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We consider the long-range forces, i.e., those falhng off as a power of the distance, which may act between 
pairs of particles, one of which is neutral and spinless. It is shown that these forces may easily be calculated 
from the discontinuity function in the momentum transfer of the scattering amplitude for the two particles. 
In particular, we have investigated the two-photon exchange force between two neutral, spinless systems, 
and the three-photon exchange force between a charged and a neutral, spinless system. In the former case, 
we find that the potential behaves as r~^ for large r, in contradiction to the London expression for the 
Van der Waals force, and in agreement with the result of Casimir and Polder. For the latter case, the po­
tential is odd under charge conjugation and hence can convert a K2 meson to a Ki meson. We find again 
that the potential behaves as r""^. It is found that such long-range electromagnetic interactions are presently 
unobservable in particle physics. 

I. INTRODUCTION 

SOME of the forces between elementary particles 
fall off, at large distances, as an inverse power of 

the distance r between the particles, rather than ex­
ponentially. Such forces we call long-range forces. In 
quantum theory, long-range forces may result from 
the exchange of massless quanta between the particles. 
The most familiar example of such a force is the inverse-
square Coulomb interaction between charged particles, 
coming from the exchange of a single photon. 

If one of the particles is neutral, single-photon 
exchange can still give rise to a long-range force, 
provided that the spin of the neutral particle is > | 
and it possess some nonvanishing electromagnetic 
moment. An example is provided by the magnetic force 
between neutron and proton, which goes as 1/r .̂ The 
same is true for the magnetic force between two 
neutrons, so that neither particle need be charged in 
order that a long-range force may arise from one-photon 
exchange. 

If the spin of the neutral particle is zero, then 
although one-photon exchange may still be possible, 
it will not give rise to a long-range force. C ne example 
of this is the interaction of neutral K mesons with 
charged particles. Cne-photon exchange can then occur 
through the charge form factor of the K^ meson, but this 
gives rise only to a contact interaction between the K^ 
meson and the charged particle.^ If the spin of the neutral 
particle is not zero, but all its electromagnetic moments 
vanish anyway, there will still be no long-range force 
from one-photon exchange. An example of this is given 
by the two-component neutrino. 

I t is of interest to ask whether there are other 
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mechanisms through which long-range forces could act 
on neutral spinless particles. 

One long-range force which presumably exists be­
tween all particles is the inverse-square gravitational 
force. However, this is too weak to be of direct interest 
in particle physics, and we do not consider it here. 

We might expect intuitively that the exchange of two 
or more massless quanta rather than a single quantum 
could also give rise to long-range forces. We shall see 
that this is in fact the case. The only particles in nature 
beheved to be massless are photons and neutrinos. 
Forces due to neutrino pair exchange will be considered 
elsewhere. The purpose of this paper is to study the 
forces on neutral spinless particles arising from the 
exchange of two or three photons. 

Neutral spinless particles may be divided into two 
classes. There are those like the TT̂ , which are their own 
antiparticle, and those like the Â '̂, which are distinct 
from their antiparticle. Since the photon is odd under 
charge conjugation, the ir^ cannot emit an odd number 
of photons, real or virtual. There is no such restriction 
fori^o 

mesons. However, the amplitude for the emission 
oj an even number of photons is the same for K^ and 
K^, I t is easy to see that a force which is opposite for 
K^ and K^ will induce transitions between the "true ' ' 
particle states Ki^ and KJ^. Thus a long-range force 
from three-photon exchange is of interest in connection 
with experiments in which transitions from K2^ to Ki^ 
are observed in the presence of matter.^ 

I t should be noted that two-photon exchange forces 
between two neutral particles have been known for 
some time; for the case of neutral molecules they are 
the well-known Van der Waals forces.^ In this context, 
the two-photon exchange has been reconsidered by 

2L. B. Leipuner et al., Phys. Rev. 132, 2285 (1963). F. Eisler 
et al., in Proceedings of the International Conference on Fundamen­
tal Aspects of Weak Interactions, Brookhaven National Laboratory 
Report, 1963, p. 82 (unpubUshed). 

3 F. London, Z. Phys. 63, 245 (1930). 
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Casimir and Polder^ who, using the techniques of field 
theory, found an r~'^ behavior for the potential between 
two neutral atoms, each of angular momentum zero. 
This differed from the result of London, who, using only 
electrostatic effects, obtained a potential behaving as 
r"^. We shall see that the result of Casimir and Polder 
is independent of any atomic model, and in fact holds 
for the force between any two neutral spinless systems 
coming from two-photon exchange. 

We now outline the contents of the following sections. 
In Sec. II we discuss how the long-range force, if any, 
between two particles can be obtained from the proper­
ties of the discontinuity function in a spectral repre­
sentation of the scattering amplitude, considered as a 
function of momentum transfer. In Sec. I l l we consider 
two-photon exchange between a neutral spinless particle 
and a charged particle (e.g., K^ meson and proton) and 
find the long-range part of the force. In doing this, we 
obtain first the two-photon form factor of a neutral 
spinless particle, and use it to derive the above-men­
tioned generalization of the Casimir-Polder result, in a 
rather simple way. Also in this section we describe a 
simpler way to obtain the long-range part of the two-
photon exchange force between a spinless neutral and a 
charged particle. This method is used in Sec. IV to 
obtain the three-photon exchange force between a K^ 
meson and a proton. In Sec. V we consider the possi­
bility of experimental detection of this force. The 
final section, VI, is devoted to a summary of our 
conclusions. 

The Appendix contains a field-theoretic discussion of 
the one- and two-photon vertex function of a neutral 
particle. 

n. PARTICLE FORCES AT LARGE DISTANCES 
AND SPECTRAL FUNCTION: GENERAL 

CONSIDERATIONS 

Consider the elastic scattering of spinless particles 
^T' and ^^2," with masses M\ and i f 2, symbolized by 

l+2->l'+2'. (2.1) 

We denote the four-momenta of the particles by pi 
and pi in the initial and final state, respectively, and 
as usual define invariants 5, % and u by 

^=(^i+jp2)S t={pi-pi)\ u=(pi-p27, 

with 
pl+p2=pl+p2 . 

The metric is chosen so that on the mass shell, pi^ 
= p/'=Mi^ (i=l,2) and 

^H. B. G. Casimir and D. Polder, Phys. Rev. 73, 360 (1948). 
For more recent work, see I. E. Dzyaloshinskii, E. M. Lifshitz, 
and L. P. Pitaevski, Advan. Phys. 10, 165 (1961); B. V. Der-
jaguin, Sci. Am. 203, No. 1,471 (1960). 

In the cm. system of reaction (2.1) we may put 

Pi= (<*>hp), p2= (cu2, — p ) , 

Here 

smce 
w,= (M/+i^)i/2=cu/ 

p'^=p^ 

(2.2) 

on the energy shell. Then 

^=(0)1+0)2)2, /=-2p^(l--cos0) , 

u= (CU1-W2)'—2p (̂l-f COS0), 

where 0 is the scattering angle, and the physical region 
for the process (2.1) is given by 

s>(Mi+M2y, 0>/>-4p '^ (2.3) 
with 

p2= Is- (Mi+M2yj,s- (ikfi~M2)2]/4^. (2.4) 

Note also that in this region 

u< (coi-co2)2= (Mi'~M2'y/s. (2.5) 

Now let F=F{s,t) denote the invariant Fe)niman 
ampHtude for the process (2.1) and let Fd=Fd(s,t) 
denote the contribution to F of some subset "D" of 
the set of all Feynman diagrams for this process. We 
assume that for fixed s, Fd is an analytic function of t 
and admits a spectral representation of the form 

Fd{s,t)=^~ I dt'+- / du'. (2.6) 

Here the first integral corresponds to a branch point 
at /=/o, with a cut extending from h to 00 and the 
second integral to a branch point at t=U^ with 

and a cut extending from 0̂ to — 00. The requirement 
that Fdis^t) have no singularity in the physical region, 
defined by Eq. (2.3) implies that, at least when s 
>(Mi+M2)2, 

/o>0, m>{Mi^-M2^Y/o' 

We have ignored any subtractions which may be 
necessary in Eq. (2.6) for F, If, for example, 

i ^d=Ean / "+0[ l / | / | ] ( | ^ | 0: 

Eq. (2.6) remains valid without changing the definition 
of A or B, provided that the polynomial X) n̂̂ ** is 
added to the right-hand side of this equation. But such 
a term only introduces contact terms (delta functions 
and derivatives of delta functions) into Vd defined 
below, so that they are of no interest for large r. A 
simOar conclusion may be reached even if the dis­
continuity of F across the branch fine starting at to 
(to) does not vanish at/=-|-oo (—00). 
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It is convenient to introduce "potentials" Vd and 
Ud, associated with Fd, in the following way. We note 
that with s, t, and u in the physical region and with 
t'>tQy U'>UQ, we may write, using Eq. (2.2) 

(t ' - " " ' - / 
(47rr)-^e-*^p'-P>''e-^^*'>''Jr 

and, using also Eq. (2.5), 

{u'-u)~'= / (47rr)~î ~*"̂ P'+P>-̂  

X exp {- lu - (Mi'-Mi'Ts-'J^'r} dt, 

where r = | r | may be interpreted as the distance 
between particles 1 and 2. On defining an exchange 
operator, Pex, acting on any function (pit) via 

Pex<^(r)=^(-r), 
we may write 

Fd{s,t) = {T^'\Vd+UdP.Av). (2.7) 

where Vd and Ud are (energy-dependent) '^potentials," 
defined by 

Vd=(4Tr)-'f Ad{s,t)e-'"''dt (2.8) 
J to 

and 

Ud={^7rr)-'[ Bd{s,u) 
<J wo 

Xexp{- [w- {M^-Mffs-'-yh^du, (2.9) 

We shall refer to Yd and IJd as the formal potentials 
(direct and exchange potentials, respectively) as­
sociated with the set D of Feynman diagrams under 
consideration. They have been defined to reproduce 
exactly the amplitude Fd when the matrix element of 
the operator Vd-^^UdP^ji is taken between plane wave 
states, |p) and |p'). 

In the cases of interest in this paper the set D will 
generally contain only irreducible graphs. For such sets, 
the use of Yd in a Bethe-Salpeter equation will approxi­
mately include the contributions to the scattering 
amplitude of diagrams obtainable from those of D by 
iteration. (There is an approximation involved because 
Yd has been defined as the Fourier transform of an 
on-shell quantity whereas the iterations involve off-
shell extensions of the graphs in Z>.) Furthermore, if 
Yd is used to obtain an effective potential to be in­
serted in a Schrodinger equation, suitable for describing 
scattering at low energies, one expects that the asymp­
totic form of any such effective potential will coincide 
with that of Yd- We will therefore be justified in 
referring to the results obtained by analysis of Yd 
= Yd{r\s) as providing ''forces" between the particles, 
which can act repeatedly. We note also that even if Fd, 
or equivalently the absorptive parts Ad and Bd, are 
"known," the analysis of the asymptotic form of Yd 

FIG. 1. Form of Feynman diagrams 
corresponding to the exchange of a pair of 
particles (a,5) between particles 1 and 2. 

and Vd is not without interest, since an understanding 
of the nature of the interaction between pairs of 
particles at large distances, and at not too high energies, 
in terms of potentials has value both from the con­
ceptual point of view and from the point of view of 
computation. 

Although the ''exchange potential" Vd may also 
have a long-range part, for our purpose the quantity 
of primary interest is the "direct potential" F^. For 
the sake of orientation consider a set D of diagrams 
which involve the exchange of a pair of spinless particles, 
"(x" and "̂ >," between " 1 " and "2," as symbolized by 
Fig. 1. In this figure, the symbols G and E^ denote 
functions which, on analytic continuation in the 
variables p\ and pi^ represent contributions to the 
scattering amplitudes for the processes 1+1—>a+6 
and a+Z>—>2-f-2, respectively. The continuation is to 
values such that pi and p2, defined by 

are physical momenta for the antiparticles 1 and 2. 
Corresponding to Fig. 1 there is a contribution to 
F(Sjt) proportional to 

/ 
X {ki?-mi?+ie)~H^kad'h, (2.10) 

where nia and mt denote the masses of a and b and 

On continuation to the physical region of the crossed 
channel 

l + r - ^ 2 ' + 2 , (2.11) 
for which 

is the cm. energy squared, the expression (2.10) 
represents a contribution to the amplitude for process 
(2.11), which will have a singularity at t=to, with 

to= {ma+mb)-, 

in the absence of anomalous thresholds. 
The discontinuity across this singularity is obtained 

from (2.10) by unitarity, or generalized unitarity^ if 
ma+nib<2Mi, i.e., by replacing the propagators in 
(2.10) by delta functions. Thus, on setting 

ka= (Wa,k) , kb= (cOb, —k) , 

with (jja,b= (ma,b^+k^y^^ in the cm. system of reaction 

* R. Cutkosky, J. Math. Phys. 1, 429 (1960). 
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(2.11), we get a contribution proportional to 

I{t) JH'^Gdk 

to the absorptive part of F, for t>to. Here / ( / ) is the 
phase-space integral 

' = / !{()= I dk^(\/t—o)a—CJ0b)/4KJ0aO)h' 

On integration we get, using Eq. (2.4) with s—^f, 

Xlt-(ma-mtyyH-\ (2.12) 
which, for 

fUaT^O, mh9^0, (2.13) 

has a square-root type of branch point at / = /o>0. 
Since the coefficient of / ( / ) will in general be analytic 
at /=/o, we are led to consider, when (2.13) holds, a 
spectral function of the form 

A(s,t)=(i-toyi'(t>(s,t) (2.14) 

with (l>(s,t) analytic in t in the neighborhood of / = /o, say 
for | / - / o | < 2 r . On substitution of (2.14) into Eq. 
(2.8) for V, the integral may be spUt into two parts, 
corresponding to integration over the intervals (fojT) 
and ( r , oo). The second integral will contribute, at 
best, terms which for large r decrease exponentially 
like exp[— (/o+ 2")r], perhaps multiplied by some power 
of r. For the interval (tQ,T) we put 

extracting a possible zero of order A^>0 at i — to. We 
are thus led to consider integrals of the form 

>= [ i t - tQ)me-i'^t)T^l^ 

with m = N+n+\y for the contribution of the term in 
0 proportional to Cn- To obtain the leading term in Im 
in an asymptotic expansion for large r, we may let 
T-—^ X and introduce a new variable y via t= (y+yo)^, 
where 

yo=(/o)^^^ 

Since for large r the major contribution to Im comes from 
/^ /o , or y-^O, we may approximate 

{t-Q^= {y+ly^Yy^^ (2yo)^y"*, 

and similarly, dt^ {ly^dy, so that, on performing the 
now elementary integration on y, we get 

7^,^ (2yoA)'^^+^w!e-^o^ 

I t follows that for large r, the V corresponding to Eq. 

(2.8) for A has the form 

For example, if .̂  = 0 (<^5^0 at threshold to) and 
ma=mh=^ we get 

This is in agreement with the spin-independent part of 
the asymptotic nucleon-nucleon force resulting from 
two pion exchange,® provided that ju is identified with 
the pion mass. 

For the case Wa=W6=0, of interest for this paper, 
the above discussion must be modified not only because 
/o=0, so that there is no exponential, but also because 
in this case 7(0 , the phase-space integral given by 
Eq. (2.12), reduces to a constant. Thus for example, 
with 

71=0 

{do9^Q) (2.15) 

in the interval 0 < ^< T, the relevant integral is 

Jm= I re-^^'^'dt 
Jo 

which for large r behaves as 

I t follows that 
F ' - l / r 2 ^ + ^ (2.16) 

a result which is valid whether or not N is an integer. 
For example, if i \^= | , so that A has a square-root type 
branch point, as in the case considered above, we have 

V^l/r\ 

On the other hand, if iV=0 

a type of force which is known to arise from two-
photon exchange between charged particles.*^ In the 
next section we consider in some detail the nature of 
Ad{Sjt) for diagrams D corresponding to two-photon 
exchange between a pair of particles, at least one of 
which is neutral, and has spin zero. 

III. TWO-PHOTON EXCHANGE FORCES 

In part A of this section we consider the general 
form of the ampHtude for the emission of a pair of 
photons by a spinless, neutral particle, designated as 
B^. For completeness, and as an introduction to the 
two-photon case, we also consider the general form of 
the amplitude for the emission of a single photon by 
B^, In part B, the results of part A are used to show, 

6 See, e.g., M. L6vy, Phys. Rev. 88, 725 (1952). 
7 E. E. Salpeter, Phys. Rev. 84, 328 (1952); T. Fulton and P. 

Martin, ibid. 95, 811 (1954); J. Sucher, ibid. 109, 1010 (1958) 
and Ph.D. thesis, Columbia University, 1957 (unpublished). 
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rather simply, that the long-range potential arising 
from two-photon exchange between any two neutral 
spinless systems behaves Hke r~^ for large r. In part C 
the results of part A are used to show that the two-
photon exchange potential between B^ and a charged 
particle behaves like r~* for large r. This last result is 
rederived in a much simpler fashion in part D by 
consideration of a suitable phenomenological La-
grangian describing the interaction of the B^ field and 
the electromagnetic field. 

A. Amplitudes for One- and Two-Photon Emission 

1. One-Photon Vertex Function F^. 

Let Fju denote the renormalized proper vertex 
function which describes the emission of a virtual 
photon of momentum p—p' as B^ makes a transition 
from a virtual state of momentum ^ to a virtual state 
of momentum p' (see Fig. 2). The most general form 
of the four-vector F^ is a linear combination of the four-
vectors p and ^', or equivalently, of the four-vectors 
q and P defined by 

q==p-p\ P = p+p'-

Thus, we may put 

r,=aq,+ffP,, 

(3.1) 

(3.2) 

where a and /3 are functions of the invariants p^, p'^, and 
p'p\ or equivalently, of the invariants ^ ,̂ P^, and 
q-P. If B^ is on the mass shell, i.e., if 

where m is the B^ mass, then 

q-P=0, P^ = 4:m^-q^ (3.3b) 

and a and j3 become functions of q^ only. 
I t is a consequence of the conservation of the electro­

magnetic current and the assumed neutrality of B^ that 
(see the Appendix) 

q^T,=0, (3.4) 

whether or not B^ is on the mass shell. I t follows from 
Eqs. (3.2) and (3.4) that 

aq''+fiq'P = 0 (3.5) 

for all values of q^, P^, and q-P. If we now assume that 
aiq"^, P^y q-P) does not have a pole at ^̂  = 0, with P^ 
and q-P fixed, as is indicated by perturbation theory, 
we are led to put 

l3 = q^g(q^P\q'P), 

FIG. 2. Symbolic representation of the 
one-photon vertex function F^. 

FIG. 3. Symbolic representation of the 
two-photon vertex function r^„. 

with g nonsingular at ^̂  = 0. Then 

-a = q'Pg, 

and Eq. (3.2) becomes 

r, = g(q',P', q'P)l-q-Pq,+q'P,~]. (3.6) 

which is the general form of F^, consistent with Eq. 
(3.4). From Eq. {?>2) it follows that on the B^ mass 
shell 

T.=g^{q')q'P.. (3.7) 

where go((/̂ ) = g(^^ 4w^—^^^ Q)^ Equation (3.7) may be 
compared with the vertex factor for emission of a 
photon by a spin-zero particle with charge e\ ePy,, to 
lowest order in e. In general, one expects that for g^'^0, 
g^'^e/Mi where M^^ is an inverse mass characteristic 
of the range of the strong interactions of B^, 

We note further that invariance under charge 
conjugation impHes that (see Appendix) 

r.(/,:^)=-r,(-^,-/), (3.8) 

which yields 

g{q\P\q'P)^g{q\P\-q'P). 

[If B^ is identical with its antiparticle, e.g., if ^^=7r°, 
then one also has 

which, when combined with Eq. (3.8), impKes that 

2. Two-Photon Vertex Function T^^y. 

F^v is defined, analogous to F^, as the ^'proper'' or 
'̂  truncated'' amphtude for the emission of two virtual 
photons by B^, as symbolized by Fig. 3. The second-
rank tensor F^„ may be written as a linear combination 
of the metric tensor g^,^ and the 3X3 = 9 independent 
tensors which may be constructed from the three 
Hnearly independent four-vectors available. Since 

p-p' = q+q', 

it is convenient to choose the photon momenta q^ q' 
together with 

P=P+P\ 

as for the one-photon vertex. We may then write 

r^. = F ^ / + F ^ / ' (3.9) 
with 

Vy^J = Ag^,,+BP,,P,+Cq,qJ^-Dq,P^-{-D'qy!P, (3.10a) 
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and 

+Gq,P.+G'q/F,. (3.10b) 

For later convenience we have separated F^^ into two 
parts, r^v' and F ^ / ' in such a way that F ^ / ' is the sum 
of those terms which contain either a factor q^ or a 
factor g/ (or both). Here, /i and v are the indices 
associated with the photons of momentum q and q\ 
respectively. The quantities A, B, C- • •, are Lorentz-
invariant functions of the four-vectors g, q\ and P and 
so depend only on the values of the six scalar products 

q\q'\F',P-q,P-q',q-q'. (3.11) 

I t can be shown that the conservation of the electro­
magnetic current and the neutrahty of B^ imply that 
(see Appendix) 

q>'T^,= 0, (3.12a) 
and 

$ 'T^.=0 (3.12b) 

analogous to Eq. (3.4) for the one-photon vertex F^. 
Furthermore, since the emitted photons are identical 
particles, if we write F^^ in the form 

r^.=T^,(q,q';P), 

rM.(M' ; -P)=r . , ( (? ' ,g ;P) . (3.13) 

I t follows that if Eq. (3.13) is satisfied then Eq. (3.12a) 
implies Eq. (3.12b). If we use the symbol X to denote 
any of the invariants A, B,C, E and write 

X=X(P\q'q\P'q,P'q',q^q'') 

then Eq. (3.13) implies that 

X = X \ q^q'^q'-^q (o.l4a) 

since A,B,C, and E are coefficients of tensors which are 
invariant under the transformation fJL<^v, q<^ q'. On 
the other hand, if F denotes one of the invariants Z), F , 
or G, and Y' the corresponding invariant Z)', F', or G', 
Eq. (3.13) implies that 

we have 

and 

F ' = F l / . 

If B^ is on the mass shell, we have 

P'^^^m"- {q^+lq-q'+f) 

P'q=-P'q^, 

(3.14b) 

so that the number of independent scalar products 
reduces to four. If these are taken to be 

and 

and we define 

9 / 2 / 

t=P'q--P'q', 

the symmetry condition (3.14a) reduces to 

Xoiq', q'\ q'q\ ^) = Xo(^, q'\ q-q', - f ) . (3.15a) 

Similarly, if YQ is defined in terms of F in the same way 
as Xo is defined from X, Eq. (3.14b) reduces to 

Yo' (?^ q'\ q • q', f) = Y,{q^ q'\ ? • ?', - f ) . (3.15b) 

We now consider the impHcations of Eq. (3.12a) for 
the invariants ^ , B, • • -G'. On substitution of Eq. (3.9) 
into Eq. (3.12a) the coefficients of the four-vectors 
g„, qj and Py may be set equal to zero, so that we obtain 

A+q'q'C+q'PD+q^F=0, (3.16a) 

q''E+q'q'F'+q'PG' = 0, (3.16b) 

q-PB+q-q'D'+q^G^O. (3.16c) 

As in the one-photon case, we assume that none of the 
invariants A, B, • • • G' have poles at zero values of the 
independent variables listed in Eq. (3.11). To avoid a 
pole in D' at g-g '=0, we put 

B^bq-q', 

G-gq-q', 

with b and g regular at ^-^' = 0, and solve Eq. (3.16c) 
f o r D ' : 

D'=-q-Pb-q^g. (3.17a) 

Similarly, to avoid a pole in F* at ^-^' = 0, we also set 

E=eq^q', 

a=g'q'q\ 

and solve Eq. (3.16b) for F': 

F'=-q'e-q'Pg\ (3.17b) 

On interchanging q and / in Eqs. (3.17a) and (3.17b) 
and noting that the symmetry conditions imply that 
under the transformation 

we have 
b—^ by e—^ e 

we get 
D^-q'-Pb-q^'g', (3.18a) 

F^-q''e-q''Pg. (3.18b) 

^X{Am^--q^^2q-q'^q'\ q^q\ f, - f , q\ q'^), 

On substitution of Eqs. (3.18a) and (3.18b) into Eq. 
(3.16a) we get, on solving for A, 

A = -q'qV+q'Pq''Pb+qYe+q'q''Pg+q\Pg\ 

From our hypothesis concerning the absence of poles it 
follows in particular that b is regular at q'P=0 or 
g'.p==0, C at g-$ '=0, etc. Thus, on introducing a 
superscript zero to indicate a quantity evaluated on both 
the B^ mass shell and the mass shell of the photons, 
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we may write 

A'>=-q-q'(^-t^bf>, EP=q-q'^, 

Bf>=q-q'bf>, F»=rg«, 

iy>=-D"=^U>, (P=q-q'f, G"=q-q'g" 

(3.19) 

Here, b^, (P, and ^ may be regarded as functions of 
q • g' and f, even under the transformation 

and fj g'^ are related by 

f'°(?-9',f) = g«(9-5',-f). 

Equation (3.19) constitutes the principal result of this 
subsection. 

We note in passing that on the mass shell of all 
particles the variable f is simply related to the invariant 
squared momentum transfers cr, a' defined by 

Thus, with 
t=(q+q7 = 2q-q', 

we have 

so that 
f=(cr-cr0/2, 

and, of course, 

We consider finally the consequence of C invariance 
for r^^. On writing 

T,.= T,,{q,q';F), 

it may be shown that C invariance implies that (see the 
Appendix) 

'^Aq,q';P) = TAq, ?'; ~ P ) . (3.20) 

It follows that 
Z = ± Z | 

with the plus sign holding for 

Z=A,B,C,E, F, or F\ 

and the minus sign for 

Z=D,D',G, 01 G\ 

Hence, on the B^ mass shell 

Mq', q'"; q-q', f) = ±Zo(gS q''; q-q', - f ) . 

Thus, there is no additional condition imposed on 
AQ, BO, CO, or Eo, and, a fortiori, on A^, ^ , C ,̂ or EP, 
On the other hand, we now have also 

Thus, if B^ is on the mass shell, 

r^/ -^ Aog^,+BoP^Pp+Coqyq^+Do{qyFf,-q^'Fp), 

T,/' -> E O M / + ^ O ( M ^ + ( ? M V ) C -̂22) 
+Go{q,P.-q/P,), 

with AQ, BQ, CO, £O, and Fo even functions of f and Z>o, 
Go odd in f. The only new consequence when the 
photons are also on the mass shell is, on inspection of 
Eq. (3.10) and (3.21), that 

f(q'q\-^)=-fiq'q\^), (3.23) 

since we have already concluded, without C invariance, 
that b^, c°, and ̂  are even functions of f. 

B. Two-Photon Exchange Force between Two 
Neutral Spinless Particles 

The results of the preceding subsection may be used 
to compute in a simple manner the asymptotic form of 
the two-photon exchange force between two neutral 
spinless particles or, more generally, "systems" ^i^ and 
Bi^, The general form Eq. (3.10a,b) applies to the 
two-photon vertex functions Fi;,,, and Tip^v of Bi^ and 
B2^ regardless of whether Bi^ or B2^ is an "elementary 
particle" or, say, an atom or a molecule. 

On identif)dng ^i^ and Bz^ with particles " 1 " and 
"2" of Sec. II, we see that there will be a contribution 
to the absorptive part A of the scattering amplitude 
F{Syt), in the "^" channel, proportional to 

L(27) = / m{q')h{q'')b{Q-q-q')d'qd'q\ (3.24) 

arising from two-photon exchange, in the region t^Q, 
Here 

e=r i^^(M'; A)r2, .*(-5, - 5 ' ; A ) 
where 

Fi^pi+pi, F2^p2+p2^ 

The minus signs before q and 5' in r2* correct for the 
fact that r2 and Fi were both defined as amplitudes for 
emission of photons of momentum q and q\ 

It is convenient to consider A (27) first in the physical 
region of the crossed reaction (2.11) and to work in the 
cm. system of this reaction. Then we may put 

Q=(Vi,o) 

3=4(\/0(M), q'=iWt)ih-i), 
with q a unit vector. Equation (3.24) then reduces to 

and 

^(2r) sJ 
a^dq, 

Do'=~Do Co'=-Co, Fo '= -Fo . 
where QP denotes the function Ct when all particles are 

(3.21) on the mass shell. In the crossed channel we may also 
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p^^ I t is now a straightforward task to verify that, near 

Pi-^ ( iv%P) , Vi= -Pi= (Wh - P ) ^=0 
and 

,lue of 
2— (t—±M 2\/A '̂ — (f—AU 2V4. particles are on the mass shell. For example, the contri-

p - ( ^ 4 M i ; / 4 , V -^{t 4iW2;/4. bution to a^ from the first two terms in ri^/,contr^rtpH 

with the first two terms in r2M/* is given by 

Fi= (0,2p), P2= (0,2p'). {Ai%,+Bi'Fi^Pi;)(A2'*g^'+B2'''F2'F2'') 

p2- ( 4 \ / ^ , P O , P 2 - p2- iWh PO , ^^^^^ ^0 denotes the value of a [Eq. (3.26)] when all 
with 

bution to QP from the first two terms in Ti^/, contracted 
We then have with the first two terms in r2M/* is given by 

On defining 

cosd=p-p', cosdi=P'q, cosd2 = P''q 
which is equal to 

we may write, for the various nonvamshmg scalar -]-« oc o*/» . p \2 n 29) 
products which occur in the computation of Ct̂ , - r i 2 K i v - K • ) 

q'q' = t/2, P i 2 = 4 M i 2 - / , P2 '=4M22- / , (3.25a) From Eqs. (3.28a), (3.25a) and (3.25b) we see that 

and . ^ i ' ^ ^ ^ / ^ ^ 
since e o. 

f i ^ ^ - A = - $ ' - P i = - i D a - 4 M x 2 ) l / 2 c o s ^ i , ' * •' bj'=bf(^t,^j) 

^,^q,p,= -q'.p,= -llt(t-mi)y' cos^2, (3.25b) ^pp.^^ches the constant ^/(0,0) as / - > 0 , regardless of 
FvF2-=l{t-^Mx^){t~4.M2^)Ji''cose. the value of cos^; and similarly, C / - > C / ( 0 , 0 ) . Since 

On introducing a colon to indicate a contraction on ^^ ^^^^ ^^^^' as / - ^ 0, 
the indices /x and v, the quantity Q. may be written in Ff-^4:Mf, FvF2--> 4:MiM2 cos^, 

the expression (3.29) has the form, near / = 0, 
the form 

a=r i : iv , 
where it is to be understood that r2 is evaluated at f(P(cosdi, cos^2, cos^), 
— <7,—<7'. We may decompose Ti and r2 into parts r / , , ^ . . , , . . . i r .1 • T , 
T̂  // J -n / T̂  /̂ 4.' 1 U4- • J u 1 ^̂ - where (P is a simple polynomial m each of the indicated 
Ti and r 2 , r2 , respectively, obtained by letting • , , . T ^ ^ r^„ LJ, . 
A,B," •G'->.4y, Bj'. 'G/ ( i - 1 , 2) in Eqs. (3.10a,b) ^^^^^^^^^^ ^ ^ ^ *^^ ^^^^ ^' 
and (3.9). Since s=={pi-p2)\ 

q^^jny^ q Ty^^=0, ( j = 1, 2) , (p still depends on / since cos^ does: 

it follows that c o s 0 = 2 ( M i 2 + M , ^ - 5 - i O / C O - 4 M i ^ ) O - 4 M 2 ^ ) ] " ^ 
11 •L''̂  2 -r-i 2 J = u 

and But this dependence may be neglected near / = 0 , where 

Hence [ r i ' + r 2 ' ' ] : r 2 ' ' * = 0 . ^^^-__^ {M^^+Mi-s)/2M^M2, 

a= Cr/+ri"] :[r2'+r2'']* it follows that 
may also be written as 

a = r / rFa '*- r / ' : r2 ' '*. (3.26) 

On the mass shell of all the particles we may write, as ^—>0, so that the contribution from (3.29) to ^(27) 
using Eqs. (3.10a), (3.10b), and (3.19), is proportional to f. 
F '— A Q„ A.nop p \rOn r, ' The other terms in QP may be handled in an entirely 

, ^ „ / ,, , „ s / , •, s similar manner, so that we conclude that, for fixed s, 

+Df{q,Pi,-q;Pj,) (3.27a) a n d < > 0 

'''''^^^ 0 , , , ~ A^,y,{s,t)^t\ (3.30) 

r y / ' = £ / M / + i ' 7 ( M . + ? / ? / ) On setting iV= 2 in Eq. (2.16) of Sec. I I , it then follows 
'^^^^^''^J'" ff'-^^W' (.^.2/bj immediately that Fz^.'^H'-), the two-photon potential 

^ ' . P_ 1 0* ?,0!-2 DO_ij,o between neutral spinless particles, has the property 

C / = c / , A<'=*Ai, • F2,«'>~1A', (3.31) 
and 

E>.o=, 1̂ .0/ z7.o_ fy.o>-. / ; .o_ i„ 0/ /^ OQKN corresponding to a force which varies as 1/r^ for large f. 
We have thus shown that the result of Casimir and 

where i = l o r 2. Polder^ concerning Van der Waals forces is quite 

(9dq -^ const 
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general, being independent of any detailed dynamical 
models for the individual systems B^ and B^^. 

C. Two-Photon Exchange Force between a Spinless, 
Neutral Particle and a Charged Particle 

Let Vy,v and (^^.p denote the form factors for two-
photon emission by a neutral spinless particle " 1 " 
and a charged spinless particle " 2 , " respectively. I t is 
convenient to change the notation slightly from that 
of the preceding subsection B and to write 

with 

as in part A, and 

with 
R=p2+p2 ' 

FIG. 4. Lowest order Feynman diagrams corresponding to the 
emission of two photons by a charged spinless particle. 

We now note that Â „̂  is a gauge-invariant approxi­
mation to ^f,y, i.e., A;,v® may replace ^^.p in Eq. {3.32). 
Thus, on use of Eqs. (3.9) and (3.10a,b), 

The absorptive part (̂27)* "̂̂ ^ analogous to A(2y) of 
part B, is thus given, in the present approximation, by 

Unlike F ,̂;,, the form factor <̂ ;,̂  satisfies Eqs. (3.12a) 
and (3.12b) only when " 2 " is on the mass shell. Thus, 
we have 

A (27) (+) = 2 / (^^\^\p/^)dq- 2 / r^^g^pdq, (3.36a) 

q^^p=0, $ ' "$ ; , ,=0 , 

where F'^" is given by [see Eqs. (3.10a) and (3.19)] 

(3.32) F'^^= {-it(^-^mg,.+^tb'F,P.+c%q,' 
only when _|_f^^o(^^p^_^^/p^) ^ (3.36b) 

q'R=—q''R, i?2=4if2^- (q+qy. (3.33) I t is easily seen that the integrand of the second term 
»,^, , Tj .̂  J ,, , r r ^ in Eg. (3.36) is ^L for small /, so that the integral is 

Although we could write down the general form of #u^ i . TT i..i. T_ 
• *- 4. '^i, -n r-j 'y^\ j ^ j - ^ - also '^/. However, although 

consistent with Eqs. (3.32), and symmetry conditions, ' ^ 
such as T'f''N^p^t'^(P{cosdi, cos^2, cos^) 

^Uq.q';P)==^^,(q\q; R), (3.34) ^^^ ^^^^^ ^̂  ^.^^ ^ ^ polynomial in each of the indicated 
it is much simpler, and will suffice for our purpose, to variables, and 
approximate $^„ by A^ ,̂ the value of ^f^p as given by 3D^^cos% (3.37) 
second-order perturbation theory. Corresponding to . n . xi. r ^ • ^ i i_ i. ^ . u . .1/9 
T?- Ar \ ru\ A r \ \. -x̂ - £ ^ 0 for small t, the first integral behaves not as t but as t^'^ Figs. 4(a), (b), and (c) we have, omitting a factor e^ 
and other constant factors, 

{p2+p2-q0,i2p2-q'). 

{p2-qy-Mi 

{p2'+p2-qU2p2-q), 

(P2~qy-M2' 
-2g,p. (3.35) 

near ^=0. This is related to the fact that if Eq. (3.37) 
is used for 2) this integral is divergent. Since 

'S}=lt^-\t{t-AM2^) cos2^2, 

we may approximate 33 as 

33 « M2HI {t/AMi)+cos^^s] 

so that the first term in Eq. (3.36a) is proportional to 

We shall only need A ,̂*', the value of A^̂  when all the 
particles are on the mass shell. On use of Eq. (3.33) 
and the relations 

p2={R+q-\-q')/2, p^^{R^q-(i)/2 

we readily obtain, after combining the first two terms 
in Eq. (3.35), 

t.,p'=(2Nj^)-2g,p, 
where 

^^v=\ {qilqv- R,Rv)t-\- {qjR.- qpR,)h 
and 

with 
^^=q.R=-q'.R^ t=2q''q. 

/ . 2T /•! 

/ / dipl 
Jo J -1 

dx (P/[(//4ikf 22)+x2]. (3.38) 

Here we have chosen p as the polar axis for g, and put 
x=^._^'=cos^2. Since 

[ dxla+T^y-^ = a~'i^ tan-i (a-'!^), 

it follows that the expression (3.38) behaves as 
tXt~^^^=t^^^ for small L Hence, we may conclude that 

for / > 0 . 
^(2, )^+>- /^/2 (3.39) 
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From Eq. (2.15), and Eq. (2.16) with i V = | , we then 
obtain for ¥27^'^^ the two-photon exchange potential 
between a neutral and a charged particle, 

F2.^+>-l/r^ (3.40) 
for r—> 00. 

Although we have assumed in the derivation that 
" 2 " has zero spin, it may be assumed that the result 
(3.40) also holds for the spin-independent part of the 
two-photon exchange potential acting between B^ and 
a charged particle of arbitrary spin. For a spin-one-half 
particle " 2 , " this may be verified explicitly be replacing 
A;,„̂  by L„p, defined by 

L^,=uiT)\ 7 -̂i^ 1 

p2—Q'—fn2 

+7.-

We may write 
Pi—Q—nii 

7M k(2). (3.41) 

where î ûv is a tensor function of its arguments, 

^nv= £>nv{p2\T2 ; p2,r2) 

and T2, T2 are the covariant spin four-vectors associated 
with the states u{2^) and u{2), respectively. For the 
case of no-spin flip, T2= T2—T say, we have 

u{p2T)y^u{p2,T)= (2M2/R^)RfMU, 

u {p2,r)iyaixU ip2,T) = — T^UU . 
(3.42) 

On rationalization of the denominators in Eq. (3.41), 
and the use of the Dirac equation, together with Eq. 
(3.42) and the identity 

7X7MT»'= gXM7v+gM»'7x— gXF7M'- €XM»'P7^76 

the spin-independent part £n/-^- of JB^̂ , defined formally 
by 

may be obtained. The result is 

X [ (<? • Rg,,+R,R,+ qjR,- q,R,)/ (R-q-q'-q) 
+ iq'-Rg^,+R^R.+q,R^-q;R,)/ 

(R-q'-q-q')2. (3.43) 
Since 

we need only compute 

= §''£, = 0, 

/ 
r^''£^,^'^dq. 

On combining the two terms in Eq. (3.43) and on using 
the relation (3.36b), we then find, just as in the case of 
spin zero for "2" , that 

near / = 0 , so that again 

FsT^+^'-l/f* (3.44) 
for large r, 

D. Alternative Approach to ^27^+^ 

The result (3.40) for ¥27^'^^ is of course not surprising, 
since it follows from an extremely simple argument 
using only classical electrostatics. Consider the neutral 
particle " 1 " and the particle " 2 , " with charge e at 
relative rest and separated by a distance r, " 2 " creates 
an electric field 

E=er/f2 

at the position of " 1 , " which induces a dipole moment 

d=aoE 

in " 1 , " assumed to have polarizability ao. The potential 
energy of the dipole d in the field E is, however, 

~ d . E = - a o ^ / r 4 

so that the 1/r^ behavior of Eq. (3.40) is confirmed. 
For the purposes of the next section it is useful to 

give still another, more sophisticated, derivation of the 
behavior of ¥27^'^^ for large r. Let <t>{x) denote the 
quantized field associated with the neutral spinless 
particle B^. Consider B^ moving in the presence of an 
external electromagnetic field A^^'^ix). We wish to 
construct a phenomenological interaction Lagrangian 
<£/, which can describe the scattering of B^ in this field. 
£1 must then be bilinear in <t>{x), and gauge-invariant. 
Since B^ has zero charge, a coupling of the form 

j^(x)A,^ix), 

with jf^ix), the current of B^, given by 

1 ^>(^)=—i<i>^x)d^<t>{x)-<i>{x)d^<i>^x):i, 
2iM 

is inadmissible. 
The simplest possibility is to take 

£ / (x) = X(f>^ (x)<l> (x)F^, {x)F^' {x), (3.45) 

where X is a constant and 

FM»'(^) = M . ' ^ ' ' ( ^ ) - M M ^ ( ^ ) 

is the tensor of the external electromagnetic field 
strengths. We can now assume that An^'^ipc) is produced 
by a particle " 2 " of charge e, at rest at the origin of the 
coordinate system. Since 

F ^ ^ ^ ' ' = - E 2 + H 2 , 

where E and H are the electric and magnetic fields, we 
see that the Hamiltonian density 5C/= — £ j reduces to 

'5Zi{x)==\<j>^{x)^{xy/\x\K 

The potential energy Vi of B^ in the field of the " 2 " 
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is thus 
Vi=X^/\x\K 

Since JBj is quadratic in A^^, it is justifiable to interpret 
Eq. (3.45) as corresponding to an interaction by two-
photon exchange, in the limit of a heavy particle "2" 
whose recoil may be neglected. Thus we have once 
again that 

for large r. 
If the spinless particle is described by a real field 

7r(:j::) rather than by a complex field, we simply replace 
£iix) by 

and the result is the same. Thus the two-photon 
exchange force between a charged and neutral particle 
is independent of the identity of particle and 
antiparticle. 

IV. THREE-PHOTON EXCHANGE FORCE 
BETWEEN A NEUTRAL AND A 

CHARGED PARTICLE 

To study the asymptotic form of Fa^^^^ the potential 
between B^ and a charged particle arising from three-
photon exchange, we could in principle proceed in the 
same way as we did in Sec. IIIC for F27 '̂̂ ^ That is, 
we could write down the general form of Vy,yp{q,q\q"; JP), 
the amplitude for emission of three photons by B^, as a 
linear combination of the # = 6 4 tensors of rank three 
which may be constructed from q, q'y g", and P, and the 
12 additional tensors which may be formed with the 
help of gfiv. The restrictions on the coefficients arising 
from the conditions, 

as well as symmetry conditions related to the identity 
of the photons, could then be found. The resulting 
form of Î pp could next be coupled with the charged 
particle three-photon form factor ^p,vp, taken from 
third-order perturbation theory, and the integral 

tives, from Fy,v{x), trilinear in Ay^^ is 

s=F,,,{x)F'i^{x)F/{x), 

I 
X8{Q- q- q'- q")dJ'qd^q'd'q" 

could be studied for />0. 
Since the above straightforward procedure seems, at 

best, impossibly tedious, we consider an alternative 
approach, based on the construction of a phenomeno-
logical Lagrangian. This approach, when applied to 
F27̂ "̂ ^ correctly reproduced the l/r^ behavior obtained 
from an exact quantum-mechanical calculation, so that 
we are justified in using it for F3^^+\ 

We thus look for £/ which are bilinear in 4>{^)i 
gauge-invariant, and now trilinear in An^{x)j in order 
to simulate the effects of three-photon exchange. 
Gauge invariance is assured by using only Fftp(x). The 
only scalar which can be formed, without using deriva-

However, since 

it follows that 
F,,(x)=-F,,(x) 

s=0. 

Hence, it is necessary to use further derivatives, d/dx*", 
in the construction of <£/. If we wish <£j to be invariant 
under charge conjugation, we need only consider inter­
actions with the current j\(x) of B^, Thus, the simplest 
possibility for £/ is a sum of terms in which one of 

j^(x)d,, j,(x)d^ 

is contracted (on the right) with a second rank tensor 
r**' constructed as a trilinear fimction of Ff'^ix). The 
symbol d need act only on one of the factors of r'*'. The 
distinct possibilities for r'**' are^ 

Fa^F«^F'*% Fa^F^^Ffi% 

both of which are antisymmetric under ^<r^v. Since 

d^F^,ccj\-^(x), 

the derivative dp or ^^ acting directly on F'*' wiU give 
rise to a term in £ / proportional to jy^(x), i.e., a 
contact interaction. We thus find three distinct kinds 
of terms which may be of interest: 

£i^'^^j,{x)Fa'idpF-^)Ffi% 

£i^'^^Mx)(dpFa^)F-^Ffi\ 

In the static limit for B^, Jfi(^) = Ljo(x),i(x)2'-^ 
Qo(^),0]. If the source of A^^(x) is again a charge e 
at the origin, producing an electrostatic field E, we have 

so that 
<ei^^>-^io(E.v)(E2), 

£j(2>, £j<3> -> io£:^(E.V)E^=|io(E-V)(E2). 

With E=ef/r^ we thus find 

Hence we conclude that 

F3/+>-lA7 (4.1) 
for large r. 

The asymptotic form of Fŝ "̂̂ ^ thus coincides with 
that of Viy^^'l 

V. APPLICATIONS 
We have remarked in the Introduction that the force 

on a neutral particle coming from exchange of an even 

8 Another possibility, if we allow pseudoscalar interactions, is 

This vanishes for an external electrostatic field and hence is of 
shorter range than the ones we consider. 
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number of photons is the same for particle and anti-
particle, while that coming from exchange of an odd 
number is opposite for particle and antiparticle. As a 
result of this, the exchange of an odd number of photons 
gives a force which can convert a Ki^ into a K2^. 
Furthermore, the K-^-K^^ mass difference is so small, 
and the properties of these mesons are so different, that 
the regeneration of K-^ mesons in a beam of K'^ would 
probably be the most sensitive test of the occurrence 
of such a force. We have seen that the existence of a 
long-range force is equivalent to a certain behavior of 
the scattering amplitude at very small momentum 
transfer. Therefore, it would seem that it would be best 
to look at such regenerations at very small angles in the 
hope of distinguishing the effect of the long-range force 
from that of short-range interactions with the nuclei of 
atoms. 

A number of experiments which examine the re­
generation of KiS from K2S have been carried out. Two 
of the most recent ones are those of Leipuner et al.,^ 
and of Eisler ei al? In these experiments, the regenera­
tion is examined for angles satisfying cos^> 0.999, 
which for mesons of momentum 1 BeV/^; corresponds to 
momentum transfers on the order of 10 MeV/V. 
Clearly, if the effect of multiphoton exchange is to be 
important in these experiments, it is necessary that 
the multiphoton contribution to the scattering ampli­
tude at such small momentum transfers be comparable 
to the contribution of the strong interaction. Therefore, 
we will use as our reference scattering amplitude the 
one obtained by exchanging a p meson between the 
K^ and the proton 

FM) = g,y{q'+ni^) (5.1) 

with gp-^ 1. At zero momentum transfer this gives 

1 1 
7^p(0)~ (Fermi)2. 

m^ 16 
(5.2) 

Let us compare this with the contribution of a 
hypothetical long-range interaction, i.e., a potential 
with F(r) '^r~" for large r. From the considerations of 
Sec. II , we see that corresponding to this potential, 
there is a discontinuity function A{q) which goes as 
g+n-3 ^ 'g want to know what contribution A (q) makes 
to the scattering ampHtude F(q) at small q. I t is easy 
to see that when n>3, the contribution coming from 
the long-range interaction, i.e., the values of A (q) for 
small g, are small compared to the short-range contri­
bution, i.e., the values of A (q) for non-small q. To see 
this, we write F(q) as a sum of terms, one coming from 
small q, say less than qo^ 10 MeV/V, and a remainder 

F(q) 
A(q')q'dq' f^ A(q')q'dq' r^°A{q')q'dq' r 

q'+q' 
(5.3) 

We note that the second term will in general behave 
like a constant, independent of go for small q. On the 
other hand, in the first term, we substitute the small-g 
approximation to A(q), i.e., A{q)^q''~^. Then we get 
for Fi as g —̂  0 

/^i-go"-^ 

Clearly, when n>3, the small-momentum-transfer 
region makes a contribution negligible compared to the 
high-momentum-transfer region. 

Since the three-photon exchange potential between 
a K^ and a proton goes as r~ ,̂ we see that its long-range 
part actually gives a contribution small compared to 
its short-range part. However, the latter is obviously 
much smaller than the nuclear-scattering amplitude 
(5.1), as it contains three powers of the fine-structure 
constant. We conclude that the three-photon exchange 
cannot possibly account for the results of the experi­
ment of Leipuner et al., or of the experiment of Christian-
son et at. 

Let us ask what type of long-range, odd-C interaction 
could be observable in regeneration experiments. If 
we substitute A{q')^{q'Y~^ into Fi, and ask for the 
leading term in powers of g, for g<Kgo, then we see that 
this term behaves as g"~̂  Ing for ^-odd, or as g"~̂  for 
n even. The total scattering amplitude will then 
behave as 

F-C+Xg"-3[lng], (5.4) 

where the bracket indicates the presence or absence 
of a Ing depending on whether n is odd or even. The 
effect of short-range interactions is represented by the 
constant C, and X is another constant. Clearly, if w>3, 
the long-range interaction is dominated by the short-
range interactions, even when g —> 0. Such interactions 
only show up in the discontinuities of the derivatives 
of F with respect to ĝ . It appears hopeless to obtain 
such a detailed measurement of the scattering ampli­
tude by any techniques known to us. If, however, w=3, 
then 

F - C + X Ing (5.5) 

and there is a small region about g=0 where the long-
range interaction actually dominates. 

The most likely effect of the long-range interaction 
to be observed is on the forward-scattering amplitude 
or on the index of refraction. We see from (5.5) that if 
the ampHtude is taken Hterally at g=0, then the 
forward-scattering amplitude is infinite. There are at 
least two mechanisms by which the amplitude could 
be modified. The first of these is screening, familiar 
from the Coulomb interaction. In order for this to 
occur, the long-range interaction would have to act 
between K mesons and electrons as well as between K 
mesons and protons. In this case, the contribution of 
the long-range interaction is modified at distances 
beyond the Bohr radius, and (5.5) is modified by 

^-F,+F2 F-6-+Xln(g^-fao-2), (5.6) 
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corresponding to a potential, 

V(r) = , {r>l/m,). (5.7) 

With X-^IO"-, this would give a 10% change in the 
forward-scattering amplitude from that computed in 
(5.2). Such an interaction, which is much larger and 
of longer range than any we can anticipate for neutral 
K mesons, would probably be detectable in the current 
type of experiments. Smaller interactions, such as we 
have considered, are very unlikely to be detected. 

If there is no screening, as would be the case if the 
long-range interaction does not occur with electrons, 
then the approximation of treating this interaction in 
Born approximation is not sufficient. I t would then be 
necessary to solve the Schrodinger equation for the 
interaction of two particles, with this potential. This 
problem, while interesting, is beyond the scope of the 
present paper. 

VI. CONCLUSIONS 

We have discovered some general features of the 
long-range electromagnetic forces which are expected 
to act on neutral particles. We have shown that the 
long-range potential can be extracted directly from 
the knowledge of the discontinuity function in the 
momentum transfer of the scattering amplitude. This 
is done by use of Eq. (2.8). In particular, we find that if 
the discontinuity function A(t), coming from a set of 
graphs, behaves as g"(/''̂ ^) for small q, then the corre­
sponding long-range potential will go as r~"~^ 

The most interesting case this may be applied to is 
the two-photon exchange potential for two neutral 
spinless systems. For this case, an analysis of the two-
photon vertex of a neutral particle is required. This was 
done, through the use of Ward's identity, in Sec. I I I . 
We find that this vertex is characterized by seven 
form factors which depend on four invariant scalar 
quantities. On the photon mass shell, which is relevant 
to the calculation of the discontinuity functions, there 
are, of course, only two invariants, which are s and t, 
The requirement that none of the form factors have 
singularities as functions of the invariants then deter­
mines the behavior of the form factors for small values 
of the momentum transfer variables. This behavior is 
given in Eq. (3.19). 

We then calculate the two-photon exchange graphs 
for two such neutral systems and find that the leading 
term in an expansion of A {(f) in powers of q^ for small 
(f behaves as q^. The rule (2.8) then implies that the 
longest range potential goes as r~~̂ . This result is in 
agreement with that discovered by Casimir and Polder 
in 1949. We believe that our demonstration is somewhat 
more transparent because the potential comes directly 
from a single covariant expression for the scattering 
amplitude rather than as a cancellation between 

distinct noncovariant terms, as in the calculation of 
Casimir and Polder. Also, our formula is valid for any 
two neutral spinless particles.^ 

One difference between the case of two atoms and the 
case of two neutral elementary particles is that the 
atoms are bound by electromagnetic interactions, while 
the particles are not. Hence, the atoms have excited 
states separated by energies of order a^nie from the 
ground state, whereas the excited states of the particles, 
if any, are separated by energies of the order of the 
pion mass. As a consequence of this, the potential in 
the atomic case contains terms with decreasing ex­
ponentials of the form exp(—ar/ao), where a^ is of the 
order of the Bohr radius, while in the particle case the 
corresponding terms are exp(—r/Xx), where X^ is the 
pion Compton wavelength. For the atom, the ex­
ponential terms may dominate the true long-range 
force for many atomic radii. I t appears that this is the 
origin of the fact that in the work of Casimir and 
Polder, the r~^ potential is not dominant until r^ (ao/a). 

Finally, we have computed the three-photon exchange 
potential between a K^ meson and a proton. This 
potential is odd under charge conjugation and hence 
can regenerate Ki mesons in a beam of K2 mesons. We 
find that the potential falls off as r~^ here also, and is 
much too small to explain the anomalous regeneration 
reported by Leipuner et al. 
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APPENDIX 

A discussion of the vertex functions for photon 
emission by a neutral spinless particle B does not seem 
to be available in the literature. We therefore give a 
brief treatment of this topic here, from the point of view 
of field theory. ̂ 0 

Let (f>{x) and Ay,{y) denote the (unrenormalized) 
Heisenberg fields associated with B and the photon, 
respectively. The electromagnetic current j^,{y) is 
defined by 

UyA,{y)==j,{y) (Al) 

and assumed to be conserved: 

(A2) 

^ The sign of the potential is easily obtained in the simple case 
when only the form factors A^ C oi Eq. (3.10a) are present. In 
this case, essentially that treated in Ref. 4, there is an attractive 
force between identical spinless particles. For the general case, we 
have no rigorous argument about the sign of the potential, 
although arguments can be given which suggest that the two-
photon exchange potential between similar particles is always 
attractive. 

10 Our treatment parallels that of K. Nishijima, Phys. Rev. 119, 
485 (1960), for charged particles. 
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We shall also need the equal-time commutation Here, AF' and DpJ are the (unrenormalized) propa-
relations gators defined by 

lA,{y),A,{y)'}y^y,,=^ig,My-y). (A3) Lp'{x'-x) = {T[<t>^{x')4>{x)']) (AlOa) 

As a field-theoretic definition of the neutrality of B and 
we take the relation DFj{y-y) = {TlA^{y)A,{y)']). (AlOb) 

[ioO^),<^W]i,o-*o=0- (A4) A special case of Eq. (A6) is therefore 

This is motivated by the fact that if a Schrodinger ^^ 
picture is introduced at, say, /=0, the expression for dy^nyDFy,v'{y—y)=—^{y^y')- (All) 
j/(y)==jt*(yfi) will depend explicitly only on the 5 / 
Schrodinger fields associated with charged particles and 
so will commute with«*(x) = (^(x,0)." In particular (A4) Using Eqs. (A7)-(A11) we see that 
holds for A^ itself, i.e., d/n,TF^(^',x; y) = 0 (A12a) 

Uo(y),A.(yn^yo'-^0. (AS) and , ^ ,,, , , „ ^ r^.ou^ 
dy^nyW^,{x',x;yy) = 0. (A12b) 

From (A3) it follows readily that 
, ^ . .V On transformation to momentum space, via 

nyTlA,(y)A,(y)2= TU,(y)A,(y01+ig^(y-y) 
and from (AS) it follows that Wf,(x\x; y)= / e'^p''''-P'^^'vW^ip',p] q)d^p'd^pd^q, 

d.''TU.(y)A.(y)> Tldy-j.(y)A.(y^n • 

Because of (A2), we then have j ^ U' xy y')= I e*^ '̂-*'-

^^ Eqs. (A12a) and (A12b) reduce to 

We now define q''fW^(p',P; ?) = 0, (A13a) 

and q''9'W^(P,P;q,q)=o. (Ai3b) 
V^,{x',x;y,y')=Tl<l,'*(x')<l)ix)A^(y)A,(y')2. On writing 

Using the fact that 4>ix) and A^(y) are kinematically _ ,, \__~~^ / ^ ,f]«\ nc ^M, 
independent fields so that ^"'^ ^>~"^ j^F,.{li)e • dk 

"^^^^^ k''kWpJik')^h. (A14) 
n,V,(x',x;y) = T\:<t>Hx')<t>(x}j,(y):\, (A7a) ™ , , ,. ^ , ^ ^ . A . 

The vertex functions V^ and F^, are now defined, up to a 
DyV^y(x',x; y,y') = T[_4,f{x')4,{x)j^{y)Ay{y')'] factor, by 

+^? .^ (^ -y ) W ( . ' ) * W ] . (A7b) ^^(^,^^. ^)= (const)A/(nA.'OTr'"Z).,;(g^) 
Furthermore, from (A4) and (A2) we find y^^(^f^q^p^ (AlSa) 

^/rC<^^(^0«(^)j;(}')]=0 (A8a) and 

and from (AS), (A4), and (A2), that W^,{p',p\ q,q')= (cons,t)A/(p'')A/(f)Vf'''''DpJ(q^) 
dy'Tl<j>HxO<l>(x)j,(y)A.{y)2=0, (A8b) XD^Jiq^'Mp'+q'+q-p). (AlSb) 

We now define three-point and four-point functions From Eqs. (A13a), (A14), and (AlSa) one infers that^^ 
associated with emission of one or two photons by 

g^T^'=0. (A16) 
W,(x\x;y)=^{V,(x\x',y)} (A9a) 

and From Eqs. (A13b), (A14), and (AlSb) we get 
W,.(x\x; yy) = {VU^\x;y,y)) H^'DFj(q'')=^0, (A17) 

-A/(x'-x)DFj(y-y,y). (A9b) where 
H''=q^^T''''\ 

1̂  For this it is sufficient to assume minimal electromagnetic 
coupling. ^ We assume that V^ and r*" are free of 5-function singularities. 
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If we write Dp^./iq^^) in the form and 
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DF',,J==D^,',-D2qyqv , 
uM^)Uc-'=<i>Hx). 

It foUows that 
where Di and D2 are functions of q'^ only, then Eq. (Al 7) JY^ (X\X ;y)==—W^ (x,x'; y), 
implies but 

DiH,-D,(H'qOq/=0. (A18) W,,{x',x;yy) = W,.(xy ;y,y), 

On multiplying Eq. (A17) by (q^q'' and using Eq. (A14) We then have 
we see that £^-^'=0, so that Eq. (A18) implies 

q^Tf'''=0 

and 
W,{p',P;q)=-W,i-p,-p';q), 

Thus, we have 

and by symmetry, 
g/r'*''=0. 

Equations (A16) and (A19) constitute the analogs for a 

W,Ap',P;q,q') = W,.(-p, p';q, q'), 
(A19a) sQ ̂ Y^^^^ ^sjng £qs, (A15a) and (A15b), and recalling 

thatP=^+/>' , 
(A19b) r , (^ ; P)= - r , ( ^ ; - P ) , (A20a) 

V,.{q,q'; P) = r,.(^, ^'; - P ) . (A20b) 
neutral field of the generalized Ward identities for 
charged fields. 

Invariance imder particle-antiparticle conjugation is 
equivalent to the existence of a unitary operator Uc r^„(^,^';P) = r„^(^',g;P). (A20c) 
which leaves the vacuimi invariant and is such that _ . , * ^^ N / * ^^ x 

Equations (A20a)-(A20c) are the symmetry properties 
UcAf,{y)Ur^=' —A^(y), of T^ and T ,̂ used in Sec. I l l of this paper. 

Finally, since Wj,v{x',x\y,y) = W^^{x\x]y\y) so that 
W^v{p',p] q,q') = W,^(p\P; q',q), we have also 
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Lie Groups, Lie Algebras, and the Troubles of Relativistic 5(7(6) 

HARRY J. LIPKIN 

The Weizmann Instittde of Science^ Rekovoth, Israel 
(Received 5 May 1965) 

Some of the difficulties of relativistic SU{6) are examined. Those arising from the use of continuous 
groups can be avoided by the use of algebras of finite sets of operators which are sufficient to give the desired 
properties of elementary particles. The nonconservation of probability associated with the relativistic 
separation of space and spin is pointed out. Quantum electrodynamics applied to atomic structure is shown 
to exhibit the type of peculiar symmetry which leaves the interaction invariant but is broken by free Dirac 
propagators. The implications of this analogy for SU(6) are discussed. The mixing of physical and non-
physical states (positive- and negative-energy quark states) leads to noninvariance of the vacuum under 
the symmetry group, and to a degenerate vacuum in the exact symmetry limit. The existence of open in­
elastic channels for low-mass boson production is relevant to unitarity calculations and is implied in all 
energy regions where the symmetry is not badly broken. 

INTRODUCTION 

THE successes of the 5Z7(6)-symmetry scheme for 
elementary particles^ and its relativistic generali-

zations^ have been accompanied by an assortment of 

1 F. Giirsey and L. A. Radicati, Phys. Rev. Letters 13, 173 
(1964); A. Pais, Phys. Rev. Letters 13, 175 (1964); B. Sakita, 
Phys. Rev. 136, B1756 (1964). 

2 A. Salam, R. Delbourgo, and J. Strathdee, Proc. Roy. Soc. 
(London) 284, 146 (1965); M. A. B. B^g and A. Pais, Phys. Rev. 
138, B692 (1965); B. Sakita and K. C. Wali, ibid. 139, B1355 
(1965). A detailed list of references to earlier works on SU{6) 
and its relativistic modifications is given bv Sakita and Wali. 

difficulties in principle and also by some predictions in 
disagreement with experiment.^ A better picture of the 
relation between the successes and the difficulties can 
be obtained by examining the general assumptions 
underlying the proposed theories to determine which 
are really necessary to obtain the desired results. 
Analysis of the sources of some of the troubles may 
help in finding ways to get around them. 

3 S. Coleman, Phys. Rev. 138, B1262 (1965); M. A. B. B6g and 
A. Pais, Phys. Rev. Letters 14, 509 (1965); R. Blankenbecler, 
M. L. Goldberger, K. Johnson, and S. B. Treiman, ibid, 14, 518 
(1965). 


