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Consistency Conditions on the Strong Interactions Implied by a 
Partially Conserved Axial-Vector Current. II 
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Consequences of the partially conserved axial-vector current (PCAC) hypothesis are explored. A set of 
simple rules is derived which relate the matrix element for any strong interaction process with the matrix 
element for the corresponding process in which an additional zero-mass, zero-energy pion is emitted or 
absorbed, A generalization to include lowest order electromagnetic processes is given. A theorem is stated 
and proved which shows how divergence equations of the form d\J\ — D are modified when a minimal 
electromagnetic interaction is switched on. 

INTRODUCTION 

IN an earlier paper^ it was shown that the hypothesis 
of partially conserved A 5 = 0 axial-vector current 

(PCAC) leads to consistency conditions involving 
solely the strong interactions. One of these conditions, 
relating the pion-nucleon scattering amplitude yl^^(+^ 
and the pion-nucleon coupling constant gr, was shown 
to agree with experiment to within 10%. In this note 
we give a simplified and generalized derivation of the 
consistency conditions implied by PCAC. We will 
derive a set of simple rules which relate the matrix 
element for any strong interaction or first-order electro
magnetic process with the matrix element for the 
corresponding process in which an additional zero-mass, 
zero-energy pion is emitted or absorbed. The rules are 
closely connected with the "chirality conservation" 
formulas of Nambu, Lurie, and Shrauner. 

Let us begin by recalling certain definitions from (I). 
We denote by A ^ the strangeness-conserving weak 
axial current. By partially conserved axial-vector 
current we mean the hypothesis that 

then 

(1) 

Here MN is the nucleon mass, M^r is the pion mass, 
gA^(0) is the iS-decay axial-vector coupling constant 
ZgA^(0)-1.2X10-^/MN^2> gr is the rationalized, re-
normalized pion-nucleon coupling constant (gr^/^ir 
«14.6), and 0^ is the renormahzed field operator which 
creates the 7r+. The quantity X^^' '(0) is the pionic form 
factor of the nucleon evaluated at zero virtual pion 
mass; K^^"" is normalized so that K^^''(—Mw^) = l. 
In order to give content to the definition, we must 
specify properties of the residual operator R. We 
suppose that for states {0(PF)\ and \a(pi)) for which 
{0\(j)^\a)7^O, and for momentum transfer near the one 
pion pole at —M/ [say, for —Mw^K (pF—piy<M/'], 
the matrix element of R is much smaller than the matrix 
element of the pion operator term. In other words, we 
postulate that if </3i</)^|a)?^0 and if | (pF-piTl <M^'^, 

* Junior Fellow, Society of Fellows. 
1 Stephen L. Adler, Phys. Rev. 137, B1022 (1965). We will 

refer to this paper as (I). 

B 
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In what follows we derive equalities which hold 
rigorously if the residual operator R is zero. If R is not 
zero, but satisfies the inequahty of Eq. (2), the "equals'' 
signs should be replaced by "approximately equals'' 
signs. 

I t will be helpful to introduce a number of abbrevia
tions and definitions. We denote by k the momentum 
transfer pp—pi- Let us introduce the isotopic vector 
quantities /x^% 4>-K°' (^= 1, 2, 3), in terms of which 

/ x^=KA^^+^ 'A^^ ) , <^.= (l/V2)(<^J+i<^.2). (3) 

We denote the product gr i^^^^(O) by ^r^^(O). Then 
the generalization of Eq. (1) to all three isospin compo
nents /x^** is (neglecting R) 

dxJx^^=-i{2MNMJ^gA'^\Qi)/gr^^{Q))<t>. (4) 

I t will be convenient to introduce an isospin notation 
for the S and for the E analogous to that for the nucleon 
N, We introduce isospinors and isospin column vectors 
as follows: 
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By 2/2 or ^2 we will mean the ordinary Dirac spinor for 
the h>^eron, multiplied by the appropriate isospinor 
or isospin column vector. Let r" denote the usual Pauli 
matrices, and let /̂ ^", Ẑ '*, and /^" be the matrices 
defined by 

lNa=,i'Ea=,^a^ (6) 

\j^''~]hc=i^hca- (7) 

Then we may write the baryon matrix elements of /x^** 
and of / ^ « = ( - -n+M^^)0^« as follows. (We omit the 
induced pseudoscalar terms in /x"***, since these are 
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treated separately in the derivation below. See Refs. 
4 and 6.) 

/MB MB\"" 
( ] UB (pF)gA^y\ybt^''UB ipl) : 

(8) 

(MB MBV'-

' pFO plO 

{B(pF)\J.^\Bipr)) 

(MB MB\^^' 
= [ ) UB {pF)igr''^y4^''UB {pi). 

N pFQ pIO I 

Here B denotes Â , 2, or S. 
Using these definitions of the coupHng constants, and 

Eq. (4), it is an easy matter to see that 

M^g^^XO) Msg^-(O) Msg^2(o) 

^0) g,-^(0) g/2(0) 
(9) 

Equation (9) will permit us to ehminate the axial-
vector coupling constants g^^, g^ ,̂ and gj^ from the 
consistency conditions obtained in the next section. 

I. DERIVATION OF CONSISTENCY 
CONDITIONS 

We take the matrix element of both sides of Eq. (4) 
between states {^{PFY^^\ and \a{pi)^^)^ where ^ and 
a are any systems of strongly interacting particles. 
This gives 

= (2M^M.2g^^(0)/g.-^(0)X^(;^^)-tl<^.«la(^r)-), 

2M^g^^(0) M.^ 
= {^{p^Y-^\J ,-\a{pjy-). (10) 

g.-^(O) M.^^W 

Let us examine what happens in the limit as ^—^0 
{pF—^ pi)' The right-hand side of Eq. (10) in most 
cases approaches a finite limit, since 

lim {fi{pFY''^\J.''\a{piy^) 

/ 

(11) 

N P, N Pi 

FIG. 1. The sort of situation which is excluded by the re
quirement that we avoid singularities of (/3o"̂ |a^a>. When pi^ 
— ipi-{-qi—q2y= —MN^, the diagram illustrated is infinite because 
the nucleon propagator joining the two bubbles is infinite. Such 
infinities can arise in general from pole diagrams contributing to 
(j(3°"*|a^ )̂. (Pole diagrams are those which can be divided into two 
disconnected parts by cutting a single internal line.) We restrict 
ourselves in the text to values of the external four-momenta for 
which all pole diagrams contributing to (/3°"* |a^°) are nonsingular. 

FIG. 2. Ways of attaching the proper vertex of /x^, represented 
by a heavy dot. The proper vertex can be (a) attached to an 
internal line, (b) attached to a terminating external pion Une, 
(c) attached to a nonterminating external line. 

is just the matrix element for 

a —^ /3+ (zero-mass, zero-energy pion), 

and is in general nonzero. ̂  Thus, the matrix element 
{fi(pF)'''^^\Jx'^''\a(pi)''') must contain pole terms which 
go as 1/kj in order that the scalar product of k with 
this matrix element have a finite Hmit. Clearly, if we 
can develop a simple set of rules for calculating these 
pole terms, we can calculate (l3(pF)''''^\Jir''\oL(pi)''''} to 
zeroth order in k. 

Calculation of the pole terms in <J3(^F)°^*|/X^''| 
a{pi)^^) turns out to be quite easy. Let us restrict 
ourselves to values of the momenta of the particles in 
a and in /? for which the matrix element (i(3°"*|â )̂ has 
no singularities. (The sort of situation we wish to 
exclude is illustrated in Fig. 1.) The renormalized 
matrix element for 0(pF)'''^*\J\'^''\ci(pi)''') is obtained 
as follows^: First we write down a complete set of 
irreducible or "skeleton'' diagrams for the matrix 
element. Then we make a series of insertions in the 
skeleton diagrams. We replace each bare propagator by 
the renormaHzed propagator, each bare strong-interac
tion vertex by the renormalized proper strong-interac
tion vertex, and each bare vertex where J\^ acts by the 
renormalized proper vertex of J\^^ We can divide the 
diagrams so obtained into three categories, according 
to where the proper vertex of J\^ is attached: (a) The 
proper vertex of Jx^ is attached to an internal line 
[Fig. 2(a)]]; (b) the proper vertex of J\^ is attached to 
an external pion Hne which terminates [Fig. 2(b)]; 
(c) the proper vertex of J\^ is attached to an external 
line which does not terminate [Fig. 2(c)]. 

2 Note that the value of the limit depends in general on the 
direction in which k approaches zero. 

^ Let us review some definitions. The skeleton of a diagram is 
obtained by replacing all vertex parts by bare vertices and by 
omitting all self-energy parts from the propagators, so that only 
bare propagators appear. An irreducible or "skeleton" diagram is 
a diagram which is identical with its own skeleton. A proper 
vertex diagram is one which cannot be divided into two discon
nected diagrams by cutting a single internal line. 

*Note that the dominant part of the induced pseudoscalar 
coupling arises from the diagrams which give the one-pion pole 
term in dispersion theory. These diagrams are improper when 
considered as baryon-A^ vertices, and thus are not included in 
the proper baryon vertices of /x^. 
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Corresponding to this division, we can write 

{p(pFy'''\kxJx^^\a{piy-) 

+{KpFy'''\hJx''^\aipiyY''''' 
+mpFy'''\hJx^^\a(piy-}^^^. (12) 

We now analyze in turn the contribution of each of 
the terms in Eq. (12): 

(a) First let us consider the case where the proper 
vertex of Jx^ is attached to an internal line. Each 
diagram contributing to (J(3(-^F)°^*| A^i«(^j)^'')^^'^ cor
responds to a diagram for (/3*'̂ *|a '̂'), but has an addi
tional internal propagator. The requirement that 
^outjojin^ be nonsingular means that all internal 
momenta are either integrated over or are off the mass 
shell. Thus the additional propagator cannot give rise 
to an infinity as ̂  —̂  0, and we conclude that {PipFY'^^l 
kxJx'^laipiy'^y^'^ is of order L' 

(b) The sum of all diagrams where the proper 
vertex of Jx^ is attached to a terminating external pion 
line is proportional to 

<^(^F)-*|/.^|a(:^i)-)Cl/(/^2+M.^)]<7r^|/x^^|0). (13) 

Using Eq. (4) to evaluate (TT''| A^^ [ 0) gives the result 

{l3(pFy-'\kxJx^''\a(piy^)^''''' 

k'+MJ gr^^(O) 
-(/3(^F)-t|/.Ha(^r)^^>- (14) 

This is of order k^ and may be neglected.^ 
(c) We next consider diagrams where the proper 

vertex of Jx^ is attached to a nonterminating external 
line. (We restrict ourselves to external lines of particles 
in the pseudoscalar meson or baryon octets.) These 

® We assume, of course, that none of the proper vertices of J\^ 
have a singularity as ̂  —> 0. 

^ These diagrams form the dominant part of the induced pseudo-
scalar coupUng. A statement much stronger than that they are 
of order k^ can be made. Referring to Eq. (10), we note that the 
right-hand side may be written 

The part of this proportional to ^ V C ^ ^ + ^ T ^ ) exactly cancels the 
contribution, given by Eq. (14), of the diagrams where /x^ is 
attached to a terminating external pion line. Now )feV(^^+^/) 
has the property 

Um Hm k^ik^-hMJ")--

lim ]imk^/{k^+Mr^)-- = 0, 

whereas the terms in Eq. (12) labeled INT and EXT are in
dependent of the order of the limiting operations: 
lim lim 0{pF)°^HkxJx'^''\a(piy^y^'^'^^'^ 
k-*0 Af T^-+0 

= Hm lim (j(3(i>ir)o'̂ t|/fexA '̂*la(/'/)^°)^^T'̂ '̂̂ . 

Hence the exact cancellation of terms proportional to k^/{k^-{-M^^) 
means that the limit, as J/x^—>0, of the consistency conditions 
of Eq. (24) is identical with the consistency conditions which 
would be obtained in a theory in which the pion mass was set 
equal to zero at the outset. Note that by virtue of Eq. (4), in 
such a theory the axial-vector current would be exactly conserved. 

diagrams may be divided into two types, according to 
whether /x"* changes or does not change the mass of 
the external particle."^ The only case where the mass is 
changed is that where Jx^ changes an external S to a A 
or an external A to a S. Both of these cases make a 
contribution to (iS(^F)*'^*l^x/x^"|«(^j)^^)^^^ which is 
of order k, since the propagator which follows the 
proper vertex of Jx^ behaves as (M^^—MA:)'^ as 
k—^Oj and thus is nonsingular. Finally, we will show 
that the diagrams where Jx^'^ is attached to a non-
terminating external line, and does not change the mass, 
are of order k~^. Insertion of /x"^ into a pseudoscalar 
meson hne is forbidden by parity; insertion of Jx^ 
into a A line is forbidden by isospin. Thus, we need only 
consider insertions of Jx"^ into external N, 2 , and S 
Unes. The contribution of the insertion of Jx^ into the 
line of a final baryon B of four-momentum ^5 is 

/MB\"' 1 
— ) UB(pB)gA^yxy,t^^ M. (15) 

\pBO/ pB — k—iMB 

Here 911 is the matrix element for the process a —̂  /3, 
with the final baryon B virtual. Since PB'^=—MB^, 
the propagator can be written as 

1 pB—k+iMB 

pB-k-iMB -IpB-k+k" 
(16) 

showing that there is indeed a singularity as ^ —> 0. To 
lowest order in k, we can neglect k in calculating 311 
and can retain only the term of order hr^ in Eq. (16). 
Thus, the insertion becomes 

/MBV^'^ PB+IMB 
( — ) UB{pB)gA^yxy4^^ 3n (^=0) . (17) 

Calculating 9TI with k = 0 means that we keep the final 
baryon B on the mass shell. Furthermore, ps+iMB is 
just the positive frequency projection operator for B, 
with the property 

(pB+iMB)pB= (pB+iMB)iMB. (18) 

Let us denote by 9TI'' the matrix element obtained by 
bringing all pB in 9n (^ == 0) to the left and replacing them 
by IMB' Then the insertion becomes, finally, 

/MB\'^' PB+IMB 
( — ) UB (pB)gA^yxyd^'' 'M'. 
^pBO/ —2pB'k 

The crucial point is that 

(^ -^ |a - ) = 6^a+ (2Tyid(pF-pi)mi{a -^ 0), 

/Ml 
-imia-^P) 

/MBY'' 
= ( 1 UB(PB)M'^ 

^pBO/ 

(19) 

(20a) 

(20b) 

^We are neglecting the electromagnetic interactions, so all 
particles in the same isospin multiplet are of equal mass. 
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is just the matrix element which describes the strong 
process a —> /?, with all particles on the mass shell. Thus, 
2fn̂  can be measured experimentally. Similar arguments 
show that the insertion of J\^ into an initial baryon 
line gives 

/MB\^" PB+IMB 
{ — J m.'' gA^yy.yf.t^'^UBipB), (21) 
\pBO/ 2pB'k 

with 

- i M ( a - ^ f i ) = (MB/PBOY^'^^'UB (PB) . (22) 

To sum up, we have analyzed the behavior of each 
of the terms in Eq. (12). Let us collect the results 
and write 

i2M^gA''(0)/gr^^(0))mpFy-'\J^-\a(pTy-}+O(k'^) 

^0{k)+0{k^) 

+ Z [insertions in-i9fll (a-^/3)]+0(>^). (23) 
external 

lines 

The three terms on the right-hand side of Eq. (23) refer, 
respectively, to the internal line, the terminating 
external pion line, and the nonterminating external 
line insertions of J\^. Multiplying through by gr'^^i^)/ 
[_2MNgA^{0)'] and using Eq. (9) to eliminate the ratios 
^^^(0)/g^^(0) and g4^(0)/g^^(0) in terms of strong-
interaction coupling constants leads to the following 
set of rules : 

{fi{pFY'''\J.''\a{piy^) 

= 0{k)^ E [insertions i n - i a n ( a - ^ / 3 ) ] . (24) 
external 

lines 

Insertions 

For external TT, K, T?. A, the insertion is zero. For 
external A ,̂ 2 , S, denoted by J5, the insertions are 

final B: 
rSr^^i^) ipB+iMB 

UB{PB) -> UB{PB)\ *75^^« (25a) 
L 2MB J-2pB'k 

initial B: 
PB^lMBrgr^^m -] 

UB (PB) -> ky^t^^ \UB (PB) . (25b) 
2pB'k L 2MB J 

These rules are the generalization to arbitrary processes 
of the consistency conditions derived in (I). I t is an 
interesting fact that these rules are just what would be 
obtained if the effective pion-baryon coupling for pions 
with four-momentum near zero were pseudovector 
rather than pseudoscalar. This intimate connection 
between PCAC and gradient coupling theories was first 
noted by Feynman.^ 

As an illustration of the above rules, let us consider a 
special case. Let a be a single nucleon of four-momentum 

^R. P. Feynman, Proceedings of the Aix-en-Provence Inter
national Conference on Elementary Particles (Centre d'Etudes 
Nucl6aires de Saclay, Seine et Oise, 1961), Vol. II, p. 210. I am 
very grateful to Dr. M. Veltman for calling my attention to this 
reference and for emphasizing the connection between PCAC and 
gradient coupling of the pion. 

pi and any number of pions; similarly, let /3 be a single 
nucleon of four-momentum p2 and any number of 
pions. Then we may write 

m{a-^^)= {MN'/piop2oy''uN{p2MuN{pi). 

According to the rules derived above, 

(PipFy'^'iJr^laipiy^^) 

(26) 

=o(ky 

X 

-( J iUN{p2) 
\plQp20/ 

rp2+iMNl 

[ — - I " 
pi+iM 

2p2'kJ L 2p 

L 2MM J 

Fpi+iMNl 

L 2pvk J 

ky,r^\\u(pi). (27) 
L 2MN J) 

I t is easily seen that Eq. (27) is equivalent to the 
"chirality conservation" formula obtained by Nambu 
and Lurie^ in a theory in which the pion mass is zero 
and in which the axial-vector current is exactly con
served.^ Nambu and Shrauner^^ and Shrauner^^ applied 
Eq. (27) to the case when a, /3 = TT+N and found possible 
consistency with experiment. A simpler case was studied 
in (I), where we took a=N, fi=7r^+N. In this case 9K 
is just the pion-nucleon vertex igrr^y^ and ((TTW)''^*] 
/x"|iV''') is the pion-nucleon scattering ampHtude. 
Introducing the usual pion-nucleon scattering-energy 
and momentum-transfer variables v and VB, 

pvk=—MN(v—VB), 

P2'k=-MAp+VB), (28) 

we get from Eq. (27) 

((TT îV)--* I / . « I .V-) = ( ) K''^^(0)UM(p2) 
\pl0p20/ 

f gr~ gr" r ^̂ "̂̂  ^^^ 11 
X dab-ik \UM{PI) . (29) 

[MN 2MN^VB~V VB-\'VJ) 

(30) 

The term (gr^/MN)^ab leads to the consistency condition 

A-^(+Hp=0,PB = 0,k^=0) g / 

which was discussed in detail in (I). 

II. MODIFICATION IN THE PRESENCE OF 
THE ELECTROMAGNETIC INTERACTIONS 

I t is interesting to see how the rules derived above are 
modified when the electromagnetic interactions are 
taken into account. Since isotopic spin is not a good 

»Y. Nambu and D. Lurie, Phys. Rev.1125, 1429 (1962); Y. 
Nambu and E. Shrauner, ibid. 128, 862 (1962). 

10 Y. Nambu and E. Shrauner, Ref. 9. 
11 E. Shrauner, Phys. Rev. 131, 1847 (1963). 
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quantum number in the presence of electromagnetism, 
we will work only with fields and currents with definite 
charge transformation properties. Thus, we replace the 
three equations contained in Eq. (4) by the equations 

where 

J^Ai±) = l(J^M^iJ^A2^ , /X^^«> = / X ^ ^ 

(^.(±)= (l/^/2)(ct>.'^^i<t>.'), ĉ .<o> = (^/; 

-MMNMJgA'^iO) 

(31) 

(32) 

C=-
grK^^HO) 

[The superscript (d=) refers to the charge destroyed.] 
I t is shown in the Appendix that to first order in the 
electric charge e {e>0), the modification of Eqs. (31) 
in the presence of the electromagnetic interactions is 

(33) 

As is customary, ^ x denotes the electromagnetic field. 
Since all electromagnetic corrections to masses and 
coupling constants are of second order in e, questions 
such as whether to use the charged or neutral pion mass 
in computing C do not arise. 

Equations (33) permit us to state a simple set of 
rules for computing (up to terms linear in the four-
momentum of the added pion) the matrix elements 
^^outj j^(±o)| (017) iii)̂  where a and ^ are any systems of 
strongly interacting particles and where the initial 
photon 7 may be real or virtual. The terms dxJx"^^^^ 
in Eqs. (33) give rise to insertions into the external 
baryon lines of—i3n(a7—>/3) identical with those of 
Eq. (25), apart from trivial changes in the isospin 
factors arising from the use of fields and currents of 
definite charge. In addition, we must add to (/3°''*| /^^±^ | 
(ayy'') the term 

dbeg,'^^(0) 

^MMgA^'iO) 
</3-*Mx/x^^±M(«7)'") (34) 

arising from the term AxJx^^^^^ in Eq. (33). Using the 
standard reduction formulas, we find to lowest order 
in e that 

exp{ik' -y) 

{2k,') 1/2 
</3-*|€x/x^^±>(3')la^^), (35) 

where k' is the four-momentum and ex the polarization 
four-vector of the photon 7. Equations (33), (34), and 
(35) allow us to calculate the matrix element for the 
emission of a zero-energy, zero-mass pion in photo- and 
electroproduction reactions. They are equivalent to 
the formalism derived for this purpose by Nambu 

and Shrauner,^ who also discuss a detailed application 
to the reaction e+N —> e-\-N-\-'w, 
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APPENDIX 

We give here a fairly general treatment of the way 
in which divergence equations of the form 

dxJx=D (Al) 

are modified in the presence of electromagnetic interac
tions. We state the result in the form of a theorem.^^ 

Theorem. Let \pj be the unrenormalized fields of 
particles of charge ej. Let us consider a strong-interac
tion theory with the Lagrangian cCCiiA}, {^<T^}~\^ where 
{yp} denotes the set of the \l/j. Let J\ be a current with 
definite charge transformation properties (charge ej) 
derived by making an infinitesimal gauge transforma
tion on the fields \l/j in the following manner^^: 

^,^^^/=^^,+A/?,[{vfc}], 

£^&'^&im,{d,V)'], (A2) 

/x=C8£7S(axA)]A=o. 
Then, 
(1) In the absence of electromagnetic interactions 

the current J\ satisfies 

dxJK = D, (A3) 

with J\ and D both functions of the rpj and the 3„^y only: 

D=D[_W,{d^n. (A4) 

(2) Inclusion of the electromagnetic interactions, 
with minimal electromagnetic coupling, changes Eqs. 
(A3) and (A4) to 

{dx-iejAx)JxlW, {7r.}] = Z>C{^}, {TT.}] , ( A 5 ) 

where Wja denotes the quantity {da—iCjAc^^j. 
Proof. We proceed as if the fields were classical 

quantities, ignoring questions of commutation and 
anticommutation. Let us first consider the case when 
there are no electromagnetic interactions. The Lagrange 
equation of motion for the field \l/j is 

— = a . . (A6 ) 

Under the gauge transformation 

>Ay-^^^/ = f i + A i ? £ { ^ } ] , (A7) 
^21 am grateful to Professor S. Coleman for assistance in proving 

the theorem. 
13 M. Gell-Mann and M. L^vy, Nuovo Cimento 16, 705 (1960). 
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The first variations are the derivatives d^ypj and the Lagrangian £ change 
according to 

+A(a.F)}]. (A8) 

From Eq. (A8) we find for the first variations, 

5£' 
—=E —F,+-- -a.FJ, 
5A i Lsi/'/ a(a,i/'/) J 

5£' 5£' 

Eq. (A8) also implies that 

(A9) 

r 5 £ ' - i 5<£ r ScC' 1 5i i 
— = — , ;- = . (AlO) 

L5\^/JA=O ^3 L5(ax\^y) JA=O 8(d\\l/j) 

Together, Eqs. (A6), (A9), and (AlO) imply that 

6£' 1 r5£ ' - | 

L5(axA)JA= 
We define 

S(3\A)JA=O LSAJA-O 

/x^[5£75(axA)]A„o, 

Z ) = [ 5 £ 7 S A ] A - O ; 

(All) 

(A12) 

these are clearly functions only of the {\l/} and the 

Let us now turn on the electromagnetic interactions. 
According to the hypothesis of minimal electromagnetic 
coupling, the Lagrangian is modified according to 

£ -^£EM=.£[ - | ^}^ (^^}]+jeEMO^ (A13) 

where JCEMO jg ĵ̂ g kinetic Lagrangian of the electro
magnetic field A a and where TTJ^ is {d„—iejAa)^j. The 
new Lagrange equation for the field \pj is 

d.(5£EV5(a.i/'y)) = 5£EM/^y. (A14) 

Let us henceforth treat ^y and TT̂ V, rather than 4^j and 
d^ypj^ as the independent variables in taking the varia
tion of c£^^. Then the Lagrange equation becomes 

5£EM 6£EM 5£EM 
(A15) 

5A 
- = Z —r^^+—r(^-P~^''^-^-'' '^) ' 

=E—r^n-
i L STTJX J 

(A17) 

5(axA) i L. OTTyx 

Now let us make the gauge transformation i^y—>^y' 
= ^j-\-AFj. The quantity Try,, and the Lagrangian Ju^^ 
change according to 

Tja -^ TTja == TTja — lejA ,rAFy+ (acrA)Fy+A {d ̂ Fj) , 

+ (a.A)F+A(d.i?)}]+£EMo^ (A16) 

Using the Lagrange equation, Eq. (A15), we see that 

aJ = . (AI8) 
L5(axA)JA==o L 5A JA^O 

Let us make use of the fact that the current Jx has 
definite charge transformation properties. Since h£,/ 
b{d\\pj) transforms as a field with charge — ŷ, Eqs. (A9) 
and (A12) tell us that Fy must transform as a field 
with charge ej+ej. Thus, 

Fj{\pi exp(ieif), \l/2 exp{ie2t), • • • ] 

= exp[i(ey+e^)^]FyC^.i,^2,- • • ] • (A19) 

Taking the first derivative with respect to t gives the 
identity 

Zl(^FJ/^^|^l)el^Pl= (ej+ej)Fj, (A20) 

Consequently, using daFj=Y.i{hFj/b\j/^da-4^i, we obtain 

a . F y - i {ej+ej)A .Fj^Yiii^Fj/diPi) (d.-ieiA :)yPi 
= Ei(^Fj/dh)7ri., (A21) 

In other words, d^Fj—i{ej+ej)A^Fj is the same func
tion of {^}, {ITa) as daFj is of {i^}, {dai/}' Hence, by 
comparison of Eq. (A17) with Eq. (A9) it is clear that 

p£EMy5(a,A)]A=o=/x[{^}, {TT.}], 

Zi{[S£™7%']A=oFy-f[6£EMy5^./]^^^ 

XCa.Fy-i(ey+e^M.Fy]}=Z)C{^}, {TT.}]. (A22) 

Thus, Eq. (A 18) can be rewritten as 

Ox-ie^.4x)/xC{^}, {7r4] = ^ [ W } , {^.}]. (A23) 

This completes the proof. 
Equation (A23) involves unrenormalized quantities 

throughout and is exact. In the case of PCAC, as con
sidered in the text, D—C^ipTr, where the superscript on 
C" denotes that it is unrenormalized. I t is trivial to 
pass from Eq. (A23) to Eq. (33) of the text, which 
involves only renormalized quantities, if we work to 
lowest order in the electromagnetic coupling e: All 
electromagnetic renormalization effects are of second 
order in e and may be neglected. All strong interaction 
renormalization effects are contained in the ratio C/C'', 
where C is the renormalized constant appearing in 
Eq. (32) of the text. 


