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High-Frequency Conductivity of a Plasma in Quasi-Equilibrium. 
II. Effect of a Uniform Magnetic Field* 
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A general expression for high-frequency conductivity is derived to include the effect of an external mag
netic field. The limit of large ion mass is also discussed. For the special case that the unperturbed plasma 
is in thermodynamic equilibrium, the result obtained in the present paper reduces immediately to that 
previously discussed by Oberman and Shure. 

I. INTRODUCTION 

IN a previous paper1 (hereafter called I), an expression 
was derived for the high-frequency conductivity of 

a plasma not necessarily in thermodynamic equilibrium. 
This result has been applied to the cases in which the 
electrons and ions have different temperatures. This 
study will be reported in forthcoming papers. 

The purpose of the present paper is to extend the 
analysis of I to the case of a plasma in a uniform 
magnetic field, an extension of obvious practical 
interest. As in I, we shall assume: (1) the unperturbed 
plasma is stable, according to the Vlasov theory, and 
homogeneous; (2) the high-frequency electric field has 
a wavelength very long compared to the electron and 
ion Debye lengths, and therefore may be treated as 
spatially homogeneous; and (3) in the present study, 
the unperturbed distribution functions are isotropic in 
the plane normal to the magnetic field and vary slowly 
in time (in the sense discussed in I). Furthermore, we 
shall postulate that the frequency of the electric field 
is much higher than the cyclotron frequency (and the 
collision frequency, of course). 

In Sec. I I , we shall first discuss the governing equa
tions and generalize an operator method which was 
discussed in Ref. 2 to include the effect of a uniform 
external magnetic field. Then in Sec. I l l , we study the 
solution of the pair-correlation function including the 

effect of the magnetic field. In Sec. IV, we derive a 
general expression for the high-frequency conductivity, 
and in V, discuss its possibile simplification in the limit 
of large ion mass. Finally, we present a summary and 
some concluding remarks in Sec. VI. 

II. MATHEMATICAL FORMULATION AND 
METHOD OF SOLUTION 

The Governing Equations 

To facilitate our discussion, we introduce the follow
ing Fourier transforms: 

G.r(k,v!,v2,0= / (ffri«r-*-c™>G.,(ri-r2, vi,v2,/), (1) 

• / • 

gar(k,V!,V2,/)= / ^ 1 < T * " < '*--">£„(*-r 2 , Vi,V2,0 . (2) 

Here, following I, Gsr and gsr are the unperturbed 
and perturbed pair-correlation functions, respectively. 
(Throughout, unless specifically noted, we shall follow 
the notations designated in I.) With these comments, 
we write the first two members of the Bogoliubov-
Born-Green-Kirk wood-Yron hierarchy (after linear
ization) as follows: 

dF8 es dF8 d i 
—+—(viXBo) = 
dt msc dvi dvi (27r)3 

f 4ciresk f 
/ d3k X Wr / d3l'2GSr(k,Vi,V2,0 , 

J m i 2 r J 
(3) 

[ d e8 d er d ~] 

— + i k - v i - * . v 2 + — ( v i X B o ) - - — h — ( v 2 x B o ) - — | G . r ( k , v i , v 2 , 0 
msc dvi mrc dv2J 

Aire8 dFs f 4:wer dFr f 
^ k - — L n&q J d%Grq(—k,v2,v3)H ^ k - — £ nqeq / dh3Gsq(k,yhYd) 

msk
2 dvi Q mrk

2 dv 2 Q 

A7rieserk pF r(v2) dF.(vO F.(vi) dFr(v2)"l 
. I (4) 
L ms dvi mr dv2 J k2 

* This paper represents the results of one phase of research carried out at the Jet Propulsion Laboratory, California Institute of 
Technology, under Contract No. NAS7-100, sponsored by the National Aeronautics and Space Administration. 

1 C.-S. Wu, Phys. Rev. 138, A51 (1965). 
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Awes dF8 f fareT dFr 
ik Y,nQeg / dh^rQ(—k,YhYz,t)-\ * I > A / d3^3gs<?(k,Vi,v3,0 

msk
2 dvi q _ ...... „ .„ . 

= £. r(k,vi,v2,*), (6) 
where 

4:Treserik / 1 d d d \ es df8 4cirik 
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df8 es df8 e8 dF8 d i f 4 ^ s k f 
— + — ( v i X Bo) = E / d*k 2> r e r / <*Sg.r(k,vi,V2,0, (5) 
dt msc dvi ms dvi dvi (27r)3 J msk

2 r J 

r d es d er d "1 
— + i k . V l - i k . v 2 + — ( v i X B o ) + — ( v 2 X B 0 ) g.r(k,vi,v2,0 

Ldt msc d\i mrc dv2J 

f faceT dFr f . 
-E*V?« / dzvzgrq(-k,Yhvz,t)-\ ik E*M« \ d%gsq(k,\hy3yt 

= E 

4:Treserik / 1 d d d \ es df8 4cirik 
R„(k,YhY2,t) = )C/r(V2,/)/?.(Vi) + /.(Vi,0Fr(Va)] + E » A 

&2 w s dvi w r dv2/ m8 d\i k2
 Q 

r er dfr 4?rik f /es d er d \ 
X / ^ 3 G r e ( - k , V l , v 2 ) Znqeq / ^ ^ ( k ^ v ^ - E - + Gs r(k,v1)V2). (7) 

J mrdY2 k2 q J w s d v i mrdY2J 

I t is understood that in (5) and (7), the electric field E is described by 

E=Eoe*-«. (8) 

In order to proceed with our discussion, we must now generalize the previous method2 of solution of the correlation 
function to include the magnetic field. 

The Generalized Q8r Operator 

Let us rewrite Eqs. (4) and (6) as follows 

r 1 1 4twe8erik rFr dFs F8 dFrl 
- + f f . ( k , v i ) + 2 7 r ( - k , v 2 ) G.r(k,vi,vj,0 = sB. r (k ,v i ,v» ,0 , (9) 

Ldt J k2 Lms dvi mr dY2J 

- + ^ . ( k , v 1 ) + f f r ( - k , v 8 ) 
ldt 

where 

gsr(k,Vi,V270==^r(k,Vi,V2,0 , (10) 

ei d fared dFi f 
£Ti(k,v) = 4 . v + — ( v X B o ) k £ »,*, / dH>. (11) 

wnc dv mj^2 dv * J 

If we introduce a cylindrical coordinate system in velocity space as shown in Fig. 1, we can re-express Ht as 

d faced dFi C 
Hi(k,v) = ik-Y+Qi k YLniei \ dh, (12) 

d<£ mik2 dY i J 

where Qi= eiBo/mic and <t> is the azimuthal angle. Following closely the discussion presented in Ref. 2, we can write 

E nrer dh2Gsr(kyYhY2,t) = Q8r(Y1\Y1\Y2
,
Jk1t)G8r(t=0)+ I dTQsr(Vl\ Vi / ,V2

/ ,k,r)S. r(k,Vi ,
>V,') , (13) 

E nrer J dh2gsr(k,YhY2yt) = Q8r(Y1\Y1
f
iY2\kit)g8r(t=0)+ / ^ ^ ( v x l v1

/,v2
,,k,r)i?sr(k,v1Sv2S t-r) , (14) 

where the operator Qsr, as discussed in Appendix A, has the form 

1 I /.4-QO+l'O- /•+00+40-

<?«r(vi|vi',v2',k,/) = — / dcaij du2e -*(coiH-OJ2) *_ 

X / <*V«(vi- viO / dty / dW . (15) 
-J €(coi,k) J ui+k'Yi+ittsd<l>iJ J e(o)2y—k)(o)2—k'Y2+iQrd<t>2) 

2 C.-S. Wu, J. Math. Phys. 5, 1701 (1964). 
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FIG. 1. Coordinates in velocity space. 

In (15), ( o j zbk 'V+ iO^) - 1 again has the meaning of an angular operator such that 

l l r2v r4, +« +*> /kivA /hvA 
= / d<t> d<t>' L E J J ) /» ( )6rWO«)C(-±*.-)<*'-*)±oiC»*'-«»«]), (16) 

where / is Bessel function of first kind and m and n are integers. Moreover, e(oj,k), the dielectric constant, in the 
present case can be written as 

o>8
2 +00 f Jn

2(kiVL/^8) ( dF8 n Q . d F . \ 
€(«i±k) = l - 2 : — E /<*H> 1*.—+ ) . (17) 

• k2 n—« J (^Z^Z+W0S±C0)\ dflz T?i ctyi./ 

As we shall see later, a quantity more interesting than Q8T(t) is its Laplace transform, 

Evidently, 

(5Sr(Vi|Vi',V2',k,C0) = 

(3 S r (v 1 | v 1 ' , v 2 ' ,M= I dUr*»<Qar(yi\vi',v%'M. 

& > i / Jco2 / d V $ ( v i - V i O 
-oo+io_ J-oo+tO- i(o>—o>i—o>2)(coi+k-Vi+ii2,d^i)L7 

(18) 

In (18), we require that 

/ do)i I da)2 
(27ri)2 J- «H-*O_ J-oo+io- i(a>—a)i—co2)(coi+k* \i-\-iQ8d<j> 

kD8(vhk) r J^sfise, i r 
I dzVl> . / dz^ 

J coi4-k«Vi-4-il2s^iJJ e(cd2, 

2L*T fl$Cr 

e(o,,k) coi+k«Vi+i^s 

Im(w—coi—C02) < 0 

-k)(co2—k«v2
/+ifi^2) 

• (19) 

(20) 

and thus that the pole, «2=w—«i, be located below the path of integration in the complex o>2 plane. Furthermore, 
since the function 

[€(c02, - k ) ( a>2-k . V2+^rd02)J"1 

is analytic in the domain 0>Ima>2> — °°, we may close the contour of the o>2 integration in the lower half-pl iane. 
Thus 

I -+oo+to-

dwi 
-oo+io. t (o>i+k- Vi+iQ8d<t>i) 

w i t h I m (co—co 1) < 0 a n d Imcoi < 0. 

2^8 ^8^8 
/ < * V « ( v i - V i ' ) / dW 

U «(wi,k) J o i+k-v i '+ ' tOad^J a>i+k»Vi' 

x / dv 
J e(co—o?i, — k)(co—coi—k-¥2'+^ JQrd02) 

(21) 



C O N D U C T I V I T Y O F A P L A S M A I N Q U AS I - E Q U I L I B R I U M A 121 

III. THE PAIR-CORRELATION FUNCTION 

From Eqs. (5), (6), and (7), we see that in discussing the conductivity, it is desirable to determine Gsr. In this 
Section, we shall focus our attention on this subject, especially its asymptotic behavior as t —> «>. First of all, 
we see from Eq. (4) that once E« n8e8fdhiG8T and £ r nrerfd

zv<£ST are determined, the solution of G8T can be 
written down immediately. Thus, let us first study the quantities 

f „ iAwe8erik rFr(v2
f) dF8 F8(YX') diVjj 

E nse& / dVtGsr(k,Vi,v2, t~> oo)= lim Qsr(y2\ Vi',v2',k,coH \\ , (22) 
J i(^°+ I k2 L m8 d\i' mr dv2'JJ 

r „ \^weserik pFr(v2') dFs F.(vi') dFn) 
Znrer / d*v&9rfavhVi,t-> « ) = lim e. r(V l | v ^ v ^ k ^ ) . (23) 

J iw-*°+ l k2 L ms a v / mr a v ^ J J 

To facilitate the discussion, we introduce a number of shorthand notations: 

F8n(y) = Jn
2(hvl/ns)F8(y), (24) 

/ OF 8\ /kLvL\/ dF8 nU8dFa\ 
(k ) =JnH — ) ( * , — + ) , (25) 
\ dv / n \ O s / \ dvz Vi dvj 

(k*v)8n=kzvz+nttSJ (26) 
and 

±ire8/ 
n = Ih. 

dv/n 

Awe,/ dF8\ 
Dsn= (k ] . (27) 

msk
z\ 

In addition, two useful relations should be mentioned 

F>(y) 4« F8n 

"= £ Z— , (28) 
C O ± k - V + i 0 8 a < ^ n=—oocO±(k»V) n 

1 / &F.\ +* 1 / dF8\ 
(k ) = ± E (k J , (29) 

a>dbk«v+iOsd<£\ dv/ n=-ooa)-t-(k«v)n\ d v / n 

where /?
t(v) = F,(»JB,t>1). Making use of (17), (21), (23), (28), and (29), we obtain readily 

f +00 r 68JP8n(vi) "I 

X wrer / ^2G
:
8r(k,Vi,V2, *—> <*>) = ^ esFsn(vi) 

./ n—coL€-[-(k-v1)n, k] J 
+ £ £ Z>.»(vlfk) [ doi- —— — E nre2 [dhi £ 8[(k. v10,«-«]F.fl(v1'), (30) 

»—co J_ 0 Q LCO— (k* Vi )„ -HiXJ J €~ ( — OJ ,k ) | 2 r J fl—oo 

where 

w*2 4-co /• 1 / aFA 
6±(dbcu,k) = l - E — E M3* (k J . 

* k2n—*J (k.v)„±(a>±fX)\ d v / n 
At this point, we may comment that the kinetic equation for Fa can be derived immediately by inserting the 
above result into Eq. (3). The result is in agreement with that first derived by Rostoker3 and later by Haggerty 
and deSobrino.4 

Again, since from Eq. (4) we see that 
G.r(k,vi,v2, *-* oo) = G8r*(k,v2,vi, t—> co), 

(where superscript * denotes complex conjugate), we can obtain E* n8e8J*dhiG8r(k,YhY2, l—><x>) simply by writing 

3 N. Rostoker, Phys. Fluids, 3, 922 (1960). 
4 M. J. Haggerty and L. G. deSobrino, Can. J. Phys. 42, 1969 (1964). 
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down the complex conjugate of (30) and replacing subscript J by r and Vi by v2. Thus, 

r +=c r e rF r(v2) "1 +«> 
E ns*s / ^ iG . r (k ,v i ,v 2 , *-> 00)= E — - ^ r ( v 2 ) \+k E £>™(v2,k) 

« J n = - « L € + [ — ( v 2 - k ) n , k ] J n—oo 

X /" da> E *M?r
2 f <ft>2 E «[(k-v2)fl-«]/?rfl(v2). (31) 

J^ [a)~(k.V2)n-iX]|6-(cU,k)|2 r J q ^ 

With (30) and (31), the pair-correlation function can be determined easily, since, from Eq. (4), 

^ -+oo+i0- /.+oo+i0- 1 \ 

G« r(k,Vi,v2, t—» oo ) = lim / da>i / dco2 

*w-°+ (2?r)2 J - ^ + t o . ^-x+io_ i ( co-co i—co 2 ) ( iwi+ ik-Vi -O s a0 i ) (iw2—ik* v 2 - O r d 0 2 ) 

<4tweserik rFr dFs F8 dFrl Awesik dFs f 
X H E n , e . / dsv1Gsr(k,Yhv2, / -> oo) 

l jfe2 L w s d v i mr t )v 2 J ras&
2 d v i s J 

4:Trerik dFr f } 
E nTer \ ^ 8 v 2 G . r ( k , v i , v 2 , / - > « > ) [ , (32) 

Wrife2 dV2
 r J J 

where we remember Im(w-a>i—co2)<0. After inserting (30) and (31) into (32), and performing some straight
forward manipulation, we came to the following result : 

+<* +oo 1 [ _ _ /^i i '2i \r ±f? erFr„(v2) 
Gsr(k,vi,v2, J—• oo)= E E —\kD>i{vhk)jM E — — — : - = 

•i\] I \ 0 r /L»—* e+[- (k-v2)n, k] Z=-oo y=-«5 [(k« V2)y— (k- Vi)rW> 

n=-oc J [ w - ( k . v 2 ) n - i X ] [ € - ( - o 3 , k ) | 2 J \ 12s / 

+« esFsn(vi) +co r F(co) r +« e^anCvi) +*= r /<(«) -ii 
x E + E *z>.»(vi,k) / ^ , 

Ln-^c-Q-ft.vO^k] »—« 7 [0)-(k.V1)n+iX]|€-(-^k)l2J] 
(33) 

Ln—-oo € - [ — ( k * V i ) „ , k j n^-oo J [_& — ( k - V i ) „ + i X J | € ~ ( — W, k ) | 2 J J 

where 

F(«)= f ^ 2 E ^ r 2 E «[(k-v2)fl-«]Frfl(v2). 
J ' «—oo 

At this point, we should remark that this expression of GST has already been averaged over the azimuthal angles 
in velocity space. Such a result, however, is all that we will need in the conductivity calculation as we shall see later. 
Although the general form of G8r looks complicated, it yields much simpler expressions in two cases; namely 
(A) F8 and Fr are Maxwellian distributions with equal temperature, and (B) ion motion can be neglected 
[ w i - > oo ] . Let us discuss the two cases separately. 

(A) Maxwellian Distributions 

If Fs and Fr are Maxwellian distributions with equal temperature T, i.e., 

Fs(v)= (ni8/2<incT)M exp(~msv
2/2KT), Fr(v)= (m r /2™r)3 /2 exp(-m rz)2/2Kr), 

we can evaluate the u> integrals in (33) exactly, since 
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where W = I 8 ( 4 7 r w / 8
2 / / c r ) and e(0)= l+kD

2/k2. Making use of the relations 

kDsn(vk)=(47res/k
2(KT))(k-Y)nFsn(y) and L / n

2 = l , 
n==—oo 

we obtain immediately that 

GUKyhV2)=-(±Te8er/KT(k*+kD*))F8(v)Fr(v). (35) 

This result is more or less well known. One can derive the same result directly from Eq. (4) simply by assuming that 

G8r(k,YhV2) = e8er*(k)Fs(vl)Fr(v2) 
and then determining ^(k). In this case, we see that the magnetic field produces no effect on Gsr since G8T is isotropic 
in both Vi and V2 spaces. 

(B) Limit of Infinite Ion Mass 

Let us first suppose that the ion species possesses its own Maxwellian distribution, but is not necessarily equilib
rium with the electron species, and then let us consider the limit of infinite ion mass. In this case, we can show that 

+oo +oo kDej(V2)Jl2(kLVu/Qi) +00 eiFin(Vi) +00 kDej(Y2)eiFi(Vi) 
& . & ¥ ! , ¥ , , * - * oo ) = - £ £ £ ~ - L (36) 

* — *=-oo [(k- v , ) , - (k- Vi)rNX] •—« € - [ - (k- vi)„, k ] * — [(k- v2) i+iX]e-(0) 
and 

+00 kDej(yi)eiFi(\2) 
Gei(k,vhY2jt-* « ) = - £ — — — , (37) 

^ • [ ( k - v O i - i X l e + C O ) 
where Fi(z>) is a delta function, i.e., 

limF,-(tO= lim {mi/2irKT%)^2 exp(-miv
2/2KTl) = 8(vx)8(vy)d(v2). 

IV. THE HIGH-FREQUENCY CONDUCTIVITY 

Going back to Eqs. (5), (6), and (7), we obtain immediately that 

dJ s A co8
2 i f oj8

2k 
S U . X 6 = — E 0 e ^ + 

d* 4TT (2TT)3 

. cos
2 i r u8

2k /* r 
— Q . J . X & = E 0 ^ + / <Pfc / ^ ! Z » r * r / ^ 2 g S r ( k , V l , V 2 , / - > oo ) , ( 3 8 ) 

4TT ( 2 7 r ) 3 y £ 2 7 J 

where ls=nses%fdhyf8{\) is the current density of s species, and b is a unit vector parallel to Bo. Furthermore, 
according to the discussion presented in Sec. II , 

£ nrer / d3i>2gSr(k,Vi,v2, /—> oo)= / dTQsr(vi\ Vi',v2',k,r)i?sr(k,Vi',v2', /- r ) . (39) 

Here the operator Q8r and the source term Rsr are defined by (15) and (7), respectively. Since the dominant 
contribution to the high-frequency conductivity is the reactive part, we may replace the perturbed distribution 
functions / , and fr in Rsr by the solution of Eq. (5) but without including the effect of correlation.5 In this approx
imation we have found (see Appendix B) that 

/ . (v , / )= - (e8/im&)EQei»tk.Q- (dF8/d\), (40) 
where k8o is a vector such that 

kso= (co2-08
2)-1[co2^-^O f i(gx5)-Os

26(g- b)~] (41) 
and e= EQ/E0. 

Substituting (40) into (7), we find after some rearrangement that 

*.r(k,vi,v2 , /)= -£oc*-li2.r0(k,vi,V2) (42) 
and 

esks0 d r es dFs k f ^ireser / 1 d 1 d \ ~] 
Rsr°= «G. r(k,vi,v2)+ 4 T T - E nqeq / dh&rq(-k, v2 ,v3)+ k- W v i ) F r ( v 2 ) 

mso) dViL msd\i k2 « J k2 \msdYi mrdY2/ J 

ejirt d r er dFr k /* 47reser / 1 d 1 d \ n 
+ «G.r(k,vi,v2) 4rw-Znqeg / ^ 3 G S Q (k ,v 1 ,v 3 )+ k- W v O F r ( v 2 ) . (43) 

niyO) d v 2 L w r d v 2 k2 q J k2 W s d v i mrdY2/ J 
5 This approximation is valid only when w is not in the vicinity of the cyclotron frequency and also much higher than the collision 

frequency. These conditions have been assumed to be true in the present discussion. 



A124 C H I N G - S H E N G WU 

Notice that Ggr(k,Vi,v2, t—» oo) satisfies the following equation: 

es dGsr er dGsr 
( - i f i+k - V i - k - v2)G.r(k>v1 ,v2)+—(viX B0) + 7 - ( v 2 X B0) 

ima d\\ imr dv2 

dF8 f k er dFr f 
4 T T £ nqeq / d8V3Grfl(—k,v2,v3)H 4 T T E »««« / ^3G s<z(k,Vi,v3) 

dvi * J k2 mr d\2
 q J 

/ I d 1 d \ 
k ( )F.(vi)F r(v2). (44) 

w s dvi w r dv2 / 

k es dF8 f k er dF 
4 i r l 

&2 ras dvi s 

4:weser_ / 1 d 1 d \ 

t dvi trirdvz 

Consequently, we can write the quantity fdhx £ r tirerf dzV2gST in (38) in the following manner: 

f f f \ es kso-k er kro-k 
/ dhtY,nrer / d8i>2g.r(k,vi,v2, / - > ^ ) = -£oe*"< / ^iQ«r(co) G.r(k,vi,v2) G.r(k,vi,v2) 

J r J J [m8 co w r co 

+ ns(ksQXb) h ttrikroXb) . (45) 
rasco d\i ntrW dv2 I 

To obtain this result we have made use of some operational relations which provide considerable simplification, 
similar to those discussed in I. Inserting (45) into Eq. (38), we see that the last two terms in (45) do not actually 
contribute since they will vanish after the integration in k space. Thus, 

dJa A cos
2 iEtf™1 f cos

2k 
SU,X& = —Eoe1 '^ / dzk 

dt 4TT (2TT)3COJ k2 

X [dh&rivtl Vi',v2 ',k,co)I—(4,o-k)-—(Jtro-k) [G s r(k,Vl ' ,v2 ' , / - > oo). (46) 

Assuming a solution of the form 

J*=Jso(co)etoJS 

we see that Eq. (46) becomes a vector equation for J s and can be solved readily. The solution takes the following 
form: 

o)s
2ks0E0e

iut E0e^W f 1 . . . 
J g = / d*k—[co2k-icoQs(kX6)-Os

2&(k-6)l 
47r(co2-08

2)ico ( 2 i r ) V ( u 2 - 0 . * ) J k2 

X dh&rlyil vi',v2',k,co) j — ( i o - k ) - — ( i o - k ) |G.r(k,vi',V2% *-> oo). (47) 
J lras rar J 

If we now introduce a cylindrical coordinate system in k space in which kz is parallel to the magnetic field and if we 
decompose the field E0 into components parallel and perpendicular to the magnetic field, we can rewrite Eq. (47) 
as follows: 

c o s
2 £ o ^ uvlEo2e^ f 1 f / es er\ 

Jsz= — / d*kk2- / d^Q.rCvil v ^ v ^ M f )G. r(k,vi ' ,v20, (48) 
47rt'co 2(2?r)3co2 J k2 J \ms mrl 

ki2 fco2Eoi-icoQs(E0xXS) _ „ , „ , _, «.V»« 1 r ^2fco2Eoi-icoQs(EoxX6) r „ 
[coo2E0x-icofi8(EoiXS)] d*k— \dh& 

8TT2CO2 ( 2 X ) J k2 I co 2 -O a
2 y 47rico(co2-Os

2) 8TT2CO2 ( 2 X ) 
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If we now denote 

and (T=cr0+<T1 where <r° is the reactive part and a1 the resistive part, we conclude that 

asz°=cx)8
2/4wio)7 

o>8
2 / c o 2 / V - 0 8

2 ) ia>Qs/(o>2-Q,2)\ 

4 7 r ^ \ - ^ O s / ( o ) 2 - O s
2 ) w2/(o>2-Q8

2) / 

87T2OJ2 (2ir) i &2 y W , w r / 

cos
2 1 /• kL

2\/ u2 /(w2-G.2) M V ( u 2 - O s
2 ) \ /" _ res co2 er a>2 1 

- g l i = / d z k \ \ / ^ 1 \Gs 

& r V (2x) 7 ft* l \ - f « 0 . / ( « * - 0 . * ) co2/(co2-Q8
2) / y Lw. (o>2-Q8

2) w r (a>2-Or
2)J 

J / dh.QJ \GJ 
J J Lms (o>2-08

2) w r (co2-S2r
2)J J 
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(50) 

(51) 

(52) 

(53) 

(54) 

/MlJ ( « 2 -8 . 2 ) - w2/ (co2-Os
2)> 

\ a>2/(a>2-Qs
2) iwO s / (w2-08

2) /y " " "Lw. (o>2-08
2) w r (co2-12r

2). 
(55) 

I t is obvious from (54) and (55), that we only need the information of Qsr and Gsr averaged over the azimuthal 
angles in velocity space. 

V. LIMIT OF INFINITE ION MASS 

I t is conceivable that if the frequency is very high, say o>>a>e, and if the electron temperature is equal to or higher 
than the ion temperature, the ions will not respond to the fast oscillations and thus can be treated as immovable. 
In other words, in such a case, dominant results can be obtained by considering the limit as mrl - * 0. In this limit, 
considerable simplification can be gained. We can show (Appendix C) that 

/ dhiQJ — Os-— 6r)G8r= • 
J \m8 mr / 

4:Tiniei2ee
26e 

me
2e~(—wy k)ft2 

where 68 is a constant (which depends upon e,/mB), w=oo/k, and 

/

+oo 

du— 
-00 U 

+oo r /kiVi\ +oo 
*.(«) = E dh&£(k-y)n-u-]jA ) £ (C(k-v)m+iX]e-(0))-1(k-0/?e/3v))m. 

n=*—oo J \ 0 e / »n=—oo 

(56) 

(57) 

With the help of (57), we are ready to discuss the conductivity tensor. Clearly, since the ion motions are neglected 
in this limit, the effective current density is due to the electrons. Hence J = Je, and according to Equations (53) 
to (56), we conclude that 

t03e 

Awco 

f to2/(a>2-Qe2) iMe/{o>2-Q,2) (T| 

icoOe/(a>2-Ga
2) a rVV-Oe 2 ) 0 , 

0 0 lJ 

f[(w4+w2Oe2)/(a)2-Oc
2)2]fti2 2^3Ocftx

2/(co2-Oe
2)2 0 • 

2^312eftl2/(c02-Oe2)2 C(c04+W2fle2)/(a)2-ac
2)2]fti2 0 

0 0 k2) 

kirniehe2 r+°° 

(58) 

m2 1 r 
/ d^k 

8TTV (2T) J 

X-
kbme

2e~(—w) J _ c 

du-
u—w+i\ 

(59) 

For the special case of electrons possessing a Maxwellian distribution and in equilibrium with the ions, (59) 
reproduces the result previously obtained by Oberman and Shure.6 

8 C. Oberman and F. Shure, Phys. Fluids 6, 834 (1963). 
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VI. SUMMARY AND REMARKS 

The foregoing discussion represents an extension of the previous paper (I) to include the effect of a uniform 
external magnetic field. A general expression for the high-frequency conductivity is obtained. The results is valid 
under the following conditions: (1) the frequency is assumed to be not in the vicinity of the cyclotron frequency, 
(2) the unperturbed distribution function may be anisotropic FB(y) = F8(yt,v1) but must be stable, and (3) the time 
of relaxation of F8 toward complete thermodynamic equilibrium is long compared with the period of the oscillating 
field. 

The limit of infinite ion mass is also discussed. In this limit the general expression is considerably simplified. For 
the case of an equilibrium plasma, the result obtained by Oberman and Shure6 can be reproduced instantly. How
ever, it is not easy to compare the present result with that obtained by Dupree7who recently discussed the absorption 
coefficient for radiation, since his approach and formalism are different, and since his result is expressed in terms of 
the quantity (8ptSNe) for which, besides the equilibrium case, no explicit expression for the general case was given. 
However, if the unperturbed plasma is in thermodynamic equiHbrium, both of our results agree with that derived 
by Oberman and Shure. 
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APPENDIX A 

Identification of the Operators X!*n8e8%fcPvP8 (v | v',k,f) and P8 (v | v',k,£) 

Let us consider the fundamental equation 

[d/a /+ff . (k ,v^)>.(v ,M = 0, (Al) 
where 

d £wie8 dFs 
: z (A2) 

d<f> 

d $wie8 dFs f 
flr

8(k,v,^) = ik«v—fis k / dhY, n8e8. 
d<f> m8k

2 d\ J 

Evidently, Eq. (Al) is the usual linearized Vlasov equation with an external magnetic field Bo. We can write 
formally 

^ (v ,k , / ) = P*(v| v ' , k ,0^ (v ' , k ,0 ) . (A3) 

Here ^ s(v,k,0) is an initial condition and P , ( v | v',k,£) is an operator to be identified. 
Now let us return to Eq. (Al) and introduce a Laplace transform 

£.(v,k,w)= / 
Jo 

<te-»'"V.(v,k,0 (A4) 

with lma><0. The equation then reduces to 
d$* ! . _ i r . .. 4?r^ dF — 

_ ' dh\p 
d<l> Os - . - - - - -

Thus, we obtain 
£iries dF8 

1 1 r 4iries dFs f 
= —i(co+k-v)^=— — ̂ ,(0) k E » A /« 

Os Q8L msk
2 d\ 8 J 

1 [* f kxies dF8 f 
& = / # ' / 8 (co , <£'—<£,sin<£'—s4n<£)Us(0) k £ n8es / d3v$8 

VSJ±«> I m8k
2 dv 8 J 

(A5) 

(A6) 

where the correct sign for the lower integration limit depends upon the sign of ti8 (it should be so chosen that the 
integral converges). Furthermore in (A6), I8 is an integration factor, i.e., 

I8(oo,(j>Jsm(t)) = exp{—(i/n8)l(o)+kzvz)<j>+klvl sin</>]} with lma><0. (A7) 

In the following we assume f»(0) = fa(v„vlykfl) and shall be interested only in the result of $ averaged over 0.8 Thus 

&(v,k,«) = / d(t>\ (fy7.(u,0'-0,sin0'-sin0)U.(O) -k - £ » . e . / d V . (A8) 
27rOgJ0 J ±<x> I m8k

2 d\ 8 J J 
7 T. Dupree, Phys. Fluids, 7, 923 (1964). 
8 This step of averaging over the azimuthal angle facilitates the discussion in the present paper. However, one ought to be reminded 

that such an operation may not be useful in the discussion of other problems. 
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or 
1 £ . n . « , r r** /•* 

/

l 7 ft c c c r 
d*v$.(?M= '—^- dh d<t>\ d<j>'Is(w,<t>'-<t>,sm(t>'-sm<l>)^(0), (A9) 

«(co,k) 2TTOS 7 y0 y± 

ws
2 i r2« r+ r dF* <9Fsi 

c(w,k) = 1 - E / ^ / <ty'A(w, * ' - * , sin^r-sin0) fcz Hi cos<£' . (A10) 
. *2 2irfl../o i+oo L dvz dvLJ 

Making use of the Bessel identities 
+00 

e±(iin8)kiv1sm<i>= £ J^vi/tt^™*, ( A 1 1 ) 
n=—oo 

COS06±<*'Q*)fc^8in*= £ («J2,/* iW1)/n(*lVO.)«±*n0, ( A 1 2 ) 
n=—oo 

we obtain 

€(»,k) = l - E — L / ^ ( * — + )• (A13) 

For simplicity, a short-hand operator notation is preferable, i.e., 

1 C2T f* /kivx\ /hvA 
(f («+k.v)-O.d0)-1= / d4>l ^ ' E E /»( )Jm[ )^-wo.)ic«+*-.)c*W)+o.(»*'-«*)]. (A14) 

In terms of this notation, we see immediately that 

ikDt(vhk) f Y,snse, 
P.(v|v',k,0 = — / due*' /^VSCvi'-Vi) / J V , (A15) 

2W_0O+»0_ t(co+k-v)-Q8d#J €(«,k) J i(a>+k-Vi')-SWJ 

/

^ .̂+oo+io- i f 5Zs w«e, 
<*HiP.(v|v',k,0=— / &*«*' / < * V ^ - ^ . (A16) 

27rJ_00+to_ €(o>,k) J i(a)+k>v)—Q8d<l> 

and 

With (A15) and (A16) the operator Q, r(vi | Vi',v/,k,/), defined as 

Q.r(vi| vi /,v2 ',k,/) = P . (v i | vi',k,*) £ ^ r / ^ 2 P r ( v 2 | v2 ' ,k,0 , 

is thus in principle determined. 

APPENDIX B 

Reactive Approximation of / , (v ,0 

In this Appendix, we study the solution to the following equation: 

df8 es dfs es dF8 

—+—(vXB0) = Eoe*-« (Bl) 
dt m8c dv ms dv 

in which F3 is assumed to be known and to be weakly time-dependent. In order to solve Eq. (Bl) we apply the 
usual technique of characteristics. The following contains some details concerning the method of solution. First of 
all, we may solve Eq. (Bl) formally such that 

/ . ( • , 0 = e x p [ - O f ( v X 6 ) - V v 0 / . ( v , 0 ) E 0 ^ - / dre'^ exp[-£2 s(vX&)-V*Q , (B2) 
ms JQ dv 

where b= HQ/BQ and exp[—0 s(vX5)- TV] represents an operator which can be easily identified. To do this, we 
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consider the equation 

^ + ^ _ ( v X B o ) . d i ! = 0 . (B3) 
dt m8c dv 

By integrating along the particle trajectory, we can show that any solution to Eq. (B3) of the form 

/,(v,0 = / . [ (v -5)8- (vX5)x5 cosOJ- (vX5)sinO^, 0] (B4) 

satisfies the equation and the initial condition /,(v,0). Therefore, we conclude that the following prescription holds. 

exp[-08(vX5)-Vv/]/,(v,0) = /£(v-5)6-(vX5)x5cosO^-(vXS)sinO^O]. (B5) 

Returning to Eq. (B2), we can thus write 

/*(v,0 = /* [V(0 ,0] -— E0e-<- / dre-H—) , (B6) 
m8 JQ \d\/v-+v(t) 

where 
V(/)-[(v-5)S-(vX6)X6cosO^-(vX5)sinO,/]. 

If we are only interested in the solution as t —> <*> and if we suppose /[V(oo)70] —> 0, then we obtain 

ffat)**-—j»t f dre-^l(EQ'b)b-(EoXb)Xb cosQ.r+(Exfc)sinOfr]- (dFs/dw) 
m8 JQ 

= - — £ o ^ ( f c o ( c o 2 - Q a ^ ^ (B7) 
m8 

where $= E0/£o. In obtaining (B7) we have made use of the property 

F.(Y) = F.(V„V1). 

APPENDIX C 

The Integral Operation fcPvxQ8r{^){{e8/m8)^8— (er/mr)6r)G8r(k,Vi',v2', *-><*>) in the Limit of Infinite Ion Mass 

Making use of Eqs. (21), (36), and (37), we obtain in the limit mr1 —> 0 that 

/ d ^ . r ( a > ) ( ^ - ^ r ) G . r ( k , ¥!',¥,') 
J \ms mr / 

If +00 /kxViX\ (eineeezde/me
2k2)$e~(v) 

= - dht E JnH 
i J n=—oo \ Qe / €-[—0,— (k* v)n , k][a>+ (k« v)n—i\~] 

1 r+~ 1 f r +« Jn
2(kivuf/Qe) (nifife&JmWykrivi) 

= — / &,! dhx' E 
2wi J-oo ie+(o)i—o)} k) [J n—« [a>i+(k* Vx)n—i\] (w—wr-iX) 

- / <*«*,' E , (ci) 
y n—00 [a>—«i—(k-V2')n—iXD (coi—iX) J 

where 0S is a constant that depends upon e8/m8 and 

+« (k-(dF^dv)) y 

^(v )=-E [ ( k - v ^ X ^ O ) 

Since e+(cui—«, k) is analytic in the upper half of the complex coi plane, we can take advantage of this fact and 
evaluate the o>i integral in (CI) by contour integration. Consequently, 

f /es er \ iA f -H» / n
2 ( ^ 2 i y a ) ^ + ( v 2 0 

/ ^ l a r C V i l v ^ V ^ M f - ^ . tfr)G.r(k,Vl',V,0= " 77 / ^ ' E — " — , (C2) 
./ \w 8 mr / e~(—w, k) ./ n~-«> L(k-V2')n—co+iXJ 

where 4̂ = nieH?Qjm?k2. 
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In the foregoing discussion, we have used the definition 

o)s
2 co r 1 / dFa\ 

*H-«,k)=i-E— L dh k — ) , 
« k2 «—<* J ( k • V) n db (codb tX) \ aV / n 

where the superscripts (dt) designate the sign in front of i\ (as X—» 0). 
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Suppression at High Temperature of Effects Due to Statistics in the 
Second Virial Coefficient of a Real Gas* 
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I t is shown that the repulsive core present in realistic two-body potentials and in hard spheres leads to the 
rapid suppression of the effects of statistics in the second virial coefficient, except at very low temperatures. 
For hard spheres, an upper bound is obtained which goes down exponentially with temperature when the 
latter becomes large. 

THE effects of quantum mechanics on the second 
virial coefficient may be formally separated into 

diffraction effects which obtain for a Boltzmann gas 
and exchange contributions associated with the Bose-
Einstein or Fermi-Dirac character of the gas.1 This 
separation arises very naturally in the formalism de
veloped by Lee and Yang2 and allows us to consider the 
virial as being the sum of a direct term 

£direct= - (N/2)fdrl2^\T
z(r I *-**~l | r > - 1 ] , 

which in the limit h —> 0 gives us the classical answer, 

* Work performed in part under the auspices of the U. S. 
Atomic Energy Commission. 

f This work was completed at Los Alamos Scientific Laboratory 
while serving as consultant. 

{This work was supported by Air Force Office of Scientific 
Research Grant No. AF-AFOSR-713-64. 

§ Summer student from the Digital Computer Laboratory, 
University of Illinois, Urbana, Illinois. 

1 See J. O. Hirschfelder, C. F. Curtis, and R. B. Bird, Molecu
lar Theory of Gases and Liquids (John Wiley & Sons, Inc., New 
York, 1954) with special reference to the article by J. deBoer 
and R. Byron Bird on the quantum theory and the equation of 

2 T. D. Lee and C. N. Yang, Phys. Rev. 113, 1165 (1959). 

and of an exchange term 

^exch= :F(iVT/2)[l/(25+l)]/Jr23/2X r
3(r|e-^ei|_ r). 

i?rei is the relative Hamiltonian, /3-1 is Boltzmann's con
stant times the temperature, \T is the thermal wave
length defined as h{2Tnnkt)~112, N is Avogadro's con
stant, S is the spin of the individual component, and the 
sign is negative for Bose-Einstein statistics and positive 
for Fermi-Dirac cases. 

In the case of a perfect gas we have 

5exch=TA^(Xr
3/25/2)[l/(25+l)]. 

At high temperatures this value is customarily1 used to 
represent the quantum-mechanical effects due to statis
tics of a gas such as helium, while a Wigner-Kirkwood 
expansion is used to evaluate the direct term. 

The purpose of this note is to point out that, in fact, 
for a real gas the presence of a strong repulsive core 
entails a drastic suppression of the exchange effect at 
high temperature.3 We first show this to be the case for 

3 Lloyd D. Fosdick has, independently, reached similar con
clusions (private communication). 


