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In a previous paper a method was presented for cpnstructing the long-range part of an effective potential 
at any given energy. In certain problems, this potential is singular at small distances, requiring a cutoff 
or some other parametrization. The parameters thereby introduced can be determined by requiring that the 
amplitude at threshold be the same as that given by the Singh-Udgaonkar sum rule. 

1. INTRODUCTION 

IN an earlier paper/ hereafter referred to as I, equa
tions were given for constructing an effective po

tential at any given energy from the crossed-channel 
absorptive part. These equations are straightforward 
generalizations of the ones given by Charap and Fubini.^ 
The absorptive part is calculated with the help of the 
strip approximation.^ Arguments can be given for re
taining only a few iterations in our equations. 

In many cases, however, the potential is both singular 
and attractive at small distances. We therefore have to 
introduce a cutoff, or in some way parametrize the short-
range part of the potential. 

In order to calculate the parameters introduced in 
this fashion, we can use a sum rule introduced by Singh 
and Udgaonkar.^ This is derived from the strip ap
proximation^ and resembles the Cini-Fubini approxima
tion.^ We can then demand that the amplitude at thresh
old as given by the effective potential be the same as 
that given by the sum rule. Although a cutoff is not 
actually needed in a lowest order bootstrap of the p in 
XTT scattering, a crude calculation is made in which this 
requirement is imposed. I t is found that the results do 
not differ too much from one in which there is no cutoff. 

2. THE EFFECTIVE POTENTIAL 

For simplicity we shall consider the TTTT problem, 
although our approach can be applied to other scat
tering problems. In I it was shown that the effective 
potential at any particular energy is given by 

V\r,q^) = - TT-i / dt'v'{t',qy-^e~^'' (1) 

where g=magnitude of the three-momentum at that en
ergy, /=isotopic spin, r=radia l distance, and /o= square 
of the lowest intermediate mass in the crossed channel 
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(in this case, /o = 4). The function v^ is given by 

1 r a\k'\t) 
v^(t^f) = 2s-^i^A,^M— ^ ^ " - — - : 

TTJQ k —q^ 
(2) 

with t=—2q^{l — cosd)j 6= cm. scattering angle, 
^=4(^^+1) = square of the total c m . energy (we are 
taking pion m a s s = l ) , and At^ = ^p l3irAt^\ where 
PIP is the isospin crossing matrix 

-^ir 

5 ! 

5 

and A / is the absorptive part in the t channel. To obtain 
a^y we use unitarity, which gives 

1 r ^ 
ai(k\t) = — / dt' 

irk J fn 

J In 
where 

K^l\k^; t,t',t") 
d(t-t+), (3) 

TT 

/2 [ j / / 2 

Jo (k"-q^Xk" -k^) 
(4) 

K{k'';t,t',t") = t^-\-f-\-t 

and 

t+{k^) = t'+t" 

-2{tt'+tt"+t't")-tt't"k~\ (5) 

+- '+{<'''")('+s)('+5)]"' <*' 
The potential V-^{r,q'^) then reproduces the absorptive 
part At^ when the momentum = q. 

Equations (3) and (4) constitute a nonlinear integral 
equation for ft' if we are given At'. This can be solved 
by iteration, where, in lowest approximation, we would 
drop the integral term in Eq. (4).^ As was shown in I, 
the ^th iteration would give / / exactly in the region 

^Actually this iteration procedure breaks down near ^ = 0. 
Since, however, there are no zero-mass particles in strong-interac
tion physics, this does not give rise to any difficulties. 
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/ o < ^ < ( ^ + l ) % . Once we know / / and a\ we can find 
v^ through Eq. (2). We can then solve 

V V + C 9 ^ - - F ^ ( f , g ^ ) ( l + ( - l ) ^ P x ) ] ^ = 0 (7) 

to obtain a unitarized amplitude at the energy cor
responding to g .̂ Here Px is the space-exchange operator. 

The above method obviously is useful only if a few 
iterations are needed, i.e., if only the low-/ part of 
v^it.q^) is important. This nearest-singularity approxi
mation is of course the usual sort of assumption one 
makes in strong-interaction calculations. In the present 
method such an assumption is not unreasonable if we 
assume that both At^ and a^ are dominated at large / 
by a few Regge poles,^ and if the residue and position of 
these poles are assumed to have only right-hand cuts 
in the k'^ plane.^ This is because we can then write in 
this region 

1 r a\k'\t) 

which, together with Eq. (2) leads to v^{t,q^) = ^ for 
large t,^ 

To implement the above procedure we must have a 
way of calculating the absorptive part JT/. In I, this 
was done by using a simplified version of the strip 
approximation.^ We first approximate At^ by keeping 
only a few partial waves in the / channel. 

^-channel unitarity. This gives 

X-
l + ( - l ) ^ + ^ 

lmAA~-\\Pi(\+--^ , (9) 

Since the amplitude has been assumed to satisfy a 
Mandelstam representation, 

AAt,s)=B/{t,s)+- [ ds'p'{s',t) 
W J 4 

Is'-s t-4ci=o \ (-4/ \ / - 4 / J 

(10) 

where we have subtracted out the lowest order term 
Bt^=^r fiirBt^\ This has the effect of suppressing 
the contribution of the third double spectral function 
which would otherwise have to be included in Eq. (10). 
I t should also suppress the high-^' part of the integral 
in Eq. (10), and so we need consider only elastic 

7 T. Regge, Nuovo Cimento 14, 951 (1959). 
8 V. Singh, Phys. Rev. 127, 632 (1962). 
3 Because of oscillations, only the lovf-k'"^ part of the integral is 

likely to be important in Eq. (8). 

P'{s,t) = -
•q\/s 

«Q0 /•OO 

dt' dt" 

Ar{t',s)At'{t",s) , ,^ , , 

for the double spectral function. 
The Eqs. (10) and (11) closely resemble Eqs. (3) 

and (4) and can be solved in exactly the same way. 
In lowest order we again drop the integral term in 
Eq. (10). The wth iteration then gives At^ in the region 
/ o < ^ < ( w + l ) % . I t was shown in I that if we go to the 
same order in the iterations of both Eqs. (3) and (4), 
and Eqs. (10) and (11), we obtain real v^, 

In the above scheme, Eq. (10) will in general diverge 
so we must either put in a cutoff or subtract out addi
tional partial waves at each iteration. Mandelstam^^ 
has demonstrated that a cutoff version of the strip-
approximation equations leads to Regge behavior at 
large /. This, as we saw above, can be used to argue that 
'o^{t,q^) should vanish for large t. 

3. DETERMINATION OF PARAMETERS DE
SCRIBING SHORT-RANGE EFFECTS 

In a lowest order p bootstrap, we would keep only the 
p contribution to Eqs. (9) and (10). This gives 

AtKt,s) = 3Pn I m ^ i ^ f ~ l J P / 1 + — ) (12) 

in the ^-channel 7 = 1 state. As we saw in I, a delta-
function approximation for the resonance 

I m ^ . ^ ( ~ i ) = 4 . r . ^VRd(l—m^) (13) 

gives a potential 

VKr,q') = -mnTi's-'l'is+2i^R)r~'e-^r^ (14) 

where m=mass of the p, VR^gu'^^lm'^-l, and 
(2qB^Ti^/m) is the half-width in the q^- variable. We see 
that Eq. (14) does not lead to any difficulties at r = 0 
when we solve the Schrodinger equation (7). 

Suppose we now turn to irN scattering. If we only 
consider nucleon exchange we are led to the effective 
potential 

\ 2J2W\4w. 

(E-MXW+M) 

{E^M){W-M) 

mP- 1+mr 
_ + 5 2 + _ _ _ „ . L | ^ P ^ (15) 

" S . Mandelstam, Ann. Phys. (N. Y.) 21, 302 (1963). 
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for 7 = 1 and f, respectively (see the Appendix). 
Here M = m a s s of nucleon, g=TrN coupling constant 
(g^/Air =14:A), TF=total c m . energy, E=nucleon en
ergy, L=orbital-angular-momentum operator, and 
m^^M^-ilE-Wy. In the / = f , / = | state, where 
nucleon exchange is expected to provide the dominant 
force,^^ Eq. (15) becomes 

V(r,q^)-
• - ( - ) -

{E-M){W+M)rm^ 

1 —+q' 

(E+M){W-M) 

1+mr 

L 2 ?]1 (16) 

This is both attractive and singular at r = 0 . I t therefore 
requires some kind of parametrization at small r, where 
higher order effects are obviously important. This can 
be done, for instance, by introducing some kind of cut
off or hard core. The actual form is not likely to be 
important.^2 

In order to calculate the parameters representing 
short-range effects we shall use the Singh-Udgaonkar 
sum rule.^ This is similar to the Cini-Fubini approxima
tion^ but differs from it in several details. In the TTTT 
case, it gives for the total amplitude 

A'(s,t) 
A,'(s',t) 1 r A/ 

= - / ds'-— 

1 /• r 1 ( - 1 ) ^ 1 
+ - / dt'I/it',s)\ ^ + , (17) 

where the L indicates that the integrals run over the 
low-energy resonance regions. If we make a partial-
wave expansion of the ^-channel absorptive part A,' 
and then project out the Ith partial wave from Eq. 
(17), we obtain 

ImAi'iv') v' r lmu41 

IT JL V\V' 

+ (Contribution of waves>/ )+ - I df 
TV J L 

XM/;4.+4)e/l+-V (18) 

where v==q^. The contribution of higher nonresonant 
waves in Eq. (18) as well as some further corrections to 
Eq. (17) can be determined with the help of the strip 
approximation.^^ These effects are expected to be small, 
however. 

Now both the equivalent-potential approach and Eq. 
(18) are likely to be reasonable at low energies, although 

11 G. F. Chew and F. E. Low, Phys. Rev. 101, 1570 (1956). 
12 L. A. P. Balazs, Phys. Rev. 124, 602 (1961). As is well known, 

the one-pion exchange potential in nucleon-nucleon scattering is 
also attractive and singular at r = 0 . 

1̂  L. A. P. Balazs, Phys. Rev. 137, B168 (1965). 

they fail at higher energies. In particular, they should 
both give a fair approximation to the amplitude at the 
physical threshold. We can therefore demand that they 
give the same amplitude (and perhaps one or more 
derivatives) at that point. This requirement should 
enable us to determine any parameters in our calculation. 

4. A CRUDE CALCULATION OF THE Q MESON 

We have seen that we do not run into any difficulties 
in a lowest order p bootstrap in inr scattering. To illus
trate the procedure of the preceding section, however, 
we shall nevertheless parametrize short-range effects in 
a crude way and impose the Singh-Udgaonkar nor
malization at threshold. This normalization is not auto
matically satisfied. In a simple p bootstrap,^^ for in
stance, one gets î ii = 0.130 from Eq. (7) and 61̂  = 0.204 
from Eq. (18), where hi^=[_Ai^{v)/v^~]v^Q. The situation 
is improved a little if one does a simultaneous p-P 
bootstrap. In the calculation of Ref. 14, one has 
Z,ii = 0.077, W=0.0044 from Eq. (7) and >̂ii = 0.107, 
62^=0.0045 from Eq. (18). Nevertheless, one still has a 
discrepancy in the / = 1, / = 1 state, where the centrifugal 
term is not sufficiently strong to completely shield off 
short-range effects. 

In I a calculation was made of the p meson using a 
variational formula. An effective-range approximation 
using the potential (14) gave 

(19) 

(20) 

where 

and 

^t[y/Ai\v)~] = ae~reV, 

r 128w In 

L8ir i i (w2+4) 2J 

m 128^2 r 8^^ "i 
re = —(37-8m2) 1 . (21) 

8ir i i (w2-f4)L w2-f4J 32 

Now, in general, short-range effects are likely to be more 
important at higher energies. We shall therefore roughly 
take them into account by using 

^{v) = 'Kt[y/A i\v)'] = Ge- reP~cv^. (22) 

Since ae and r^ are more important at low energies, we 
assume that they depend primarily on long-range forces. 
We shall therefore use Eqs. (20) and (21) to determine 
them. On the other hand, c becomes felt only at higher 
energies and so we assume that it absorbs all the short-
range effects in our simple model. We shall determine it 
by requiring that 

bi'=l/ae, (23) 

where ^i^ will be given by Eq. (18), which, in the 
approximation of dropping everything except the p 
meson and using Eqs. (12) and (13), gives 

b,'=-
Tii Ti^ VE+2 

—+ . 
VR 2 (pR+iy 

(24) 

J*L. A. P. Balazs and S. M. Vaidya (unpublished). 
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The position of the resonance V^^VH is given by the 
condition 

* M = 0 , (25) 

B-

while its reduced width is 

Til = - ! / $ ' ( . „ ) . (26) 

\-2/M^-u wJ, l'~t 

+-/ 
T J (M 

du'-
B^{u',s) 

(A5) 
TT J (iVf+l)2 U —U 

For a given VR=im^-l, Eqs. (20), (23), and (24) can 
be trivially solved to find Ti\ Now Eqs. (25) and (26), 
when combined with (22), can be used to eliminate c 
to give a single relation between ae, re, PR, and Fi^; 
using Eqs. (20) and (21) we can therefore try various 
values of m and check whether this relation is satisfied. 
Approximate consistency was obtained with Fi^ = 0.57 
and m = 4:.0}^ This result does not differ too much from 
the ones obtained in I or Ref. 14 without the imposition 
of the Singh-Udgaonkar formula. This seems to suggest 
that short-range effects do not play a very important 
role in the p bootstrap. 
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APPENDIX: NUCLEON-EXCHANGE POTENTIAL 
IN ^N SCATTERING 

The iteration procedure of I described in Sec. 2 for 
constructing an effective potential from At^ is com
pletely equivalent to requiring that the Bom expansion 
of the potential reproduce the correct amplitude to any 
given order. Now in TTA" scattering, the physical ampli
tude / can be written^^ 

for / = ! and f, where 

u={2E-Wy+w;w='-{q+q'y. 

Consider now a potential 

F = ( F o ^ + F i ^ i T . L ) + ( F o ^ - f F i ^ a . L ) P x , (A6) 

where 
1 r e-'^^' 

(A7) 
IT J u r 

and 
1 r*̂  e~^^^' 

0 (A8) 

1 ("^ e-^^ 

w J ti r 

1 r^ e~^^^' 
Vi'=-~ dtW(t\q') ( 1 + V O 

T J ti r^ 

for i=D, E. If we take the Born approximation of the 
potential (A6), we therefore have a contribution to the 
physical amplitude 

where 
/^=^i+<F-q<F-q'g2, (A9) 

1 r df 

TT J tD ^ —^ 

-{q'+¥)vAt\q^):]+ 
1 r du' 

TT J tE U^ — W 

and 

W J tp; U —W 

Xlvo^(u\q^)-(q^+iu'-)vi^(u\q')^ (AlO) 

/=/i-^"-2<F-qcF-q72, (Al) 

where q and q' are the initial and final three-momenta in 
the c m . system and 

E+M 
h= IA + {W-M)B-], (A2) 

2PF 

E-M 
/2= i-A + {W+M)B-]. (A3) 

2W 

The functions A and B satisfy the Mandelstam repre
sentation and can therefore be written in the form 

1 r°° dt 1 ["^ du' 
g2=~ / -y-vi^(t\q')-~ / vi^(u\q'), (Al l ) 

We see that Eqs. (Al) and (A9) have the same struc
ture. By comparing these expressions we can therefore 
determine the lowest order ZJQ* and vi\ 

If we keep only nucleon exchange, i.e., drop all the 
integral terms in Eqs. (A4) and (A5), we get 

and 

"•HJ 
»0^= 1)1^=0 

l\iE-M)(W+M) 

(A12) 

2Wg^ 

€) X — 5 ( M - W 2 ) , (A13) 

A=~ dt'--—+- du' (A4) Vo^(u,q')={--+q^W(u,q')+( ) 
v J A t—t tr J (M+1)' u—u \ 2 / \ — 2 / 

" The corresponding experimental values axe ri^==0.18 and 
m — 5.5 if we take width =110 MeV and mass = 765 MeV. See 
A. H. Rosenfeld ei al., Rev. Mod. Phys. 36, 977 (1964). 

16 S. W. MacDowell, Phys. Rev. 116, 774 (1960); W. Frazer 
and J. Fulco, ibid. 119,1420 (1960); S. Frautschi and D. Walecka, 
ibid. 120, 1486 (1961). 

X 
(E+M)(W~M)/g^ 

2W iih-w2). (A14) 

If we combine these results with Eqs. (A7) and (A8), we 
obtain Eq. (15). 


