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The high-frequency, wave-vector-dependent conductivity of a degenerate electron gas near equilibiium 
is calculated by taking into account the zero-, the first-, and two of the second-order diagrams in the 
effective interparticle interaction. Approximate formulas are derived for the case when the frequency a> of the 
electromagnetic wave is high and its wave vector k is small, i.e., CO»£^F/W, where pF is the Fermi mo
mentum of the electron gas. 

I. INTRODUCTION 

THE conductivity of the electron plasma, a system 
of charged particles interacting through a Cou

lomb field, has been calculated for the electromagnetic 
waves whose frequencies are high compared to the 
electron-collision frequency and whose wavelengths are 
very long compared to the Bohr radius.1-10 The 
wavelength-independent conductivity has been com
puted for the electron-ion plasma2,4'5; it corresponds to 
the situation of a spatially uniform wave in the plasma. 

We now wish to give approximate formulas for the 
frequency- and wave-vector-dependent conductivity for 
the case when the frequency is high compared to the 
electron-collision frequency and the wavelength is 
sufficiently long. These coefficients are necessary to de
scribe the weakly nonuniform waves in plasma. 

The problem has been considered in various approxi
mations. In particular Nakajima and Watabe5 con
sidered the approximation valid when the frequency is 
low and the wavelength is not too long. DuBois and 
Gilinsky6 have considered the case of a high-frequency 
and long-wavelength wave in a hot electron gas and did 
focus attention on the limit of classical statistics. They 
have been using a modern technique not based on the 
Kubo formulation of the conductivity coefficients.11 

Here we want to give formulas for the leading terms of 
the electron-gas conductivity, both frequency- and 
wave-vector-dependent, for the case when the frequency 
is high and the wavelength is long. 
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H. CALCULATION OF THE CONDUCTIVITY 

1. General Formulation 

We start from the Kubo formula for conductivity11*12 

1 r00 

o>(k,w) = —- / dTeiwT 

V Jo 

Jo 

X JX0 M (k , r -^X)>(-k ,0) ) , (1) 

where co is the frequency and k is the wave vector of the 
electromagnetic wave. The space Fourier transform of 
the current operator is, in the Heisenberg representation, 

iJ,(k>0 = eur"*i,(k>0)«-«"'* (2) 

with H the total Hamiltonian and 

yM(k,0) = (eh/m)Y,p PnCtp+k/2fap^k/2. (3) 

The thermal average of any operator 0 is 

(0) = Tr{e^N-V0}/TY{e^N-H)}, (4) 

where fi^X/k^T, with k& the Boltzmann constant and 
T the absolute temperature; /x is the chemical poten
tial; and N is the number operator. Integrating (1) by 
parts we can write, following closely Ron and Tzoar,4 

o>(k,a>) = — / d\0'M(k, ~ih\)jP(-k, 0)) 
ooV J o 

+ [ ^-(Ci,(k,r)jV(-k,0)]) 
mV Jo 

= (ie2n/cx)m)8^~ (i/co)Af M,+(k,co). (5) 

Here n is the average particle density. We write for any 
function f(z) of the complex z 

/±(«)= lim f(z) v-*0+. (6) 

In order to compute the function MM„+(k,a>) of Eq. (5) 
by perturbation expansion we write first the current 
operator 

i„(M=e»"jM(k,0)e-»» (7) 
12 P. C. Martin and J. Schwinger, Phys. Rev. 115, 1342 (1959). 
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is given by2,4 

£/fl(am) = 4 i r c V 2 C l - 4 i r « V 2 ( ? « ( « m ) ] - 1 . 
FIG. 1. The zero-order dia- . . . . -„ 1f 

gram for the calculation of Here Qq(am) is the polarization operator1-5 lb 

the wave-vector-dependent con
ductivity. 1 1 

Qq(am) = H ~ H Gp+q/2(tl+am)Gp-q/2(£l) 
V v P l 

(12) 

and introduce the average of the time-ordered product 

Jlf^(k,«) = (l/F)<r{iM(k,«)>(-k,0)}> 

= (e*k*/m*V) E « ; { ^ ( / 5 ) ) o - ^ { ^ / 2 W 

with 

d3p np+q/2—np-q/2 

(27r)3 ep+q/2—€p-q/2 — Oin, 

and Gp(£i) is the electron propagator 
X ap_fc/2 Map^/2

t(0)aP '+fc/2(0) £7(0)} )0. (8) G p ( f f) = (f ,_ €py-i j f ^ = M + ( 2 /+1)^ /0 , 

Here ( )0 denotes the average with respect to the eigen-
state of the Hamiltonian of the noninteracting particles, 
and 

U(p) = exp - / duEi(u) 

Z=0,dbl, ± 2 , 

(13) 

(14) 

(15) 

Following the standard procedure2*4-12 one now de
fines AfM„(k,z) as the analytical continuation of the 

(9) 

The Coulomb interaction between the electrons has to 
be renormalized.2*4 The effective interaction Hamil
tonian is 

#/(«) = ( l / 2F)L t f* (« )£ a^i/JM 
q ptp' 

XaP'„q/2
f(u)aP'+q/2(ti)ap-q/2(u). (10) 

The Fourier transform of the effective, screened, inter
action potential 

i f^(k,co„)= / 
•'o 

du eu"nM„,(k,w) (16) 

Jo 
Uq(am)= I dueuamUq(u), 

am~2irim/0, w = 0, dbl, ±2,- • • 
(ID 

from the infinite set of points oon = 2win/fi(n>0) on the 
positive imaginary axis of z to the upper half-plane of z. 
This gives the last form of Eq. (5). 

2. Calculation of Diagrams 

The evaluation of the perturbation expansion of 
AfM»(k,wn) can be done by using the rules given by 
Luttinger and Ward17 and Perel and Eliashberg.2 In 
accordance with the latter authors we consider, besides 
a diagram of zero order in the interparticle potential 
(Fig. 1), the diagrams 1-5 shown in Fig. 2. We write 
down the contributions 

(17) 

(18) 

^ ( k , « , ) = E M^>(k,a,„) = (eW/mW) £ PjS £ ^ - ' " ( W , 
3—0 P,P' 3=0 

A"„j,<(0)(k,a>n)= — 5 „ P ' ( 1 / / 8 ) E J GP-t/2(f«)G:jH-A/2(fj+w„), 

A%P.<
1>(kjWO = ( l / K ) ( l / 0 ) E » t f M ' ( a » ) ( l / 0 ) E j G » ^ 

p-q+k/2(£l — CXm)Gp-.k/2(£l — O0n) , 

AV ( 8 ) (k ,«„) = 5 , P ' ( l /F)2: f f ( l / / J )E« Uq(am)(W)Zi C ^ ^ / 2 ( r / ) ] 2 ^ ^ / 2 ( ^ + a m ) G p + , / 2 ( n + ^ ) , 

A%p^
4>(k,cn) = ( l / F 2 ) Z « ( l / « E m ^ r , (am )^ 5_,(aw -co n ) ( l / /?)Ei G ^ / ^ G ^ ^ f i - w O G ^ ^ / ^ - a J 

X ( l / / 5 ) X ! z ' Gp'+jfc/2(fz')Gp'-A :/2(fz' — Wn)6 lp'_Q+^/2(fz'--Q!m) , 

A V ( 5 ) ( k , ^ ) = ( l /F 2 )E , ( l / i 3 )Em ^ f l ( a « ) ^ ^ ( a » - « n ) ( l / / 3 ) E i G^ / 2(fOGp_./2(fz-con)Gp_ e + , / 2(n-aw) 

X (l/P)Hl' Gp>-.kl2(tl>)Gp>+kl2(tl' + Un)Gp>+q-.k/2($V + Clm) • 
We now perform summations over / and /'. 
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The matrix element of zero order in the interparticle potential is 

e2h2 »*+*/*—tip-k/2 
M^ik^n) = ZP P»P* • (19) 

fft2V ep+k/2— €p-k/2—0)n 

The longitudinal conductivity can be expressed, using Eq. (13), as16 

ie2n i ioo Awe2 

<rn«»(k,co) = if„W+(k,«) = QkHhu). (20) 
com o) 47r k2 

The calculation of the matrix elements corresponding to the diagrams of Fig. 2 requires evaluation of the follow
ing sums: 

h2e2 1 1 1 

m2y2 p q ft m €p+q/2-k/2— €p+5/2-Hfc/2+^n €p_g/2+fc/2 — ^P~ql2~kl2~0)n 

np+q/2-k/2 — np-q/2+k/2 np+q/2±k/2—nP-q/2-k/2 

X ( n 

€p4-e/2 

- ) • 

/2-k/2~ €p_ 5 /2+ifc/2+am+t0 n €p+q/2+k/2 €p—q/2—k/ m WJJ 

np+q/2-k/2—nP-q/2-k/2 ftp+q/2+k/2 — nP-q/2+k/2 

€p+q/2-k/2— €p_g/2-A:/2+OIm €p+q/2+k/2~ ^p~q/2+k/2~\-

h2e2 1 f 1 / dtip-kw/dep-kw np_k/2—np+ r 1 / dnp-.k/2/d€p-k/2 np_jc/2—np+q-k/2 \ ^\ I J 
L€jH-A;/2—€p-fc/2+C0n\ep_A:/2—ep+5_A;/2+am (ep^k/2— ep4-g_A;/2 + a m ) 2 / 

1 / dnp+k/2/d€p+k/2 np+k/2—np-q+kf2 \ 

— €p_&/2 — Wn\ep-f.fc/2— Cp_g4-fc/2—dm (€p+k/2— Cp-g+fc^ — « m ) 2 / 

1 / np+kl2—flp+q-kl2 np~k/2 — np+q-k/2 \ 

p-ifc/2+COn)2\e1,+ft/2— €p+f f -* /2+a m' 

1 / np-.k/2~-np-q+k/2 np+k/2—np-q+k/2 \" 

/2~Cp_A:/2 —CUn)
2\€p„jfc/2—€p_5-(-A;/2 —Ofm+Wft €p+k/2— €p-q+k/2~Olm/ . 

(21) 

(ep+*/2 

+ 
(«p+ifc 

MM/4>(k,Wn)+MM/*>(k,a>n) 

— _ 1 N r T , 1 / np+k/2—np-q+k/2 »i>-*/2—»p-9+fc/2 
2 , 2 - - Z - Uq{am)U q-k{(Xm~Unjptxpv ~ 

m2VZVrP' q /3 m €p+k/2 — €p-k/2 — Un\€p+k/2-'€p-q+k/2 — (Xm ^p-k/2—^p~q+kl2~Oim+Oin 

xl 
-€2> '4-fe/2—- €p'_A;/2~~Ct; 

1 / nP'„k/2-—np>+g-k/2 nP'+k/2—nP'+q-k/2 

t l / np>+k/2—np>-q+k/2 np>-.k/2—nP'-q+k/2 \ 
( ) 

€p'+k/2— €p'-k!2 — 0)n\ep'-j-fc/2— 6p'_g+it/2-Q!m €p'-*/2""- €p'-fl+fc/2'—OJm+C0n/ 

/ nP'„k/2-—np>+g-k/2 nP'+k/2—nP'+q-k/2 \~| 

(JnN6p'_fc/2-ej,'+5_fc/2+Q!m *p'+k/2— €p'+g_fc/2 + 0:w — W n / J e P ' - ^ / 2 — € p ' + ^ / 2 + W n N€p'_fc/2—'€p'+a_A:/2 + «m Cp'+;fc/2—" €p'+g_fc/2 + 0:w — Wn 

For & = 0 the matrix element of Eq. (19) vanishes which led to the choice of the diagrams 4 and 5 from 
and the sum of corrections given by Eqs. (21) vanishes among the second-order diagrams.2*4 By the same 
too, as should be the case for a uniform homogeneous reasoning, if one took into account all the second-order 
system. I t is this cancellation of contributions from diagrams, one would have also to take some from among 
diagrams 1, 2, 3 on one hand and 4, 5 on the other hand, the third-order diagrams to achieve cancellation at k = 0. 



A 150 M A C I E J S U F F C Z Y N S K I 

3. Simplifying Approximation 

In Eqs. (21) the integrations over p and p' are dif
ficult (see Refs. 1, 6, 8-10, 13, 18, 19). There have been 
several attempts to calculate the multidenominator ex
pressions with distribution function in the numerator, 
and various approximations have been tried. We will 
follow here the simplest approximation used by Tzoar 
and Klein,1 which eliminates the multiple denominators 
altogether. We will approximate all the denominators 
whose frequency is co„, and which do not contain 
am+oon, by o>„. For co„ different from zero and k suffi
ciently small, and for any finite p and q, these energy 
denominators can be developed into a power series in 
k/w„: 
[ep-g+fc/2-ep-g-fc^icoj-^ [(p-q)k^2w~1dba;n]-1 

1 (p -q )k^ 2 [ (p-q)kfc2]2 

= ± ± . (22) 
0)n MOOn2 m2Cx)n

Z 

Using this development, one drops out all the poles 
corresponding to zeros of these denominators. There
fore the resulting formulas will be useful only for fre
quency co sufficiently high and wave number k suffi
ciently small. For a degenerate electron gas with the 
Fermi momentum pF, the inequality UL$>kpF/tn ensures 
that the contribution of the neglected poles will be small, 
since np goes to zero for large p and also the interpar-
ticle potential Uq(am) goes to zero for large momentum 
transfer q, thus making small any contribution from re
gions of large q's in sums of Eqs. (21). 

We will not write down the terms arising from the 
first and second powers of k in the development in 
k/con of the denominators exhibited in Eq. (22): these 

Thus in our approximation the corrections to con
ductivity are described in terms of quadratures over the 
same functions Uq(x) and Qq(x) as in the case of a uni
form electron-ion plasma.2,4 In Eq. (23) the screened 
interaction potential Uq+k is not developed into powers 
of k. If one approximates screening by the Thomas-
Fermi screening constant, one can develop Uq+k into 

18 T. Holstein, Ann. Phys. (N. Y.) 29, 410 (1964). 
19 N. Wiser, thesis, University of Chicago, 1964, and Phys. Rev. 

138, A452 (1965). 

FIG. 2. The first- and second-order diagrams contributing 
to the high-frequency conductivity. 

terms can be written down straightforwardly,6 and we 
omit them for reasons of brevity only. Thus our final 
formula will be incomplete. But the enumerated omis
sions are our only approximation. 

4. The Final Formula 

In Eqs. (21) the summations over the index m can be 
rewritten in terms of a principal value integration fol
lowing the device described by Perel and Eliashberg.2 

The sum of contributions given by Eqs. (21), in the 
approximation described in the preceding paragraph, 
can be written in the form 

powers of k at every q. The corresponding development 
of the function Qq+k contains the first derivative which 
has a logarithmic, and thus integrable, discontinuity. 

Evaluation of the formula (23) requires a fourfold 
integration which can be done numerically only. 

The above formulation of the corrections due to inter-
particle interactions gives a first approximation for the 
conductivity coefficients in the case of a spatially weakly 
nonuniform wave in a degenerate interacting electron 
gas, whenever the zero-wave-vector conductivity alone 

1 5 e2h2 (9 r+™ r dzq 
Ao>(k,a>)=— E Jf„r(jf)+(k,«) = / dx\ coth(0x/2) / {qMUq

+(x)Qq
+{x)-Uq~{x)Qq-(x) 

ico i=i ccztn22wJ-ao J (27r)3 

+ U+(x+ M lQq+k
+(x) - Qq+k~(x)2- ZU+(x) ~ Uq~ (x)lQ*rk+(x+ M ] 

+ (iqA+k^fi+qfiqy)[U^e+^(^+MOe+fc+(^+MC^/WCe+(^)-^r(^)Qr(^)] 
- UqHx+h^)Qq^x+h^)ZU^k^x)Qq+k+(x)- Uq+k~(x)Qq+k-(x)l] 

- M * + f e ) ( G ^ + M ) 2 C ^ t + W - ^ r W ] ] } . (23) 
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does not suffice for description of the wave propagation. 
The skin effect in metals is an instance of a situation in 
which the formulas derived here are needed to take 
account of the electron interaction. 

A generalization of the above calculations to more 
realistic and more complicated systems of interacting 
particles can be carried out, in principle, along the same 
lines, though this appears to involve considerable labor. 
One should first consider systems of different species of 
particles,2-4 the electron system with impurities pres
ent,8«20'21 electrons interacting with phonons,18'22-24 and 

20 J. S. Langer, Phys. Rev. 127, 5 (1962). 
2 1M. L. Glasser, Phys. Rev. 129, 472 (1963). 
22 V. L. Gurevich, I. G. Lang, and Yu. A. Firsov, Fiz. Tverd. 

Tela 4, 1252 (1962) [English transl.: Soviet Phys.—Solid State 
4, 918 (1963)]. 

23 N. Tzoar, Phys. Rev. 132, 202 (1963). 
24 A. Ron and N. Tzoar, Phys. Rev. 133, A1378 (1964). 

INTRODUCTION 

T HE stopping of heavy ions has recently been the 
subject of renewed theoretical interest.1 The 

accumulation of reliable experimental data is essential 
for continued progress in this field. Furthermore, this 
information is required in the analysis of data from the 
recoil-range type of experiment for investigating the 
mechanisms of nuclear reactions. 

The values of the recoil ranges of low-energy C11 

nuclei were necessary for the analysis of an investigation 
of the mechanism of the Cl2(p,pn)Cn reaction. Although 
theoretical and semiempirical range-energy curves are 
available,1-2 there have been no direct experimental 
checks of the data in the energy region of interest 
(0.5-1.5 MeV). Moreover, a dependence of the observed 

* This work was done under the auspices of the U. S. Atomic 
Energy Commission. 
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the electron propagators with the damping included in 
the electron self-energy.25,26 

Concluding we can say that the equations presented 
here constitute an initial step in the effort to take into 
account spatial nonuniformities in the calculation of 
conductivity of an interacting electron gas. 
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range on the crystalline nature of the absorber has been 
noted,3 and it was felt advisable to calibrate the com
monly used aluminum-leaf catcher foils. 

In the present study, C11 ions of known energy were 
produced in the reaction Bu(p,n)Cn. Protons with 
energies between 4 and 7 MeV from a tandem Van de 
Graaff generator initiated the reaction, and the C11 ions 
recoiling in the forward direction were caught in thin 
aluminum foils. The range of the C11 ions was deter
mined from the distribution of 20.5-min C11 activity in 
these foils. The energy of the recoiling C11 ions is readily 
calculable from the kinematics of the reaction. 

EXPERIMENTAL PROCEDURE AND DATA 

The target used in this work consisted of B11 evapo
rated onto a gold foil by means of electron bombard
ment. The boron deposit weighed 0.3 ng and was spread 
over an area of 5 cm2. The thickness of the gold foil was 
37 juin. corresponding to a surface density of 1.8 mg/cm2. 
The target was supported on an aluminum frame per
pendicular to the beam direction, with the boron 
deposit facing downstream (see Fig. 1). 

G. R. Piercy et al., Phys. Rev. Letters 10, 399 (1963). 

P H Y S I C A L R E V I E W V O L U M E 1 4 0 , N U M B E R 1A 4 O C T O B E R 1 9 6 5 

Ranges of C11 in Aluminum* 
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The ranges of 0.66- to 1.64-MeV C11 atoms in aluminum have been determined by the stacked-foil catcher 
technique. Monoenergetic C11 recoils were produced from the interaction of 3.94- to 6.96-MeV protons with 
thin B11 targets in the reaction Ru(p}n)Cu. The results are compared with previous data and theoretical 
calculations, and are in agreement with the semiempirical calculations of Northcliffe. 


