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determined from refractivity. (A thermal positron has a 
velocity of about 107 cm sec"1, so that for a molecule of 
dimension about 10~7 to 10~8 cm the passing positron 
looks like a transitory alternating electric field of 
frequency 1014 to 1015 sec"1 i.e., the frequency of visible 
light.) 

The correlation of \e+ with a is evidently much 
stronger than with Xoirac- In fact from Fig. 4 we can get 
approximately, 

X e + = a U5/l0 

I. INTRODUCTION 

PREVIOUS theoretical treatments1,2 of scattering by 
the hydrogen-molecule ion H2+ indicate that the 

internal degrees of freedom of this molecular ion must 
be considered to predict its scattering behavior accu­
rately. This is particularly true because the major 
mechanism leading to the formation of H 2

+ is 
H2(1S9+) -> H2+(2i;a+)+^-, where the Franck-Condon 
factors predict a finite probability of occupation3 of all 
bound vibrational states of the 2 S a

+ electronic state. 
These states also have long lifetimes, because they must 
decay by a quadrupole mechanism; hence any experi­
ment p erformed with H 2

+ could easily involve all 19 
bound vibrational states.4 

In this paper we investigate the total cross section for 
the inelastic process 

a + H 2 + ( l ^ ) = a + H 2 + ( 2 ^ ) , (1) 

* This work was supported by the U. S. Atomic Energy Com­
mission. 

1 James M. Peek, Phys. Rev. 134, A877 (1964). 
2 E. H. Kerner, Phys. Rev. 92, 1441 (1953). 
3 J. Wm. McGowan and L. Kerwin, Can. J. Phys. 42, 972 (1964). 
4 S. Cohen, J. R. Hiskes, and R. J. Riddell, Jr., Phys. Rev. 119, 

1025 (1960). 

for all gases, with \e+ in /*sec * atm 1, a in esu 
X1021. 

This general relationship seems to demonstrate that 
the long-range dipole distortion is the predominant 
mechanism in low-energy positron scattering. This has 
not previously been clear, either in the positron case, 
or for slow-electron collisions. There is support for this 
picture from recent calculations of Cody et al.12 

12 W. J. Cody, Joan Lawson, Sir Harrie Massey, and K. Smith, 
Proc. Roy. Soc. (London) A278, 479 (1964). 

where each bound vibrational state of H2
+(l^o-0) is 

considered separately and a is an electron, proton, or 
hydrogen atom. The orbital designating the electronic 
eigenstate of H 2

+ is given in parentheses. It will then be 
possible, with a knowledge of the population of vibra­
tional states, to predict an observed cross section by 
forming the appropriate average of the results for the 
individual vibrational states.5 Investigation of transi­
tions to several lower lying electronic states1 has shown 
that the reaction indicated by Eq. (1), in the electron 
case, dominates the discrete transitions proceeding from 
the ground state. The 2p(ju state has no bound vibra­
tional states; hence, in the electron or proton case, the 
cross sections given here will be good approximations to 
the dissociation process that results in a proton and 
hydrogen atom. 

The approach will be that of Ref. 1 (to be referred to 
as I ) ; that is, the total cross section will be calculated in 
the first Born approximation and it will include the con­
tributions from all eigenstates of nuclear motion for the 
final electronic configuration. The method used in I for 
summing the contributions from all final eigenstates of 

6 See Eq. (13). 
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The first Born approximation to the transition \§<jg-2p<ju in H2
+ is developed. The internal degrees of 

freedom of the molecular ion are treated explicitly, and in a manner that takes advantage of the dissociative 
nature of the 2pau state. The resulting total cross section is found to depend on the initial vibrational state. 
Numerical results are presented in graphical form for the cases in which this process is caused by collision 
with an electron, proton, or hydrogen atom. In each case the total cross section is given for all 19 bound 
vibrational states of the H2"1" ground state (the ls<rg orbital). In the electron and proton cases the cross 
section for the lowest (p = 0) vibrational state is observed to be two orders of magnitude lower than the 
cross section for the last (? = 18) bound vibrational state. The dependence on initial vibrational state in the 
hydrogen-atom case is not as dramatic as in the bare-charge cases, but simultaneous excitation of the hydro­
gen atom is demonstrated to be an important factor in the shape and magnitude of the cross section. A 
method of summing simultaneous excitations is presented for the situation in which one particle undergoes 
a specific transition and the other particle is left in an unspecified state. 
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nuclear motion was based on the closure relation that 
results from assuming these eigenfunctions form a com­
plete set. This technique is exact for a given momentum 
transfer, when the collision energy is such that all states 
in the sum are possible, but makes it impossible to 
calculate a total cross section consistent with energy 
conservation. An alternate method of performing this 
sum is given in Sec. II where use is made of the fact that 
all nuclear eigenstates for the 2p<ru potential curve lie 
in the continuum. This derivation removes the difficulty 
encountered in retaining energy conservation at the 
expense of introducing an approximation to the con­
tinuum wave function. The advantage of the alternative 
treatment will be discussed. Section III contains the 
results of calculations based on this theory for the re­
action of Eq. (1) when a is either an electron or a proton. 
Total cross sections are given for all 19 bound vibra­
tional states of the lsag state. 

The total cross section for reaction (1) when a is the 
hydrogen atom is considered in Sec. IV. The simul­
taneous excitation of the hydrogen atom is demon­
strated to be an important factor in the total cross 
section. An asymptotic theory, correct at both low and 
high collision energies, is developed that takes into 
account all possible final states of the hydrogen atom 
for a given inelastic process in H2

+. Correction terms are 
derived and a comparison of this approximate technique 
with the term-by-term sum is made. Numerical results 
for reaction (1) are given for all 19 bound vibrational 
states of H2

+(l5o-0) for both the case in which the 

hydrogen atom remains unexcited and the case in which 
all possible final states of the hydrogen atom are 
included. 

II. EXCITATION TO A DISSOCIATIVE STATE 

The first Born approximation to the total cross section 
for the excitation of a molecule was shown in I to be 

H 
Jo 

Qr= dRR*\Xr(R)\*Q(R), (2) 

where the initial wave function is ^n=\pn(tyR)Xv(R) 
XFz,j»f(5,£); \f/n(t,R) being the initial electronic eigen-
function, XV(R) the initial vibrational wave function, 
and YLM a spherical harmonic describing the initial 
rotational state. The total cross section Qv represents 
the sum over all nuclear eigenstates of the final elec­
tronic state, i/v, and an average over the degenerate 
levels of the initial rotational state. For the scattering6 

of an electron or proton, 

Q{R) 
fen J kn—kn' 

dKK-s\e(K,R)\ (3) 

where ju is the reduced mass of the scattering system, 
kn^fJiVo where V0 is the relative velocity between the 
two colliding systems, ^ = { 2 M [ ( | ) M F 0

2 ~ A £ ] } 1 ' 2 , and 
AE is the energy loss of the inelastic process. The Born 
matrix element is defined as 

(K,R)\2=— / / sindddd^l drexp(iK-r)rpn(r,R)rpn,*(r,R) 
4T J o J o \J ' 0 J 0 

— [ [ sinS dSd£\e(KM,R)\2, 
4x J o Jo 

(4) 

where 5, £ orient R with respect to K, K=kw—kn' and K= |K| defines the momentum transfer. 
As was pointed out in I, the dependence of kn', hence AE, on the final rotational and vibrational states is ignored 

in deriving Eqs. (2), (3) and (4). The argument based on closure then makes it impossible to choose AE in a manner 
consistent with energy conservation and does not indicate what method of choosing AE is best. This poses a serious 
problem, especially if the physical process is one in which AE may cover a wide range of values. One such situation, 
under consideration in this paper, is the scattering from H2+ (lsa0), initially in a highly excited vibrational state, 
to the dissociative state H2+(2^<rw) where a wide range of dissociation energies is possible. By considering the 
nature of the final nuclear eigenstate and introducing different approximations, a more detailed knowledge of the 
scattering process can be obtained. Following Kerner,2 the final-state function can be written 

^*(r ,K,R)=^*(r , i? )X,<-)*(K,R) , 

= ^ ' * ( r ^ 7 ^ ; ^ £ (-0 ?exp(^)F,m*(5,£)F l m(^o^o)^*(^), 
(87T3)1/2 2=0 m=*-l 

(5) 

where X«(-° satisfies the boundary conditions for dissociation, 0O, <t>o fix K with respect to K, and di is the phase 
shift. This wave function refers to an energy in the continuum of JJU'K2 where y! is the reduced mass of H2+. The 

6 All equations will be given in atomic units unless otherwise specified. 
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total cross section is then 

Q sin0 ddo dd>o KHK I dK X 
o Jk^kn, V0

2K* (2L+1) M—L 

47T oo I 

2„= I I I s i n 0 ddo d<f>o KHK I 
JQ JQ JO J knr-kn' H dR exp(iK-t)Mr,R)4'n'*(T,R) 

XFLM(5,£>X,CR) E E ( - f l , e s p ( « . ) M » , 8 I ' i . ( y « ) ^ V ) 
( & T 3 ) 1 ' 2 1-0 *>—« 

(6) 

The integration over the outgoing direction of the dissociating particles 60, <£o can be carried out immediately, 
yielding 

(•'max pkn+kn' g , . I L x I \ f f 
Qr= MKI dK E E E /*/<mexp(*K.rtyn(r,i?)^*(r,2?) 

JO Jkn-kn- V0
2K3(2L+l)»>—Ll-0M~-l\J J 

XF I l J,(a>$)X,(tf)(V(^)1/9F, )1*(a>{)F,*M) (7) 

The integration over K is stopped at the value Kmax which is determined by energy conservation. We make the 
approximation 

Fl*(KyR)^8(R-R,)y (8) 

where Rf is the classical turning point of the H2
+ nuclei, with the energy | / /K2 , in the potential of the 2pau state. 

The Dirac delta function 8(R—R') is normalized such that 

/ 
dKX(K,W)X*(K,R") = 5(R' - R"). (9) 

The sum over I, mm Eq. (7) can be carried out immediately whenFI(K,R) is taken independent of I. By averaging 
over the degenerate levels of the initial rotational state and making use of the properties of the Dirac delta function 
to carry out the integration over R, the total cross section becomes 

Qp= / R2dR dK r / / sin5 d8 ^(1/4TT) | X,(R) \2 / dx exp(iK-t)ipn(r,R)tn>*(r,R) 
JRmin Jk„-kn> VQ2KZ Jo Jo I*' 

• (io) 

Here Rmin is the classical turning point associated with 
Kmax- From the definitions of Eqs. (3) and (4), Eq. (10) 
can be written as 

without further approximation 

Qv 
J Rxaxn 

Q. 
• ' 0 

R^dRlX^l^QiR). (12) 

R2dR\X,(R)\2Q(R). (11) 

The algebra that leads from Eq. (7) to Eq. (11) gives 
a definite interpretation to Q(R) and the integration 
over R. Q(R) represents the cross section for the excita­
tion of H.2+(ls<rg) from the initial vibrational state v to 
the state H2

+(2£<ru), which has an energy in the con­
tinuum implied by Eq. (8). Hence, the AE to be used in 
calculating kn> is the energy difference between the 
initial vibrational state7 and the final electronic-state 
potential curve at the internuclear separation R. The 
integration over R is just the summing of all possible 
energies in the dissociation continuum. With this in­
terpretation of AE, Q(R) will be zero for R<Rmin, so 

7 The author is grateful to Gordon H. Dunn for pointing out the 
fact that the eigenenergy of the initial vibrational state should be 
used rather than the energy of the ground-state potential curve at 
the point R. 

Equation (12) is identical in form to Eq. (2); however, 
the choice of AE is now clearly defined and the one 
additional approximation to the Born theory is stated 
by Eq. (8). 

The accuracy of the approximation to the final-state 
nuclear eigenfunction, Eq. (8), must be questioned. It 
can be inferred from the work of Kerner2 (see his Fig. 3) 
that the delta-function dependence on R is not particu­
larly good and it follows that the predicted velocity de­
pendence of the dissociating fragments may be in­
accurate. However, in this paper we are not concerned 
with the velocity distribution and are interested only in 
the effect of this approximation on the total cross section 
defined by Eq. (12). Arguments can be made that 
Eq. (8) is reasonably valid at small or intermediate R 
and becomes poor at large R where the 2pcru potential 
curve is relatively flat. The approximation would then 
be considered good for the lower lying vibrational states 
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FIG. 1. Qv for a proton exciting 
the transition lsag—2p<ru in H2"1" 
and all bound vibrational states of 
the ground state of H2

+ shown as 
a function of the relative velocity 
VQ of the collision. Q„ is in units of 
7Tfl0

2 and VQ is in atomic units. 
The upper scale is the energy in 
keV of a proton colliding with a 
stationary hydrogen-molecule ion. 
The cross sections that go off scale 
are continued in the upper-right-
hand corner. 

of the lsag electronic state but probably unreliable for 
the last few bound vibrational states. However, the true 
situation will not be known until the matrix elements 
appearing in Eq. (7) have been evaluated. Work of this 
nature is now in progress. 

III. DISSOCIATION BY AN ELECTRON 
OR PROTON 

The total cross section Qv denned by Eq. (12) is shown 
in Fig. 1 for the proton case and in Fig. 2 for the electron 
case. These figures show the influence of the initial vibra­
tional state and clearly indicate the necessity of having 
accurate knowledge of the population of vibrational 
states prevalent during a measurement to make a pre­
diction of the effective cross section. Obviously, if the 
numbers fv represent the initial population of vibra­
tional states of H2

+ , the observed total cross section 
would be 

18 18 

(13) 

Since there can be no unique set of /„ which would apply 
to all situations, it is necessary to give the individual 
Qv rather than the composite Qohs. 

Except at the lowest velocities given in Fig. 1, the 
cross section for the proton case is independent of mass. 
Hence, this cross section will apply to the scattering of a 
bare particle of charge z if Qv is replaced by Qv/z

2. At 
higher velocities the electron results approach the mass-

independent case. The electron results, Fig. 2, are 
terminated at these velocities since the cross section can 
then be obtained from Fig. 1. 

The integral denned in Eq. (12) was evaluated in the 
following manner. The vibrational wave functions used 
were those tabulated by Cohen, Hiskes, and Riddell.8 

The evaluation of Q(R) has been carried out1 for a few 
values of R using the exact electronic eigenfunctions. 
This turns out to be a laborious task and, since Q(R) is 
needed over a wide range of R, 0<R<20.0, for which 
all necessary exact wave functions are not available, the 
electronic eigenf unctions were approximated by 
the appropriate linear-combination-of-atomic-orbitals 
(LCAO) functions 

^± = tf±($«±*b), (14) 

where X± is the normalizing constant and <f>0, $b are 
unscreened hydrogenic functions centered on nuclei a 
and b, respectively. The function \p+ refers to the lsag 

state and \//~ refers to the 2pau state. The evaluation of 
Q(R) is then relatively simple, the results being a 
generalization to any R of Ivash's9 calculation when his 
screening constant is taken equal to one. The error 
introduced into the calculation of Q(R) by using the 
LCAO functions [Eq. (14)] has been shown10 to be 

8 S. Cohen, J. R. Hiskes, and R. J. Riddell, Jr., University of 
California Radiation Laboratory Report No. UCRL-8871, 1959 
(unpublished). 

9 E. V. Ivash, Phys. Rev. 112, 155 (1958). 
10 James M. Peek, Phys. Rev. 139, A1429 (1965). 
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approximately 30% at R=2.0a0 and 20% at R=3.2a0. 
The error decreases monotonically from these values as 
R becomes large and increases as R becomes small. 
Q(R) calculated in this manner is greater, for all R, than 
the true first Born value. See Ref. 10 for a more detailed 
discussion. Because of the fact that Q(R) is a rapidly 
increasing function of R1, the error in Qv will tend to be 
that of Q(R') at a value of R' occurring at the largest 
internuclear separation for which | XV(R) \2 has a maxi­
mum. This tends to minimize the effect of the large 
errors found for Q(R) at small R in the calculation of 
Qv. However, because of this approximation, as well as 
the untested nature of the approximation defined by 
Eq. (8), these numerical results should be viewed as 
semiquantitative in nature. 

The limits used in evaluating Q(R) were calculated 
from the eigenvalues for the initial vibrational state4 

and the exact 2pau potential curve.11 The XV(R) are 
known for increments in R of 0.05a0; Q(R) was calcu­
lated at these same values of R and the quadrature was 
carried out using Simpson's Rule. 

One additional approximation has the advantage of 
reducing the computation time by a factor of almost 19 
although it does not introduce any simplifications into 
the calculation. If one takes AE as the difference be­
tween the \s(jg and the 2pau potential curves,11 and 
hence independent of v, one table of Q(R) is sufficient 
to calculate Qv for all 19 vibrational states for a given 
VQ rather than one table for each of the vibrational 
states. I t was found that this approximation was quite 
good for high velocities but decreased the cross section 
by about 10% for F 0 = 1.0. The error was a function of 
v, being smallest for the extreme v and greater for the 
intermediate v. Because of these results, the correct 
values of AE were used for Vo< 2.0 and the approximate 
values were used for all higher velocities. As an indica­
tion of the computation times required, it takes between 
20 and 25 min to calculate Qv for all v at a given V0 on 
the CDC 3600 when the correct limits are used. 

A recent paper by Bates and Holt12 treats the case of 
proton excitation of the 2pau state of H 2

+ as well as 
other final states of the molecule ion. Their approach is 
much the same as that used here except they avoid the 
use of approximate wave functions near the equilibrium 
internuclear separation and scale the Q (R) calculated 
with the LCAO functions by an appropriate factor for 
large R. The limits used by Bates and Holt are calcu­
lated from the energy difference between the \sag and 
2pau curves. If we note that the vibrational wave func­
tions used in these two calculations may not be identical, 
the numerical results of these two treatments are in 
essential agreement with the rough error analysis given 
in the preceding paragraph. 

11 James M. Peek, Sandia Corporation Report No. SC-RR-65-77 
1965 (unpublished). ' 

12 D. R. Bates and A. R. Holt, Proc. Phys. Soc. (London) 
A85, 691 (1965). 
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FIG. 2. Qv for an electron exciting the transition \sag—2pau 
in H2

+, for all bound vibrational states of the ground state of 
H2

+, shown as a function of the relative velocity VQ of the col­
lision, in atomic units. The upper scale is the energy in eV of an 
electron colliding with a stationary hydrogen-molecule ion. 

IV. DISSOCIATION BY A HYDROGEN ATOM 

The reaction of Eq. (1) for the hydrogen-atom case 
must be written as 

H ( l j ) + H 2
+ ( l ^ ) = H(«/)+H2

+(2#cr„), (15) 

where it is assumed that H is initially in the Is state and 
may be in any one of its eigenstates after the collision. 
This corresponds to the conditions of many experiments 
where a specific process is observed for one particle but 
nothing is known about the final state of the other 
particle. The first Born approximation to Qv for this 
case can be found by a simple but lengthy argument 
which results in redefining Q(R) in Eq. (12) as 

Q(RAs)-
SlTfX2 

k 2 

kn+kn' 

kn-kn' 

or 

Q(R 

dK K-*\t(KJt)\* 

X\I{\s)~\\\ (16) 

&n" J kn—kn' 

dKK-3\e(K,R)\ 

X\I(n'l')\\ (17) 

where n'V cannot refer to the Is state. The quantity 
I t{K,R) | 2 is defined in Eq. (4) and 

/(«/) = J rfrexp(iK.r)$l8(r)$„;*(r), (18) 
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where #is, $ni are normalized hydrogen-atom wave 
functions. Equation (16) applies to a collision in which 
the hydrogen atom is unexcited and Eq. (17) describes 
the simultaneous excitation of the two systems. 

The analysis for the reaction indicated in Eq. (15) is 
similar to that given by Bates and Griffing13 for the 
collision of two hydrogen atoms and to that of Boyd, 
Moiseiwitsch, and Stewart14 for the scattering of He+ 

on hydrogen atoms. As in these two papers, the simul­
taneous excitation of the target while the projectile 
suffers a specific excitation is found to give an important 
contribution to the desired cross section. 

The total cross section for a single excitation process, 
defined by Eq. (15) when »/= Is, is shown in Fig. 3. 
Qv again is seen to be an increasing function of v but the 
dependence is not nearly so dramatic as the er, H+ cases. 
This is a reflection of difference in behavior of Q(R) and 
Q(R,nl): That is, for a given F0, Q(R) as defined by 
Eq. (3) is proportional to R2 as R becomes large.15 Since 
| XV(R) |2 becomes important for larger R as a larger v is 
considered, the R2 behavior of Q(R) will amplify the 
difference between various Qv [Eq. (12)]. In the hydro­
gen-atom case, the asymptotic behavior for large R is 
Q(R,nl)^>A + (B/R2), where A and B are constants for 
a given F0.

15 If one evaluates Eq. (12) with a function 
of this form for the large R behavior, it is evident that 
the extension of | XV(R) |2 to larger R as v increases will 
have little effect on the different Qv. 

The cross section needed to compare with experiment 
is defined by 

Q(R?) = Q(R,ls)+Zn>i> Q(R,n7) (19) 

where Q(R,2) is the integrand to be used in Eq. (12) 
and 2 indicates that all contributions from simultaneous 
excitations are included. Previous work13 indicates that 
only the states n<3 plus the continuum give significant 
contributions to Q(R£). This point was verified; the 
formulas used for I(riV) were the ones given by 
McCarroll16 for the discrete states and the continuum 
contribution was obtained from results quoted by Bates 
and Griffing13 where the ejected electron is described 

» D . R. Bates and G. Griffing, Proc. Phys. Soc. (London) 
A66, 961 (1953); A67, 663 (1954); ^68, 90 (1955). 

14 T. J. M. Boyd, B. L. Moiseiwitsch, and A. L. Stewart, Proc. 
Phys. Soc. (London) A70, 110 (1957). 
m

 u Strictly speaking, the results quoted do not include the change 
in AE as R changes. For a given initial vibrational state, AE 
changes very little as a function of R, for large R, since the 2pau 
curve is flat for large R. Also, the energy differences between adja­
cent vibrational states is small, so the influence of AE as a function 
of R or the initial vibrational state is of secondary importance. 
Since AE becomes a very weak function of R for large R, it can be 
shown that Q (R) is bounded as R -* oo, but this occurs at such large 
R compared to the range of importance in evaluating Eq. (12) 
that the R2 behavior is the dominating factor. However, if one 
considers the "classical" limits, Q(R) is independent of v but the 
asymptotic behavior of AE is now a strong function of R, 
AE~aRe R, and one finds Q(R)~R* in the large R region. I t is 
shown later in this section that the hydrogen atom case is insensi­
tive to the lower limit, and hence to AE, so these omissions are in 
this case of even less importance. 

16 R. McCarroll, Proc. Phys. Soc. (London) A70, 460 (1957). 
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FIG. 3. Qv for a hydrogen atom exciting the transition \saa~ 2p<ru 
in H2

+, for several vibrational states of the ground state of H2
+, 

shown as a function of the relative velocity Vo of the collision, in 
atomic units. The cross section is for the hydrogen atom remaining 
unexcited. The upper scale is the energy in keV of a H2

+ colliding 
with a stationary hydrogen atom. 

by a wave function for an attractive Coulomb field. An 
example of the evaluation of Eq. (19) by adding these 
various terms is shown in Fig. 4 as the solid curve. 
Evaluating the sum in Eq. (19) by adding the individual 
terms is a tractable method but somewhat cumbersome. 
An alternative method of evaluating this sum is now 
developed. 

Utilizing the relationship13 

Lm|/(«0I2=1, (20) 
the approximate relationship 

HQ(R,n'n^ / dKK-* 
»'*' kn

2 A-n_In, 

X(l-\I(ls)\2)\e(K,R)\2 (2D 

follows. The approximation arises in ignoring the 
dependence of AE on riV when changing the order of 
integration and^summation and is emphasized by re­
placing k^ with kn>. In general, AE= AE(H2

+)+AE{nfV) 
where A£(H2+) is the excitation energy for H2+ at the 
internuclear separation R and AE(n'l') is the energy 
difference between the Is, riV states of the hydrogen 
atom. If we take AE(n'V) = 0.5 and evaluate 0(2.0,2) us­
ing Eq. (21), the dot-dash curve in Fig. 4 results. It is 
apparent from Fig. 4 that this method is asymptotically 
correct at both large and small V0y but not particularly 
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good in the intermediate range. This asymptotic charac­
ter also follows from the investigation of Eqs. (19) and 
(21). As F0 becomes small, the limits on the integral in 
Eq. (21) become equal and it is observed that Q(R^) 
^Q(R,ls), as it should in this limit. The error intro­
duced by using Eq. (21) to represent the sum can be 
shown, for large F0, to be proportional to \\~n where 
n>l. This same asymptotic character at large V0 was 
also found in the treatment of a similar process in 
hydrogen-atom-hydrogen-atom scattering13 where their 
method of using the sum formula, Eq. (20), does not 
give the correct asymptotic behavior for small F0. 

Correction terms to Eq. (21) for the ri'l" state are 
easily seen to be proportional to 

f&nffcn' r/Cnf-

/ dKK^\t(K,R)\^\I{n"l")\'i 

J kn—kn' 
f/cn+^n' 

- dKK-*\e(K,R)\*\I{n"l")\* 
J kn—kn' 

r>kn—kn' 

J kn—kn' 

dKK-3\i(K,R)\2\I(n"l")\2 

fhn-T-kn' 

+ / dK K~* | e(K,R) |21 /(»"*") |2 . (22) 
J kn+kn' 

In Eq. (22) kn
f implies we have used the correct 

AE(n"l"), and kn> is calculated with the approximate 
AE(n'l'). The limits kn+kn>, kn+kn

f are large in the 
important range of Vo and, since the integrand of the 
correction term is quite small for large K, the second 
term on the right side of Eq. (22) can be ignored. From 
the fact that AE(n'lf) is not very different from 0.5 for 
any bound n'l\ the largest correction term is expected 
to be the one from the continuum. The dashed line in 
Fig. 4 shows Q(2.0,S), including this correction term for 
continuum. From the agreement with the term-by-term 
sum, the usefulness of this approach seems to be 
established. 

This technique has another advantage when scatter­
ing by complex systems is considered. Note that Q(R,ls) 
and Eq. (21) require only the ground-state wave func­
tion for the hydrogen atom. This will also be true of the 
analogues to Eqs. (19) and (21) for any atom or 
molecule. Usually approximate ground-state functions 
are known but few, if any, excited-state functions are 
available for complex systems. Equation (21) circum­
vents this lack of excited-state wave functions required 
to calculate the individual terms in Eq. (19) and, at the 
expense of constructing a continuum function, this 
example indicates that quite high accuracy can be ob­
tained for all F0. 

The total cross section Qp, for the reaction of Eq. (14) 
when H2

+ is initially in the vibrational state v, including 
all simultaneous excitations, is shown in Fig. 5. The 
method and approximation used in calculating Qp was 

FIG. 4. Q(2.0) for a hydrogen atom exciting the transition 
ls<Tg—2p<ru in H2

+ shown as a function of the relative velocity Vo 
of the collision, in atomic units. The upper scale is the energy of 
H2

+ colliding with a stationary hydrogen atom. The solid curve 
shows the results for Eq. (19) found by adding the terms in the 
sum individually; the dot-dash curve is based on the approximate 
sum formula, Eq. (21), and the dashed curve is the result for the 
same formula plus a correction for the continuum contribution, 
Eq. (22). 

the same as that described in Sec. III. The use of LCAO 
functions to replace the H2

+ eigenfunctions has been 
considered elsewhere10 and we will repeat here only the 
observation that this approximation gives values of 
<2(2.0,ls) which are 7%, or less, higher than the result 
based on the eigenfunctions. Minor differences in the 
calculation of Qv for this case occurred on two points. 
The integrands of Q(r,nl) all vanish at small momentum 
transfer as a positive power of K. This has the effect of 
making Qv much less senstitive on the lower limit than 
in the electron or proton case, where the integrand of 
Q(R) behaves like K~l. Hence, Qv for this case is much 

E (kev) 
5 0 7 2 128 288 

FIG. 5. Qv for a hydrogen atom exciting the transition lsag—2p<ru 
in H2

+ shown as a function of the relative velocity Vo of the 
collision, in atomic units. This cross section includes contributions 
from the simultaneous excitations of the hydrogen atom. The 
upper scale is the energy in keV of H2

+ colliding with a stationary 
hydrogen atom. 
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less sensitive on the lower limit and the "classical" 
method of calculating AE as the difference between the 
\s(jg and the 2pau potential curves is a much better 
approximation. It was the one used in the computation. 
Numerical checks showed the error to be less than 1% 
at F 0 =0.6 and then to increase slowly as VQ was made 
smaller. The method of summing simultaneous excita­
tions made use of the approximate formula given in 
Eq. (21). The appropriate correction term for the con­
tinuum was evaluated according to Eq. (22) and then 
added to the results from the approximate summation 
formula. 

Comparison of the results that include simultaneous 
excitation with Fig. 3, which shows the cross section 
when these events are ignored, demonstrates their im­
portance. I t is apparent that the first Born approxima­
tion must include these processes when it is possible for 
them to occur. This is especially significant since their 
influence is the strongest at the high energies where the 
Born approximation is most likely to be used. As yet 

I. INTRODUCTION 

A LARGE number of calculations have recently 
been performed of the scattering of electrons by 

atomic hydrogen, at low1-4 and at high energies. This 
is on the one hand a reflection of the increased interest 
in atomic scattering processes in the atmosphere of the 
earth and of the sun, for example, and on the other hand 
of the presence of high-speed computers which make 
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the U. S. Office of Naval Research, and the Advanced Research 
Projects Agency under Contract Nonr-205 (49), NR 012-109, and 
NASA under Contract No. NSG 699. 
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there is no experimental evidence to compare with these 
results, but the influence of simultaneous excitations on 
the dependence of the cross section is suggestive when 
one looks at the results obtained for the H2

+ , H2 

scattering system.17 
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possible large-scale calculations aiming at high accuracy. 
In view of the concurrent recent interest of the experi­
mentalists and of the consequent improvements in 
technique, there is little doubt that relatively precise 
contact will be made shortly between the experimental 
results and theoretical calculations based on first princi­
ples, even for energies at which the distortion of the 
hydrogen atom is great enough to more or less com­
pletely invalidate the Born approximation. We might 
remark parenthetically that, roughly speaking, such 
contact has just about been made for scattering by an 
atom. It would obviously be extremely useful to the 
experimentalist to be able to normalize cross-section 
data by the use of reliable theoretical results. 

Because of the great similarity of the problems, in the 
course of studying e~H scattering the theorists have 
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The recently developed improved minimum principle for single-channel scattering is applied to a study 
of the s-wave elastic-scattering phase shift 770 of positrons by atomic hydrogen. The method requires the 
exact solution of the static one-body equation and of the corresponding static Green's function, and also the 
orthogonalization of the trial function to the hydrogenic ground-state wave function. The radial part of 
the trial function Q*f?t is chosen to be of the exponential-polynomial form, with linear and nonlinear varia­
tional parameters; to simplify the orthogonalization, Q^t is expanded in Legendre polynomials whose 
argument is the cosine of the angle between the coordinate vectors of the electron and the positron. Rigorous 
lower bounds are obtained on 770 at various energies. The calculation includes the contributions from hydro­
genic states with angular momentum /up to / = 5. For each energy, an estimate is made by extrapolation of 
the true contribution to 770 from 0 < / < 5 , and this estimate is used in turn to estimate the contribution from 
/ > 5 to 770. The rigorous lower bounds obtained and the estimates are compared with previous estimates of 770. 


