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in a rather convincing way that the pure antiferro-
magnetic antiparallel coupling between the Dy and Co 
sites is an oversimplification. The results indicate that 
probably the dysprosium magnetic moment is decreas
ing and changing angle relative to the cobalt magnetic 
moment when the temperature is raised. Such a picture is 
in agreement with observed spin structure in H0C05.18,19 

The observed effective magnetic field acting on Dy 
nuclei in DyNi5 is 95% of the free-ion value calculated 
from paramagnetic compounds. This corresponds to a 
magnetic moment of 9.3 MB. The reported8 magnetic 
measurements up to 14 000 Oe yield a value of 7.7 /XB 
per formula unit of DyNi5. Because of the lack of 
saturation, measurements were made in fields up to 
80 kOe. A value of 8.6/XB was thus obtained.20 Since 

18 Williams James, Remy Lemaire, and Felix Bertaut, Compt. 
Rend. 255, 896 (1962). 

19 In HoCo5, neutron-diffraction measurements (see Ref. 18) 
show that the Co moments lie along the C axis at 4.2 and 300°K, 
while the Ho moments are at 22° to the C axis at 4.2°K and 90° 
to the C axis at 300°K. 

20 H. J. Williams, E. A. Nesbitt, and R. C. Sherwood (private 
communication). 

1. INTRODUCTION 

RECENTLY, Pippard1'2 has considered the problem 
of magnetic breakdown3 in terms of the Bragg re

flection of an electron moving in circular orbits in a 
magnetic field. An electron may be flipped from one 
orbit to another and its motion is confined to a periodic 
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1 A. B. Pippard, Proc. Roy. Soc. (London) A270, 1 (1962). 
2 A. B. Pippard, Phil. Trans. Roy. Soc. London A256, 317 

(1964). Unless indicated otherwise, all references to Pippard's 
work will be to this article. 

3 M. H. Cohen and L. Falicov, Phys. Rev. Letters 7, 231 (1961). 

at 4°K we might still not be at saturation (the Neel 
point is 15°K), the value of 9.3 /XB is a lower limit for 
the saturated dysprosium magnetic moment. If during 
the bulk magnetization measurements, saturation was 
reached, the present results show that the nickel sites 
in DyNi5 carry a moment above 0.7 /XB, in contrast to 
the assumption that the Ni is neutral in this compound, 
as suggested by the early bulk magnetization measure
ments8 on which Bleaney's theoretical investigation21 

was based. The high magnetic moments of Dy3* in 
DyNiB and DyNi2

9 suggest that crystalline-field effects 
may not be important in these crystals.22 
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network of coupled orbits. Phase memory is not lost 
in these reflections and the phase coherence must 
be taken into account. In between the points where 
Bragg reflection can take place the effect of the lattice 
is ignored and the wave functions are taken to be 
those of a free electron in a magnetic field. The strength 
of the reflections is a parameter in the calculation. 
If this parameter is zero the model represents a situa
tion of total breakdown. If it is unity the model repre
sents approximately the quasiclassical situation without 
breakdown. 

Pippard's models describe the motion of an electron 
in a two-dimensional "metal" with a uniform magnetic 
field perpendicular to its plane. The states are labelled 
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* l L FIG. 1. Bragg reflection "planes" 
in relation to free-electron Fermi 
"surface." 

The vector potential will be chosen as (—3C;y,0,0) and 
the units will be chosen so that 2m=h=l. Then the 
Hamiltonian is 

-2ir/cr 

by a "magnetic wave vector" similar to a Bloch wave 
vector. When the periodic potential is a function of both 
coordinates such a wave vector can be defined only if 
the magnetic field is such that the number F of flux 
quanta through a unit cell is a rational fraction. How
ever, Pippard only considered the cases where F is the 
reciprocal of an even integer. It is the purpose of this 
paper to investigate what happens in between, for other 
rational values of F. 

The model used in this paper is not Pippard's 
hexagonal model but a simpler rectangular model, and 
it is treated in a different way. Pippard develops a 
system of linear algebraic equations for the wave-
function amplitudes on a two-dimensional network of 
coupled orbits. In this paper we set up a linear network 
using a system of coupled ordinary differential equa
tions derived from the Schrodinger equation. The 
arguments for setting up this network are very similar 
to Pippard's and indeed it seems that both networks 
are essentially equivalent. The advantage of the linear 
network is that it naturally suggests a mathematical 
treatment of the problem which leads to straight
forward computations not only when F is the reciprocal 
of an even integer but when it is any rational fraction. 
Several computations were carried out for such cases 
and the results indicate some new features in the 
energy-band structure. These are discussed in Sec. 4. 

This discussion is speculative to some extent because 
the basic model is too simple. Thus, the author has not 
been able to evaluate the effects of a finite electronic 
relaxation time or the effects of imperfect alignment of 
the magnetic field. 

The paper is divided as follows. Section 2 contains a 
derivation of the system of coupled differential equa
tions. Section 3 describes the construction of the 
network and the associated algebra. Section 4 describes 
the results of some numerical calculations, and qualita
tive interpretations of these results are suggested. 
Section 5 is a brief summary. 

2. THE MODEL AND THE BASIC EQUATIONS 

The rectangular model which will be used has already 
been described,4 and only the more important features 
will be recapitulated. 

The model consists of an electron moving in a two-
dimensional "metal" in the Oxy plane with a rectangular 
periodic potential of periods a= (a,0,0) and b= (0,6,0). 
A uniform magnetic field 3C is applied parallel to Oz. 

4 VV. G. Chambers, Proc. Phys. Soc. (London) 84, 941 (1964). 

H={px+hy)*+pf+V(xfy)9 (1) 

where p=— iV, h=e3C/hc, and V(x,y) is the periodic 
potential satisfying 

V(x+a,y)=V(x,y+b)=V(x,y). (2) 

The "magnetic translation operators"5 are in this gauge 

r(a) = e * - = r ( a ) , (3a) 

r(b) = e*W**)&= T(b)eihb*, (3b) 

FIG. 2. System of 
coupled orbits in real 
space and certain 
areas expressed as 
multiples of the area 
1/k. 

where T(a) and T(b) are the ordinary lattice-translation 
operators eip*a and eipvb, respectively. r(a) and r(b) 
commute with H but not with each other. 

The flux per unit cell measured in flux quanta is 
given by 

F=abh/2T. (4) 

If F is a rational fraction X/N of two integers A and N 
with no common factors, it can be shown that r(a) 
commutes with r(Nb)={r(b)}N. Then it is possible 
to define a simultaneous eigenfunction and two wave 
numbers qx and qy by 

ff¥(q,r) = E(qMq,r), (5a) 

r(a)^(q,r) = 6^^(q,r) , (5b) 

T(Nb)*(q,r) = ei(*yNby(q7r). (5c) 

It can be shown that each state is iV-fold degenerate, 
and that it is sufficient to limit q to a magnetic zone of 
dimensions (2ir/Na)X(2ir/Nb). The wave number qx 

is treated differently from qy. An analogy is the choice 
of a special axis in the theory of angular momentum. 

The Fermi surface will be chosen as in Fig. 1 in 
relation to the Brillouin zone; the Brillouin zone is 
rectangular and the free-electron Fermi surface inter
sects each side inside the rectangle. Figure 2 shows 
Pippard's network construction (in real space) for this 
model. The orbits are linked by Bragg reflection, and 
when this reflection is nearly complete the orbits consist 

6 E. Brown, Phys. Rev. 133, A1038 (1964). 
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of two lenses 2Li, 2Z2, and a hole orbit 2S in each unit 
cell. 

The Bragg reflections are adequately represented by 
a potential 

V(x,y) = 2VQ cos(2iry/b)+ 2VX cos(2irx/a). (6) 

The Schrodinger Eq. (5a) can be treated as follows.6,7 

Since r(a) is an ordinary translation operator, ^ (q , r ) 
depends on x in the usual manner of a Bloch function 
and may therefore be expanded in a Fourier series: 

ty='£le
iV'+Q*)*ul(y), (7) 

where g=2w/a. Then the substitution of (7) and (6) 
into the Schrodinger Eq. (5a) rapidly gives a set of 
coupled ordinary differential equations, 

Z-<P/d?+ (Ig+qi+kyY-Efrt 
+ [2F 0 cos(2wy/b)liul+V1(ul-l+ul+l) = 0. (8) 

When F [Eq. (4)] is a rational fraction A/A7, Eq. (5c) 
imposes boundary conditions so that 

ia(y+Nb) = ew«hum(y). (9) 

Though the wave function ^ (q , r ) is completely 
"smeared" in the x direction, it is possible to interpret 
the solutions ui(y) as representing lines of orbits parallel 
to Ox (Fig. 2). This interpretation is strictly valid only 
if Vi is small. 

3. THE NETWORK 

Provided that the periodic potential in (8) is suffi
ciently weak, it is possible to use Pippard's concept that 

FIG. 3. Certain areas in the 
orbit system in real space, 
expressed as multiples of the 
area 1/h. 

•y- Voh 

y=-n/ah 

-2Ybh-

the wave function is only seriously affected by the 
lattice in the neighborhood of those points where Bragg 
reflection is possible and that elsewhere the wave 
function is free electron-like. In this way one may use 
(8) to set up a one-dimensional network. I t is necessary 
to know what phase-shifts are to be put in for the 
Bragg reflections and it will be assumed that the Born 
approximation is an adequate guide. The reason is that 
it is valid for very weak periodic potentials and there
fore automatically deals with the effects of the choice 
of gauge. The free-electron wave functions will be 
treated by the W.K.B. (Wentzel-Kramers-Brillouin) 
approximation.1 For the moment then we shall set 
1^0=^ = 0 in (8) and for convenience a new origin of 

6 P. G. Harper, Proc. Phys. Soc. (London) A68, 879 (1955). 
7 J. Zak, Phys. Rev. 136, A1647 (1964). 

the /th equation will be chosen at the center of the 
parabolic potential, at y = — (qx+lg)/h. The classical 
turning points are to be ignored for the time being 
and we shall employ running wave functions in the 
W.K.B. approximation, 

with 

and 

u±(y) = f(y)e±iJM 

f(y)=(E-hy)-1" 

J(y) -/v hY)i'2dr,. 

(10) 

( i i ) 

(12) 

There are two (apparently) different types of Bragg 
reflection, one caused by the term containing Fo, and 
the other by the terms containing Vi which switch the 
electron from one line or orbits to the next. These 
reflections are considered in turn. The potential VQ 
causes Bragg reflection at the points ±yo in Fig. 3. 
Suppose a wave u+(y) comes up to yo and is scattered 
downwards. The scattering amplitude is given by a 
matrix element. I t must be remembered that the origin 
has been shifted, so that the potential must be changed. 
I t can be written as 2V0 co$[_2ir (y/b)—a {], where 

with 
al = a+2wlN/X 

a = 2irqx/bh. 

(13) 

(14) 

The scattering amplitude is proportional to the 
matrix element 

/ 
U-* (y)2 V0 COS[2TT (y/b)—ai]u+ (y)dy. 

The integral has stationary phase points at ± y 0 , but at 
the moment we are only interested in the point +y 0 . 
The contribution to the integral from the neighborhood 
of this point may be obtained by the method of steepest 
descent. The result may be written as 

where 
X"g»[2/(|/o)+al-5] (15) 

b=2iryo/b, (16) 

and where K is a slowly varying function of energy with 
a nearly constant phase. The phase 2J(y0) in (15) arises 
from the choice of phase for u±(y) and would vanish if 

FIG. 4. Wave-function amplitudes to be related at junctions 
representing Bragg reflections by (a) the y component VQ of the 
periodic potential, and (b) the x component Vi of the periodic 
potential. 
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- ; /y= T T /ah 

-y=y<> 

et 

-y=-y<> 

FIG. 5. The /th link of the net
work and wave-function ampli
tudes to be related. Also shown 
are the propagation phase shifts 
9, (p, \p, classical turning points 
T, Vy and the connections to the 
(/=fcl)th links. 

V+| X 
the origin of integration in (12) were put at y0. The 
phases ai and —5 should be regarded as being due to 
the Bragg reflection. We may ignore phase shifts which 
are almost independent of the parameters of the calcu
lation, but ai depends sensitively on the wave number 
qx and on the label / of the line of orbits, and so it must 
be included. 8 depends on the energy through the value 
of y0 (Fig. 3). 

The Bragg reflection is represented by a junction 
similar to those in Pippard's model. At the junction a 
wave traveling upwards with unit amplitude may be 
reflected with amplitude q or be transmitted with am
plitude p, and similar coefficients may be defined for a 
wave traveling downwards. These coefficients must 
obey certain conservation or unitarity conditions.1 In 
contradistinction to Pippard's convention the trans
mission p was taken as real and the reflection q as 
intrinsically imaginary. However q must also have an 
extra phase (ai—8). Figure 4(a) shows how the junction 
is drawn and the amplitudes to be related. For y= + y 0 

we shall set down the following relations which obey 
the conservation conditions: 

X= (l-Q^yiW+iQte^-VG, (17a) 

7 = (l-Q^yi^G+iQxe-^-^H. (17b) 

Here Qi is real and lies between 0 and 1, and represents 
the strength of the reflection. A similar result applies 
to the junction at y=— y0y and the only difference is 
that the sign of 5 is changed. 

The terms in (8) containing V\ couple the equations 
and this coupling may also be regarded as a Bragg 
reflection at y = zkw/ah. The coupling may be calculated 
using the Born approximation. This time no phase 
shifts need be introduced. The coupling is represented 
by a junction as in Fig. 4(b) and the amplitudes will be 
assumed to satisfy 

X'=(l-QWH'+iQ2G
f, (18a) 

F ' = (l-Q2*yizG'+iQ2H', (18b) 

with Q2 real and between 0 and 1. 

Figure 5 then shows how the linear network is to be 
set up. The diagram represents the /th link correspond
ing to the /th equation in (8) and the coupling to the 
(/=bl)th equations. The classical turning points are 
represented by points like T and T', but it is not 
necessary to bother about putting in any phase shifts 
here. A number A of such links is to be joined and the 
boundary condition (9) is used. The propagation phase 
shifts 6, <p, \p in Fig. 5 correspond to certain areas (ex
pressed as multiples of hrl) in Fig. 3 and represent 
W.K.B. phase integrals of the type (12). In this way 
the wave numbers qx and qy are related to the 
parameters of the model. 

Before the algebraic problems are described it should 
be emphasized that this model is essentially equivalent 
to Pippard's model in spite of its rather different 
structure. If Pippard's model is set up for the rec
tangular lattice with the Landau gauge of Sec. 2, then 
the network of Fig. 5 can be derived. 

The algebra for the network is straightforward. We 
may express the amplitudes above any given junction 
in terms of amplitudes below the junction by a 2X2 
matrix. By multiplying such matrices together it is 
found that the amplitudes Xh Yh Ph and Ri in Fig. 5 
are related by 

(Pi\ T r / M 
= K 4 _ j , (19a) 0-0. 

K,(, 
/ A Be~ial\ 

«) = ( ) 
YBV<« A* J 

(19b) 

with 

where Kt is a matrix function of a given by 

A Be~ial\ 

\B*eial A* 

A = (l-Q12)-i[g-f(2^^)+ (212^-(^-2d-2S)-] ^ (20a) 

B= -2iQ1(l-Q1*)~l cos(<p-8), (20b) 

and with ai given by (15) and (16). The matrix Kz has 
the form 

' Z\ Z2 

(21) 
/ ^ ! Z 2 \ 

W Zx*)' 
where Z\ and Z2 are complex numbers. The product of 
two such matrices also has the same form, so that 
products of such matrices only involve calculating two 
complex numbers rather than four. I t is also readily 
shown that detK z= 1. 

I t is better to define the coefficients of K* in terms of 
the areas of the lens orbits and of the hole orbit. We 
write Lh L2, S for half the areas of the lens orbits and 
of the hole orbit, respectively, expressed as multiples 
of h~l. Then it is readily found (by using Figs. 2 and 3) 
that 

S=TrF~l-8-20, (22a) 

Li=<p—8, 

L2=\ls. 

(22b) 

(22c) 
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I t is also useful to define 

2 ^ 5 - x F - 1 . (22d) 

Then instead of (20) we may write 

A = ( l -OiV«"(^ t t l +eiV L 0 , (23a) 

B= -UQ^l-Q?)-1 cosLi. (23b) 

In much the same way it is possible to relate the 
amplitudes X ^ i , Yi+U Ph Ri in Fig. 5 by 

o-o-
where 

1 /a - 1 \ 
M = - [ J (24b) 

with 
a= {\-Qi)~\e-iL*+QieiL*), (24c) 

b= -2iQ2(l-Q2
2)~1 cos£2. (24d) 

The matrix M also has the form (21) and its deter
minant is equal to one. 

We then just multiply the matrices for the propaga
tion down the network and use the boundary condition 
(9) which gives 

Q-ra'Q <2S) 
where 

p=2irqy/ah. (26) 

We obtain a secular equation with a 2X2 determinant 

d e t [ L r ^ - T ( a ) ] = 0 , (27) 

where I is the 2X2 unit matrix and where 

T(a) = n J [ M K i ( a ) ] , (28) 
where the product is taken from / = 0 to X— 1 with the 
higher values of / on the left. Since M and Kj have the 
form (21) and have unit determinant, the product T(a) 
also shares these properties and in particular its trace 
is real. The Eq. (27) then gives 

cosX|3=|TrT(a) . (29) 

The dependence of the trace on a appears com
plicated, but in the case when the lattice is square 
(with Q1—Q2 and Li—L2), it is apparent that a must 
come in symmetrically with /3. Hence (29) must give 

cosXa+cosX/3=\ T r T ( 0 ) + 1 . 

For the more general problem there does not seem to 
be such a short cut. A method for explicitly obtaining 
the terms containing a is given in the Appendix. The 
general result may be written 

7iCOsXa+72CosX/3=73 (30a) 

with 
7 i = [ 2 ( l - e 2

2 ) ( 3 1 c o s L 1 ] \ (30b) 

72= [2( l - (? i 2 )e2 cosL2]x , (30c) 

7 3 = 7 i + l T r I L ( Y X , ) , (30d) 

where the matrix product is taken from 1=0 to X—1 
with the higher values of I on the left, and where the 
matrices are given by 

/ X i X2 \ _ /Vi V2\ 

\x 2 * Xi*/ W 171*/ 
with 

X 1 =e«(e r* L i+g 1 V L 0 , 

X2=-2iQ1cosL1e~2*ilN/x, 

V2=i(l-Qi). (30f) 

The energy bands were found in the same way as by 
Pippard. The areas of the orbits are assumed to vary 
linearly with the energy over a narrow range of energies, 
so we shall set 

Za= (27mi#+ <Pi), 

Z 2 = (27ra2x+ (P2), (31) 

where x represents the energy, and where <ph <p2, and <p3 

can be used to introduce relative phases. The param
eters m, fi2, nz then represent the rate of change of the 
areas with energy. Of course S, Li, and L2 depend on 
the field h as well, but this dependence has been left 
out in this paper. The condition for an allowed value 
of x is that the quantity 

/ ( * ) = 78/( |7i | + |Y2|) (32) 

should lie between —-1 and + 1 . The above equations 
can be programmed for automatic computation very 
easily. 

The quantization conditions in the cases of total 
breakdown ((?i=(?2=0) and of zero breakdown 
(Q1=zQ2=\) are very easily obtained by calculating 
the phases acquired in propagation as a wave goes 
round the appropriate orbit. For the case of total 
breakdown the condition is that the quantity 

2C=2L 1 +2L 2 -2 k S+27rF- 1 (33) 

should be a multiple of 2T . Here 2C is the area of the 
circular orbits in Fig. 2, expressed as a multiple of h~l. 
Similarly, for the case of zero breakdown the condition 
is that (2Li+7r), (2L2+7r), or IS should be a multiple 
of 2ir depending on which orbit we are considering. 

4. RESULTS AND CONSIDERATIONS 

Some results of numerical computations based on 
(30) are now given and discussed. There are a large 
number of parameters in this model and of course some 
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FIG. 6. Portion of energy-
band structure for square 
lattice as a function of Q 
when F - 1 is an integer. The 
energy variable x increases 
downwards. Bands are 
shaded. 

LL 

arbitrary choice of values must be made. In order to 
show the energy bands in the same manner as in 
Pippard's paper one sets Qi=Q2z=Q and treats Q and 
the energy parameter x [Eq. (31)] as variables. The 
other parameters in (30) and (31) are kept fixed. One 
then shows on a graph the regions where the function 
/ of (32), regarded as a function of x and Q, lies be
tween — 1 and + 1 . The parameters nh n^ th in (31) 
are arbitrarily chosen as 

^ 1 = ^ 2 = 4 , ^3=5 

throughout. 
In the first computation the parameters <pi, <P2, <pz in 

(31) are all chosen to be zero to give a square lattice. 
We take a situation analogous to Pippard's, where F~l 

is an even integer, so that X = 1 and N is even. For Q= 0 
the allowed values of x are given by x=0, ±1/26, 
±2/26, etc. These values correspond to the free-
electron Landau levels C. For Q= 1 there are two sets 
of levels for #=±1/16, ±3/16, etc., and for x=0, 
±1/10, ±2/10, etc. The first set corresponds to the 
doubly degenerate lens orbits LL and the second set 
to the hole orbits S. Figure 6 shows how some free-
electron levels C evolve into the levels LL and S as Q 
varies from 0 to 1. The vertical axis represents x in
creasing downwards from x=—0.02 to #=+0.08. This 
is a rather narrow range, but it is adequate to illustrate 

FIG. 7. Energy contours in q 
space for a square lattice when F~* 
is an integer. 

-2w/Na 

the general idea. The shaded areas represent the regions 
of the allowed values of x. It is apparent that as Q is 
increased the levels C broaden and then condense back 
into the levels S and LL. The similarity of this diagram 
to the diagrams shown by Pippard for the hexagonal 
model is evident, although the structure is simpler. The 
electronic velocities are given by v=dE/dq (Ref. 2). 
Therefore the broad bands for Q^0.5 signify large 
electronic velocities. These turn out to have the same 
magnitude as the Fermi velocity of the model without 
any applied field. Figure 7 shows the form of the energy 
contours in q space in the "magnetic Brillouin zone." 
They have the same structure as the energy contours 
in a square tight-binding model because of the form 
of (30a). 

This calculation has been carried out for the case 
when F~x is an even integer, but the band structure is 
unaltered if F~x is an odd integer, provided nothing else 
is changed in (30) and (31). In general it can be shown 
that for this model an increase in F~l by any integer 
does not alter the energy bands. If F~1=N/X is in
creased by unity, the only difference is that 73 in (30) 
is multiplied by (— l)x. So it is only necessary to 
specify the field by two integers X and p, where 

p=N modulo X. 

Figure 6 thus shows a band structure when ^/X = 0/1 
and F~l is an integer. Figure 8 shows the case when F~x 

has been increased by J, so that p/\ = \. The levels C 
have now been shifted relative to 5 and LL, because 
F"1 enters into (32). Of course, 5 and LL would also 
be shifted relative to one another if the variation of 5 
and LL with the field h had been put into (31). For 
simplicity this has been ignored. As Q is increased from 
zero each level C breaks up into X sub-bands,2,4,5 five in 
this case. Within each set of sub-bands the central ones 
are comparatively broad and appear to be touching or 
nearly touching. Those sub-bands that are broad 
enough have been shaded in. It also seems that one 
sub-band can split off from the others and go to a 
different level. This point will be discussed later. 

The relation between the structures in Fig. 6 and 
Fig. 8 is not altogether obvious, but some other com
putations were tried for cases like p/X=l/9 and 1/20, 
when F~l is nearer an integral value than it is in Fig. 8. 
As in Fig. 8, each level C splits into X sub-bands where 
the central ones are broad, but as the energy goes away 
from the central values the sub-bands are progressively 
narrower, and most of them are much narrower then the 
spacing between them. They occupy the regions of the 
original bands of Fig. 6 in such a way that the coarse 
energy density of states is not altered much. Thus it 
appears that the bands in Fig. 6 condense into "quasi-
Landau" levels when the field is changed slightly so 
that F~* is no longer an integer, but near an integral 
value. The narrowness of these sub-bands suggests that 
the group velocities are on the whole very low. Pippard 
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(private communication) has suggested a qualitative 
view of this phenomenon. If the magnetic field h has a 
value h0 so that F"1 is exactly an integer, then an elec
tron wave can travel in straight lines through the 
structure of Fig. 2 in any direction with a speed of the 
same order of magnitude as the Fermi velocity. Suppose 
h is changed very slightly to a value hi so that F"1 is 
very close to its original integral value. Then the residual 
field hr=hi—h0 bends the trajectories into orbits with 
a very large diameter. These lead to the "quasi-Landau" 
levels and give a very low group velocity. 

One may try to go a little further and develop an 
approximate "semiclassical" theory for these larger 
orbits, which we shall call ahyperorbits.,, It has been 
shown2 that under the effect of an electric field E the 
magnetic wave vector q varies as 

dq/dt=eE. 

This suggests that with a residual magnetic field hr 

there may be an equation of motion 

dq/dt=vXhr, 

where v=6\E/dq is the group velocity. Such a theory 
would be expected to work only if F~l was very close to 
an integral value. 

This theory gives at least a qualitative description 
of the structure of the sub-bands within a given band 
of the sort in Fig. 6. Figure 7 shows that for energies 
near the edges of a band we may have electron orbits 
like A or hole orbits like C in q space. The orbits for 
the central values of the energy (like B) are passing 
close to the zone boundaries and would be broadened 
by "intraband" breakdown.8 

A computation was performed for a case when p/\ 
was equal to 6/31, a value very close to 1/5. In this case 
the sub-bands of Fig. 8 all broke up into six "sub-sub-
bands" and another "sub-sub-band" appeared along 
the line of contact of the central sub-bands in each 
band. Most of these were much narrower than the 
spacing between them. This suggests that the "hyper-
orbits" can in turn give rise to "hyper-hyperorbits," 
though it is to be doubted whether this result is of great 
practical interest! 

For general values of F~l we may say that X is "very 
large." Computations have been carried out for values 
of X up to 40, and the sub-bands are very narrow indeed 
in all the cases tried. The theory suggests that the group 
velocities are very low because of the hyperorbits. 

Let us now suppose that we have a general rectangu
lar lattice. Then in the case when F~l is an integer the 
energy contours in a typical band may be as shown 
in Fig. 9. The "semiclassical" theory discussed above 
suggests that if F~l is changed by a small amount, open 
hyperorbits like B in Fig. 9 would arise and the velocities 
could be quite large along these hyperorbits. The direc
tion of these orbits may vary between the x and y 

8 W. G. Chambers, Proc. Phys. Soc. (London) 84, 181 (1964). 
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FIG. 8. Portion of energy-
band structure for square 
lattice when F"1 is an 
integer plus i .Broader sub-
bands are shaded. Narrower 
sub-bands are represented 
by lines. 

CH 

CH 

directions from band to band and would therefore be 
very sensitive to the energy. 

This idea can be supported by a consideration of (30). 
The coefficients 71 and 72 are in general unequal, and for 
large values of X their ratio is very large or very small. 
Hence the group velocities are almost entirely parallel 
either to the x axis or to the y axis. If <2i is equal to Q2, 
but L\ not equal to L2, the velocities are almost entirely 
parallel to the x axis when |cosLi| > |cosZ,2| and 
almost entirely parallel to the y axis when |cosLi| 
< J COSL21. The direction of propagation is thus very 
sensitive to the energy. 

A numerical computation was carried out for 
£/X=l/5 with the parameters the same as for the 
situation shown in Fig. 8, except that the phases in (31) 
were chosen as <pi=0, (p2=w/2, <p3=7r/6. Thus L\ is not 
equal to L2 and the lattice is rectangular in effect. The 
phase <pz was altered from zero so that S would not 
coincide with L2. The band structure is shown in Fig. 10, 
and it seems that in general the sub-bands are broader 
than in Fig. 8. In the neighborhood of the energy level 
L\ the velocities are approximately parallel to the y 
axis and in the neighborhood of L2 approximately 
parallel to the x axis. Several other cases were tried for 
rectangular lattices and the results indicated that the 
velocities were on the whole quite large, perhaps even 
of the magnitude of the Fermi velocity. These results 
support the concept of open hyperorbits. 

FIG. 9. Energy contours in q space 
for rectangular lattice when F - 1 is 
an integer. 

-2-VNb-
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FIG. 10. Portion of 
energy-band structure for 
rectangular lattice when 
F~l is an integer plus i-
Broader sub-bands are 
shaded. Narrower sub-
bands are represented by 
lines. 

Let us now consider why in both Figs. 8 and 10 one 
sub-band within a given band breaks away from the 
others. In both of these cases we have set p/X = i. Com
putations for other values of this ratio indicate that a 
given Landau level C splits up into two clusters of 
sub-bands. A number p of sub-bands goes upwards 
across the diagram as Q is increased, and (X—£) go 
downwards. The lowest level C in Fig. 8 is apparently 
an exception. Owing to the coincidence of two levels 
at LL the two clusters are kept together. 

This splitting of each band into two clusters which 
are separated by a fairly substantial gap is obviously of 
interest when one calculates the effect of the band struc
ture on the de Haas-van Alphen periods. It may lead 
to a modulation with a period of unity in F~x, which 
corresponds to a Fermi-surface cross section equal to 
the area of the Brillouin zone in the two-dimensional 
model (Fig. 1). 

A " topological" reason for this splitting of the bands 
into two clusters is easy to give. As F~l is increased 
steadily, the levels C on the left of Fig. 6 move relative 
to the levels S and LL on the right by an amount given 
by (33). If all the states in a level C on the left were to 
recondense again into a unique level on the right, the 
increase in F^1 would cause a progressive shear of the 
structure, and the structure would not be periodic in 
F~x. The splitting of the states in a level C into two 
clusters in the way described above eliminates this 
shear. 

A physical reason for the appearance of a gap in 
each band may be given as follows, along the lines of 
an argument in a previous paper by the author.4 

Suppose the parameter Q2 was set equal to zero, but 
Qx was left at some intermediate value, say 0.5. Then 
the lines of the orbits in Fig. 2 are decoupled in the y 
direction, but the electron can move at a fairly large 
speed along the orbits coupled along the x direction. 

Figure 11 shows a schematic plot of the energies Ei, Ej^x 
as a function of qx for the Zth and (/— l)th lines of orbits, 
respectively. The energy is periodic with a period of bh 
or 2w\/Na in qx, but the curves are displaced by a value 
of qx equal to bh(p/\). This value is simply g=2w/a 
modulo bh, and the displacement arises because of the 
structure of the equations (8) (with V\ set equal to 
zero). Now suppose that Q2 is switched on very slightly. 
Two energy gaps of the first order in Q2 will form at A 
and B (Fig. 11) by hybridization. Other gaps will form 
corresponding to interactions between lines of orbits 
that are not neighbors, but these will be of higher order 
in Q2. These first-order gaps however will not be of the 
same size for the following reason. A positive value of 
dE/dqx means a positive value of the velocity along Ox. 
This implies that the electronic wave function has a 
larger amplitude along the top of a line of orbits than 
along the bottom since the electron is effectively 
spending most of its time on an open orbit carrying 
electrons to the right. The converse applies for negative 
slopes. Thus, at A in Fig. 11 the slope of Ei is positive, 
so that the wave function is concentrated at the top of 
the /th line of orbits, and the slope of Ei-x is negative, 
so that the wave function is concentrated at the bottom 
of the (Z— l)th line of orbits. For the point B the wave 
function is concentrated at the bottom of the /th line 
of orbits and at the top of the (/—l)th line of orbits. 
Figure 2 shows that the (/— l)th line of orbits is higher 
than the /th, and so the gap at A produced by hydridiza-
tion wrould be expected to be larger than the gap at B. 
It would be reasonable to expect that the larger gap is 
the one responsible for the separation of the clusters. 

A numerical computation verified this result. The 
same situation was chosen as in Fig. 8 with p/\=j. 
But Qx was increased first to 0.5, with Q2 remaining 
zero, and then Q2 was increased to 0.5, with Qx remain
ing at 0.5. Figure 12 shows how a Landau level evolves 
into the situation at Q=0.S shown in Fig. 8. As Qx is 
increased the Landau level broadens out into a band1 

as shown in Fig. 11. But as Q2 is switched on, gaps 
appear. The gaps A and B are of first order in Q2, but 
the gap A is rather wider than the gap B, and indeed it 
is the one which separates one sub-band from the other 
four. 

We have discussed the possibility of having open 
hyperorbits. The question arises: Could they lead to a 
resonant ultrasonic attenuation analogous to the ultra
sonic attenuation by ordinary open orbits? The hori-

FIG. 11. Schematic plots of 
energy versus qx for the lib. 
and (/—l)th lines of orbits. 
Right-hand portion shows 
where gaps are formed in an 
energy band by hybridization, 
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FIG. 12. Evolution of 
a Landau level when 
F _ 1 equals an integer 
plus i. On the left Q2 is 
left equal to zero while 
Qi increases from 0 to 
0.5j and on the right Qi 
is left equal to 0.5 while 
Q2 increases from 0 to 
0.5. The energy param
eter increases down
wards. The bands are 
shaded. Note that the 
gap A splits off one sub-
band from the other 
four. 

x=-0.03 

x=-0.02 

•x=0.0l 

zontal arrow in Fig. 11 represents an electronic transi
tion caused by a phonon absorption of a type previously 
suggested by the author.4 I t is easy to verify that the 
wave number of the absorbed phonon corresponds to 
the length of a period of an open hyperorbit as calcu
lated from the "semiclassical" theory suggested above. 
Thus it may well be that the absorption can be described 
as an absorption by open hyperorbits. But open hyper-
orbits are not possible in a square or a hexagonal lattice 
because an open orbit requires that the magnetic field 
be aligned along an axis with twofold or onefold rota
tional symmetry. This does not rule out the possibility 
of having ultrasonic attenuation by a spatial resonance, 
since closed hyperorbits coupled by breakdown might 
also give the resonance. For the time being this must 
be regarded as a speculation. 

5. CONCLUDING REMARKS 

A method has been developed to extend Pippard's 
calculations of magnetic band structures in two-
dimensional models to cases when the parameter F~l is 
not just an even integer. The numerical results suggest 
two things. The first suggestion is that the band 
structure can be interpreted to some extent in terms of 
the concept of "hyperorbits." Such hyperorbits may 
even give rise to ultrasonic attenuation by a spatial 
resonance. The second suggestion is that when a Landau 
level for a free electron is broadened by the lattice 
potential it breaks into two clusters of sub-bands, and 
such a structure may give rise to unusual periodicities 
in the de Haas-van Alphen effect. 

The investigation of the de Haas-van Alphen 
periodicities in the model has not yet been carried out 
and might lead to some interesting results. The fact that 
the band structure is a very sensitive function of the 
magnetic field leads to some difficulties here. The 
theory of magnetoresistance in the model would 

probably be much harder though the concept of hyper
orbits might well be relevant, since they would share 
some of the properties of ordinary orbits. 
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APPENDIX 

The problem of finding the dependence of the trace 
in (29) on a can be solved as follows. First we show 
that the trace is periodic in a with a period of 2w/\, 
not just of 2TT. Since X and A7 have no common factors 
it can be shown from (13) that 

aH-27r/A = an-p modulo 27r 

for a fixed integer p. Thus increasing a by 27r/X cyclically 
permutes the matrices Kz in (28), and therefore the 
trace in (29) is unaltered. 

Since the highest power of e±ia that can appear is X, 
the trace must have the form 

Tr{ (T(a)} = KeiXa+»+ ve~^a. 

The coefficient K can be obtained as follows. Let us 
divide each matrix Kj by eial. The product of these 
divisors is readily shown to be — (— l)VX a . Then K is 
the value of the new trace with a=—ioo, multiplied 
by — (— l)x . For a = — too we have 

/ 0 0\ 
e-ialKi=[ ) 

\B* o/ 
by (19b), and so it follows that 

£ * \ - a * 0 / 
e~ialMKi= 

by (24b). This matrix is then raised to the power X, 
and the trace is found to be (—B*/b*)x. Hence 

K=-(B*/by 

which is real by (23b) and (24d). Similarly it can be 
shown that 

v=-(B/bY. 

The coefficient fx is obtained by evaluating Tr[T(0)J, 
and hence 

T r [ T ( a ) ] = ~2(£/Z0x(cosXa- l ) + T r [ T ( 0 ) ] . 

With this result, (30) can be derived very simply 
from (29). 


