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In the foregoing discussion, we have used the definition 

o)s
2 co r 1 / dFa\ 

*H-«,k)=i-E— L dh k — ) , 
« k2 «—<* J ( k • V) n db (codb tX) \ aV / n 

where the superscripts (dt) designate the sign in front of i\ (as X—» 0). 
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I t is shown that the repulsive core present in realistic two-body potentials and in hard spheres leads to the 
rapid suppression of the effects of statistics in the second virial coefficient, except at very low temperatures. 
For hard spheres, an upper bound is obtained which goes down exponentially with temperature when the 
latter becomes large. 

THE effects of quantum mechanics on the second 
virial coefficient may be formally separated into 

diffraction effects which obtain for a Boltzmann gas 
and exchange contributions associated with the Bose-
Einstein or Fermi-Dirac character of the gas.1 This 
separation arises very naturally in the formalism de
veloped by Lee and Yang2 and allows us to consider the 
virial as being the sum of a direct term 

£direct= - (N/2)fdrl2^\T
z(r I *-**~l | r > - 1 ] , 

which in the limit h —> 0 gives us the classical answer, 
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1 See J. O. Hirschfelder, C. F. Curtis, and R. B. Bird, Molecu
lar Theory of Gases and Liquids (John Wiley & Sons, Inc., New 
York, 1954) with special reference to the article by J. deBoer 
and R. Byron Bird on the quantum theory and the equation of 

2 T. D. Lee and C. N. Yang, Phys. Rev. 113, 1165 (1959). 

and of an exchange term 

^exch= :F(iVT/2)[l/(25+l)]/Jr23/2X r
3(r|e-^ei|_ r). 

i?rei is the relative Hamiltonian, /3-1 is Boltzmann's con
stant times the temperature, \T is the thermal wave
length defined as h{2Tnnkt)~112, N is Avogadro's con
stant, S is the spin of the individual component, and the 
sign is negative for Bose-Einstein statistics and positive 
for Fermi-Dirac cases. 

In the case of a perfect gas we have 

5exch=TA^(Xr
3/25/2)[l/(25+l)]. 

At high temperatures this value is customarily1 used to 
represent the quantum-mechanical effects due to statis
tics of a gas such as helium, while a Wigner-Kirkwood 
expansion is used to evaluate the direct term. 

The purpose of this note is to point out that, in fact, 
for a real gas the presence of a strong repulsive core 
entails a drastic suppression of the exchange effect at 
high temperature.3 We first show this to be the case for 

3 Lloyd D. Fosdick has, independently, reached similar con
clusions (private communication). 
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hard spheres and then consider more realistic potentials. 
Introducing a complete set of eigenfunctions of the 

energy \pn, we can write 

( r | e - ^ r e i | - r ) = E *»( r )*„ ( - r ) r**» . 
n 

Setting the collision diameter of the hard spheres at 
r=<r, we see that the matrix element is zero for r<a 
since the wave functions are zero inside this region. Next 
we show that for any r the matrix element for free 
particles is an upper bound to the exchange matrix 
element for particles subject to repulsive forces only. 
This result is immediate once we write the Wiener 
integral expression4 for the exchange matrix element 

( r | e - ^ r e l | _ r ) 

= / exp — / J T K [ X ( T ) —r]U„(0;2r)X, (1) 

which is less than or equal to 

(t\e-^\~r)= [ d„o;2r)X, (2) 

since the exponential is less than 1. (Trei is the relative 
kinetic energy.) In fact since paths passing through the 
sphere contribute for free particles and not for hard 
spheres the inequality obtains. Evaluating the exchange 
matrix element for the kinetic energy yields 

We thus have 

\Bexch\<l2wN/(2S+l)-] 

X f dr r2<r[er^ r ei | -T)2^^\T^, 

which equals 

[2TN/(2S+ 1)1 J dr r V-2^2'^2. 
J a 

At low temperatures (XT large) this integral has for 
limiting value the free-particle result, while at high 

4 S . G. Brush, Rev. Mod. Phys. 33, 79 (1961). Especially rele
vant is the discussion pertinent to and centered about Eq. (2.13); 
see also Eqs. (5.4) and (5.5). 

temperatures we obtain the asymptotic expansion 

| ^perf exchange | X23 /2((7/X r) 

X t f - 2 * ^ x D f [ l + ( l / 4 i r ) ( X r / a ) * + - • • ] • 

Since Xr is proportional to T~112, we see that our upper 
bound goes down exponentially with temperature. In 
fact, if we set the collision diameter at about 2 A and 
choose a value for the mass suitable for helium, we find 
that the dependence is roughly e~Tl2. Note that this 
precludes an asymptotic expansion in powers of 1/T. 

Physically, we can understand this formal result by 
noting that the free-particle exchange matrix element 
(Eq. 3) is highly peaked about r = 0 and appreciable 
only for r of the order of Xr/(27r)1/2 or less. In other 
words we see that the exchange is nontrivial only if the 
particles are allowed to come closer to each other than 
the thermal wavelength. If this is not possible, because 
of the presence of repulsive forces, the exchange is 
negligible. This is the case for hard spheres when the 
temperature is large enough so that the collision diam
eter a is greater than Xy. In the example mentioned 
above (o-/Xr)^l when T is ~16°K. As the previous 
remark made on deriving the inequality (Eq. 1 ^ Eq. 2) 
indicates, the matrix element outside the core will be 
smaller than the free-particle result and the consequent 
i?exch smaller for a given temperature than has been 
estimated. This point will not be considered further in 
this note.5 

Turning our attention now to more realistic potentials, 
we note two differences. In the first place the inter-
molecular potentials have an attractive part. If e repre
sents the maximum well depth (e/&^10°K for helium) 
then Eqs. (1) and (2) show that 

e^(t | e-W"11 - r) = e^(l/23/2Xr
3)e-25rr2/Xr2 

is an upper bound to the exchange matrix element for 
all r. At high temperature e^ —> 1 and we recover the 
free-particle result. Another difference is of course that 
though realistic potentials provide strong repulsive 
forces they lack the abrupt "all or nothing" character 
of hard spheres. Nevertheless, since the repulsion is so 
strong, the potential rising rapidly and reaching values 
many orders of magnitude larger than the maximum well 
depth, the wave functions are essentially zero for r's 
within the core and so will be the exchange element. 

We thus see again that at high temperature where the 
thermal wavelength is much smaller than the core 
radius, the exchange contribution to the virial will be 
completely negligible. 

6 We hope to show in a subsequent paper that the leading term 
in the asymptotic form of the logarithm of Bexch is in fact pro
portional to — j7r3(o-/X7')2. 


