(00,00) = 1 . From 
(3.11) we have 

T{LkJ<p) = jB(Lkf)p(f,<p), 

B{Lkf) = ^kj 

X E {-iyTiTi.*lP(lO,lV\LO)X' 

n 
V 

VL 

j 

j 

f 

1] 

1 

kJ 

(3.16) 

, (3.17) 

of j ; (iii) the ratios T(LkJ<p)/T(L'k',fip) are known 
numbers depending on j . If «= (— 1)'+' it is convenient 
to introduce the decay parameters 

a=2Re( r ,_ i ry+ i* ) , 

,s=2im(ry_ir,+o, (3.18) 
7 = | i y _ i | ' — | i i + l | S 

satisfying the condition 

a'+^'+y'=l. (3.19) 

Equation (3.17) takes then the form 

B (Lkf) = aa+m+cy+d (3.20) 

where a, b, c, and d are real geometrical coefficients 
depending on L, ky f, and j . The symmetry properties 
of the X coefficients require that b = 0 for / + ^ = even 
and a=c=d=0 for /-f>^ = odd. The ratios T{LkJif)/ 
T{L'k'Jip) are independent of the production process 
and give a set of linear equations in the decay param
eters, in a way similar to that discussed in the previous 
section. The consistency of the solution, taking also 
into account the condition (3.19), indicates the correct 
value of y, and the decay parameters themselves can 
then be determined. The coefficients B(Lkf) for 
7 = 0, 1, 2 are tabulated in Table I for e= {—ly and 
in Table I I for €=(-1)^+1. 

IV. DECAY INTO TWO FERMIONS 

In this Section we include for completeness a brief 
discussion of the decay of a spin-j boson into two 
spin- | fermions. We write the density matrix of the final 
fermions, in the rest frame of the boson B, in the form 

[the normalization is 5(000)= 1]. The spin and parity 
assignment can be made by verifying the following 
conditions: If e= ( - ly one has l=r=j and [ Tj\'^= 1; 
the B(Lkf) are known numbers depending on the 
assumed spin j . The following conditions must be 
satisfied by the experimental test functions T(Lk,f<p): 
(i) T(Lk,f<p) = 0 for / 4 - ^ = odd, due to the vanishing 
of the X coefficients: (ii) r(22,00) = l/yfl, for any value 

10 M. Peshkin, Phys. Rev. 123, 637 (1961). 
11 The test functions defined in (3.15) are slightly different 

from the analogous test functions 1̂ (L^,/^) defined in Ref. 9. The 
relation among them is 

T{Lk,f,f,) = ( - 1)/+M *(X*,/*,) = ( -1 )*^ {LkJ- <p). 

M): --i:p^^'^^'TuTi.,.*isn\hvuh2) 
X (5M' I i i ' i ' i v / ) (jv I lm,s^^) ijv' I l'm',s^^') 

XFr(v )F^ ' " ' * (v ) | v i^2 ) (^ iVl , (4.1) 

where p^^^ is the boson-density matrix, v is the decay 
direction, and Tu are the reduced decay-matrix 
elements. 

TABLE I. The coefficients B(Lkf) for €= ( - 1 ) ' . 

j ' 

0+ 
1-

2+ 

5 ( 0 0 0 ) = 1 
5 ( 0 0 0 ) = 1 
J5(2 2 0)= 0.7071 
5 ( 2 0 2 ) = 0.3162 
5(0 2 2) = -0.5000 
5(2 2 2) = -2.2136 
5 ( 0 0 0 ) = 1 
5 ( 2 2 0 ) = 0.7071 
5 (2 0 2) = -0.2673 
5 (0 2 2) =-0 .5916 
5 (2 2 2) = -0.5051 
5 (4 2 2) = -0.2711 
5 (4 0 4) = -0.3564 
5 ( 2 2 4 ) = 0.2020 
5 ( 4 2 4 ) = 3.3128 
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TABLE II. The coefficients B{LkJ) for €= (-1)'+^ 

B1615 

i ' 
0-

1+ 

2-

^ ( 0 0 0) = 
^(2 2 0) = -
JB(0 0 0 ) = 
5(2 2 0) = 
5 ( 2 2 1 ) = -
5(2 0 2) = 
5 ( 0 2 2 ) = 
5(2 2 2) = 
5 ( 4 2 2 ) = -
5(0 0 0) = 
5(2 2 0) = 
5(2 2 1) = 
5(2 0 2) = 
5 (0 2 2) = 
5(2 2 2) = 
5(4 2 2) = -
5(2 2 3) = 
5 ( 4 2 3 ) = -
5 ( 4 0 4 ) = -
5 ( 2 2 4 ) = 
5 ( 4 2 4 ) = 
5 (6 2 4) = 

1 
-1.4142 

1 
a+0.35367-0.3536 

-0.8660^^ 
0.4472aH-0.158l7-0.1581 
0.45007+0.5500 
0.5916a-0.059874-0.0598 

-0.48117+0.4811 
1 
1.0392«+0.212l7-0.3536 
0.8744/|8 
0.1309a-0.40097+0.0267 
0.21337+0.3803 
0.5677a+0.161l7+0.0196 

-0.2179a-0.271l7+0.2711 
0.2498 /̂3 

- 0.3938 j ^ 
-0.4364a+0.089l7-0.0891 

0.0495a-0.43777-0.4108 
-0.3245a-0.33337+0.3333 

0.22057-0.2205 

Normalization in the solid angle is expressed by 

i:\Tu\'==\. (4.7) 
u 

An expression for A (L), quite convenient for spin tests, 
is 

A(L)=(LOJO\jO)l\Aon'+\A^o\^2 

+ ao,ii|ii)CMiH^+(-i)^MrM']. (4.8) 
In terms of the three orthogonal unit vectors 

v i = v , v 2 = n X v / | n X v | , v3=ViXv2, 

(where n is the normal of the production plane), we 
obtain 

The polarization of one of the two fermions, say / i , 
is described by the density matrix p^^\ obtained from 
p^^^ by taking the trace with respect to the variables 
of /2. The angular distribution and polarization of / i 
are given by 

/ (v ) = Tr[>(»] , 

7 (v)P=Tr[>">a("] . (4.2) 
One finds 

I(x)=Za(L,M)YL''iy), (4.3) 
LM 

where 

a(L,M) = il/{2j+l)) 

X [(2Z+1)/ (4x)]i/M (L)S{L,M) (4.4) 
and 

5(i:,M) = E p,.^^Kjy,LM\jv) (4.5) 
ppf 

are the coefficients of the multipole expansion of the 
density matrix of B; furthermore, we have put 

/ ( v ) P . v i = X K A M ) F x ^ ^ ( v ) , 
LM 

b(L,M)= ( - l ) t2 , r (2 i+ l ) ] - i /2Z?o(X)5(L ,^ ) , 

/ ( v ) P . V 2 = - ( V \ ^ ) [ E Ci(L,ilf)a)iM<«(«) 
LM 

+c_i (L , l f )©_i^(«(a . ) ] , 

/ (v)P.V3= a m i L Ci(i:,M)ai^(^)(a,) 

(4.9) 

LM 

with 

A(L)=Z{lO,sti\Jt^)AMs''' 

As'=ZiTu(lO,Sfx\jfx). 

An explicit expression of these quantities in terms of 
the matrix elements Tis is 

^o°=r,o(2i+1)1/2; 

^ : i= ( l / v2 ) [ r ^ i , iV i 

^x-'=(i/\^)Cr^,,:Vi 
+ry,i(2i+1)1/2+ry_i, i(y+1)1/2]. (4.6) 

-c_i(£,M)3D_i3f(«(w)3, (4.10) 
where 

Ci,(L,M)={-m^/^) 

Xl(2L+l)/(2j+l)JlW^,(L)S(L,M) 

and SDiiM^̂ K'̂ ) are the well-known elements of the 
rotation matrices, depending on the Euler angles 
u={<p,d,0), [v=(e,^)] . The quantities Z),- appearing 
in Eqs. (4.9) and (4.10) are defined as 

D,(L)=il/^)l(jO,jO\LO)2 Re(^oMi<") 

- ( i l , i - l | £ 0 ) ( M i i | 2 - | ^ r M ^ ) ] , 

D,(L) = D^^{Lr=-(l/^J2)(jO,jl\Ll) 

XC(4o' '+^i°)^r^*+(-l)^(^o«-^i») '^ii] . (4.11) 

When fi is a left-handed neutrino, one has the condition 

E ^ / ( ^ M | § ' ' I , | - | ) = 0 , (4.12) 
« 

and the preceding equations become in this case 

a(L,M) = 2l(2L+ l)/i4^)Ji^SiL,M) 

Xl(LO,jO\jO)\Tjo\' 
+ (L0,i l |yi) | r , , i |2] , (4.13) 

b(L,M) = -2l(2L+l)/(4nr)J'^S(L,M) 

XLiLO,jO\jO)\T,o\' 
- ( i : o , i i | i i ) | r , - i | 2 ] , (4.14) 

c,(L,M) = Z(- l)^'/2T-]L2(2L+l)(2j+l)jn 

X (iO,;l I Li)TnTjo*S(L,M), (4.15) 

c-.,(L,M) = C(- l)^'y2x][2 (2L+1) (2i+ l)Ji^ 

X (iO,il I Ll)Tn*T,,>S{L,M). (4.16) 
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The results agree with those of Durand, Landovitz and 
Leitner.^ When parity is conserved in the decay, we 
distinguish, according to the two values of PB^/IAJ 
between two cases: 

(a) PBPf^f,=={-iy 

The only nonvanishing amplitudes are Tjo and Tji, 
so that we have 

aiL,M) = 1(21+ l)/4nrJ'^liLO,jO | jO) \ Tj, \ ̂  
+ iLO,jl\jl)\Tn\':iS(L,M) 

for even L, 
= 0 for odd Z,; (4.17) 

b(L,MXi2L+l)/4^JHL0,jl\jl) I Tn\'S(L,M) 
for odd L, 

= 0 for even L; (4.18) 

ci(£,M) = C(-l)V4:r] 
X H (2L+1) {2j+ l)]i/2 (jO,jl I LI) 
X LTjoTn*- ( - l)'r,oT,-jS(L,ilf), (4.19) 

c-^{L,M) = l(-l)'/^2 
X CI (2Z+1) (2i+ DJHJOJl I LI) 
X Cr;oT,i- ( - l)^TjoTn'ML,M). (4.20) 

(b) P B P / ^ , = (-1)>*-I 

In this case we have 

a(L,M)=C (2L+ l)/4^]i/^[5 (L,M)/ (2j+1)] 

XC(LO,jO|iO)Mx''|''+2(£0,il|il)Mii|^] 

for even L, 

= 0 for odd L; (4.21) 

6(i,M) = [(2L+l)/4T]i/^C5(Z,ilf)/(2i+l)] 

X2(Z,0,il|yi) for odd Z, 

= 0 for even L. (4.22) 

ci{L,M) = 
(_l)m/2Z+iy/2 

4ir \ 2 i + l 
SiL,M) 

X{jO,jl\Ll) 
2iIva{AMi^*) even L 

[2Re(AMi'*)oddL, 

c.i{L,M) = ( - i)'^'c^(L,M) • (4.23) 

From proper averages on the angular and polarization 
distributions we can derive the various coefficients 

a(L,M), b(L,M), and c±i(i:,M). Putting 

a= (Ao'>+Ai'>)A{-'*, 

|8=(^o»-^i°)MiS 

e=2ReiAo'>Ai<^), 

it is easy to show that in the general case 

aiL,M) (n'-f') 
— ^ - = — - - for odd L, (4.24) 
b{L,M) W+f) 
a{L,M)_iiLO,J0\J0)e+ JLOJl I J^W+n) 
b(L,M)~ aiojo I jO)e+ (iOj-i I ji) (rf-^)) 

for even JL. (4.25) 
From the solution of these equations one can obtain 
the parameters Ĵ , rf, f̂  and 6. Furthermore we have 

Ci(L,M)/a(L,M)= (known number)X (ot+fi) 
for even L, (4.26) 

ci(L,M)/a{L,M)= (known number)X (a—/3) 
for odd L. (4.27) 

From (4.26) and (4.27) we can get a and fi and test the 
consistency of the spin assignment by the relations 

l«p=(r+ )̂f̂  (4.28) 

(4.29) 

^̂ L. Durand, L. F. Landovitz and J. Leitner, Phys. Rev. 112, 
273 (1958). 

These equations provide us with a general test for the 
spin of B, 

Note added in proof. We have received an unpublished 
report by C. Zemach in which a similar analysis is de
veloped. There is a strong correspondence in basic 
formalism between the two approaches. In particular, 
Eq. (2.28) of Zemach's report is essentially the same 
as our Eq. (2.8), with (pku corresponding to our 
F*{LM,0)10)2), with Zemach's Eq. (2.25) corresponding 
to our Eq. (2.10), and so on. Also ddkWM in Eq. (2.29) 
of Zemach's paper is equivalent to our T(LyM,M^) in 
our Eq. (2.36). We thank Charles Zemach for sending 
us this information before its publication. 

APPENDIX A 

Three-Body Decay of a Higher-Spin Boson 

In this Appendix the method is applied to the three-
body decay of a boson of spin j and parity e (e denotes 
the product of initial and final intrinsic parities) and the 
relevant spin tests are derived. The case j=l, for both 
cases of parity, is discussed in the text (Sec. 2.3). The 
discussion is here extended to j=2 and j = 3. 
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The nonzero matrix elements F^, are those with 
/x,i'=±l. There are four independent ratios (2.41), and 
the Eqs. (2.43) give 

i?(2,2,0)=-2.450/^_n, (Al) 

i?(4,2,0)=1.581F_„, (A2) 

-R(3,2,0) = i2(4,4,0) = 0. (A3) 

From (Al), (A2), and (2.50) we have 

i? (2,2,0) = - l.SSi? (4,2,0), (A4) 

1^2(2,2,0) I < 1.22. (A5) 

The coefficients of the distribution of the normal 
[Eq. (2.13)] are 

a(l,M) = C0.915/(4T)i'2](i?ii-F_i_i)p(l,iif), (A6) 

a(2,M) = -[0.600/(4^)i/2]p(2,M), (A7) 

a(3,M)= -[1.197/(4x)i«](/?u-f_i_x)p(3,M), (A8) 

a(4,M)= -[0.800/(47r)i/2]p(4,M), (A9) 

and those of the momentxim distribution [Eq. (2.19)] 
are 

b{2,M) = -ha{2,M) (6 ReF_u+1), (AlO) 

6(4,M) = a(4,ilf)(0.375-1.250 ReF_ii). (All) 

For the '^u \a{L,M)\'^ we can give limitations analo
gous to (2.53') by using 

(2X+1) 
Z Ip(L,M) I=<- max, ] {jy^,U)\ jy) \' (A12) 
M (2 i+l ) 

(Fn-F_i_i)2<l-4 | /? i_i |^ (A13) 

We find 

( M E ia(l,M)|2<0.335(l-4|Fi_i|2), (A14) 
M 

(4x) i : |o(2,lf)|='<0.103, (A15) 

(4x)2: |a(3,M)|»<0.573(l-4|Fi_i|2), (A16) 
M 

(47r)i; |o(4,M)|2<0.329. 
M 

(A17) 

For the ratios b(L,M)/a(L,M) we find the following 
limitations 

-2<5(2,M)/a(2,M)<l , (A18) 

-0.250<6(4,M)/a(4,M)< 1. (A19) 

The nonzero matrix elements F/t, are those with 
H,v = 0,dr2. The Eqs. (2.43) give in this case: 

iFo2+F-2o) = R(2,2,0)(l-2Foo), (A20) 

Fo2-/'-2o=0.4472?(3,2,0)(F22-F_^2), (A21) 

(Fo2+F_2o) = i? (4,2,0) (0.259+ l.289Fo,), (A22) 

F_2.2=i2(4,4,0) (0.120+0.597Foo). (A23) 

These equations together with the relation Foo+Fn 
+F_2_2= 1, are sufficient to determine the matrix F,,, 
completely. The ratios R have to satisfy the limitations 

I i? (4,2,0) I < 3.87, (A24) 

I i? (4,4,0) I < 4.20, (A25) 

Ii;(4,2,0)/i?(2,2,0) I <3.87. (A26) 

The coefficients a{L,M) are 

a{\,M) = l\.m/{4.iryi^-}{Fn-F^^,)pO.,M), (A27) 

a(2,ilf) = [1.195/(4x)i/2](l-2Foo)p(2,ilf), (A28) 

a(3,ilf) = [0.600/(4T)I/2](7?J,-F_2_2)P(3,M) , (A29) 

a(4,M) = [l/(47r)i/2](0.200+7?oo)p(4,il/). (A30) 

The coefficients b{L,M) are given by 

J(2,M) = a(2,M)[-0.500+1.225 Re{J?(2,2,0)}], 
(A31) 

6(4,M) = o(4,M)[0.375-0.791Re{J?(4,2,0)} 
+0.956 Re{i?(4,4,0))]. (A32) 

The a{L,M) are subjected to the limitations 

(4x)E ia(l,M)i^<1.329(l-4|F2-2i0, (A33) 
u 

(4x) E \a{2,M)12<0.408, (A34) 
M 

(47r)E |a(3,ilf)|2<0.144(l-4|F2-2|^), (A35) 
M 

(4x) E I a (4,ilf) I ̂ < 0.741. (A36) 
M 

We have also the limitation 

-6.6<6(4,ilf)/o(4,iif)<7.4. (A37) 

y«=3+ 

There are nine (eight independent) matrix elements 
F^, for M,v=0,±2. The Eqs. (2.43) give expUcitly: 

i?o2+i?-20=0.8942?(2,2,0) {F^^+F-^i-1), (A38) 

F02-i?-20= -i?(3,2,0) (i?22-i?-2-2) , (A39) 

Fo2+i?-2o=i2(4,2,0) 
X[7.486(F22+F-2-2)-3.457], (A40) 

F_22= -i?(4,4,0) 
X[1.555(F22+f-2-2)-0.718], (A41) 
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Fo2-/^-2o=0.755i?(5,2,0)(F22-F-2-2), (A42) 

Fo2+iF-2o= -J?(6,2,0) 
X [0.936 (/?22+/^_2-2)-1.341], (A43) 

f_22=-i?(6,4,0) 

XC0.556(F22+F_2_2)-0.796], (A44) 
and also 

i?(5,4,0) = i?(6,6,0) = 0. (A45) 

Equations (A38)-(A44) are, in general, sufficient to 
determine the matrix elements Fy^y. Furthermore the 
following consistency relations have to be satisfied 
among the experimental ratios: 

i^(5,2,0)/i^(3,2,0)= - 1 . 3 2 4 , (A46) 

i^(4,4,0)/i^ (4,2,0) = - 2.9i?(6,4,0)/i? (6,2,0), (A47) 

0.894i^(2,2,0)-3.457i?(4,2,0) 

0.894i? (2,2,0) - 7.486i^ (4,2,0) 

1.341i^(6,2,0)+3.457i^(4,2,0) 
= . (A48) 

0.936jR(6,2,0)+7.486i?(4,2,0) 

In addition, we have the following limitations: 

I i? (6,4,0) I < 2.12, (A49) 

li?(6,2,0)/i<:(2,2,0)| < 0 . 6 3 , (A50) 

|7?(6,2,0)/i<:(4,2,0)| < 1 0 . (A51) 

We have in this case 15 independent matrix elements 
Ffiv with pi, V odd. The Eqs. (2.43) are 

F_n+0.644(F_3_i+Fi3) 
= i?(2,2,0)[1.632(F33+i^-3-3)-0.611], 

F_3-i-i^i3=i?(3,2,0)[0.707(F33-i^-«) 

+ ( F _ n - F _ i O ] , 
-F_n+1.161(F_3-i+i^i3) 

= i?(4,2,0)C0.316(i?33+F-3-3)+0.159], 

F_3i+i^-i3=i?(4,4,0)C0.308(/<^33+F-3-3)+0.155], 

7^_3-i-Fi3=i?(5,2,0)[0.267(/^33-i^-3-3) 
+ 1 .129(Fn- i^- i - i ) ] , 

F_31-Fl3 = i^(5,4,0)[0.307(F33-/^-3-3) 

+ 1.300(i^n~/^-i-i)], 
F_u+0.259(F_3-i+i^i3) 

= i?(6,2,0)[0.731-0.683(F33+F-3-3)], 

F_3i+/^-i3=i?(6,4,0)[1.034-0.966(F33+F_3-3)], 

F_33 = i^(6,6,0)C0.5-0.460(/^33+/^-33)]. 

The matrix F can be determined, apart from one rela
tion among the diagonal matrix elements. The following 
consistency relations have to be satisfied among the 
coefficients R: 

0.043i?(4,2,0)+0.611i^(2,2,0)+0.929jR(6,2,0) 

1.632i?(2,2,0)-0.066i^(4,2,0)+0.868i^(6,2,0) 

1.034i^ (6,4,0) - 0.155i? (4,4,0) 

0.966i<:(6,4,0)+0.308i^(4,4,0) ' 

0.611i?(2,2,0)+0.586i^(4,2,0)+3.427i^(6,2,0) 

1.632i?(2,2,0)-3.378jR(4,2,0)-1.936jR(6,2,0) 

1.034i? (6,4,0) - 0. ISSJR (4,4,0) 

0.966i^ (6,4,0)+0.308i^ (4,4,0) * 

We add a few remarks for the case of exchange sym
metry, considered in Sec. 2.2. I t is convenient to 
consider the matrix $ instead of F. The matrix elements 
$^„ satisfy the same conditions that Fy,v and, in addition, 
the symmetry condition of Eq. (2.33). The test func
tions T(L,M,M') will satisfy Eq. (2.44) and, in addition, 

r(L,M,0) = 0 for odd L , (A52) 

deriving from (2.37) and (2.45). The ratios R(L,M,M') 
must be real. For the specific cases of j < 3 , the equa
tions for the ^fip can be obtained as particular cases of 
the corresponding equations for the F^^, by taking into 
account the preceding considerations. Some of the 
hmitations on the ratios R are actually stronger. 
Specifically, we have 

for j'= 2+, instead of (A24), we get 

I i^(4,2,0) I < 1.12; (A53) 

for i*=3+, in addition to (A49)-(A51), we have 

I i?(6,2,0) I <0.96; (A54) 

for i*=3~, the limitations are the following— 

|i?(4,4,0) |<1.84, 

I J? (4,2,0) i < 6.3, 

| i?(6,2,0) |<1.43, 

I-R (6,4.0) I < 1.86, 

| i? (6 ,6 ,0) |<15, 

0.15< |i?(6,4,0)/i?(4,4,0) I < 6 . 5 . (ASS) 


