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FIG. 4. Comparison of ranges of 
C11 determined in present work 
(open circles) with range measure­
ments for fission fragments (solid 
points) with nuclear stopping 
eliminated. Straight line repre­
sents theoretical curve for pure 
electronic stopping (see Ref. 1, 
Fig. 14). 
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line represents the theoretical curve for pure electronic 
stopping, J&0e= e1/2. The data of the present experiment 
are plotted as open circles and fit well with the fission 
fragment range data. 

Ranges of C11 ions in aluminum can also be obtained 
from NorthcliftVs integration of experimental stopping-
power data for C12 in aluminum.2 The energy-loss 
measurements of 0.36 to 3.2 MeV C12 ions in aluminum 
by Porat and Ramavataram6 were included in this 
treatment. The resulting range-energy curve, corrected 
to C11, is shown in Fig. 3 as curve B. This curve includes 
the corrections for nuclear stopping and projected range, 

6 D. I. Porat and K. Ramavataram, Proc. Phys. Soc. (London) 
77, 97 (1961). 

and is in essential agreement with the experimental 
data. 
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The intensity fluctuations in the emission from various lasing and nonlasing modes of a cw GaAs laser 
have been measured. The measurements were made by two techniques: the coincidence-counting version 
of the Hanbury Brown-Twiss intensity interferometer, and the single-detector excess-photon-noise tech­
nique. The two independent methods give excellent quantitative agreement. The intensity noise in the 
single lasing mode was studied as the laser was taken continuously through the threshold region; this has 
permitted observation of the gradual change in the statistical nature of the photon noise which occurs at 
laser threshold. Observations have also been made of correlations between the intensity fluctuations in the 
emission from different modes of the laser. The experimental observations of intensity fluctuations and 
correlations and their dependences on injection current can be understood in terms of the response of single 
or of coupled van der Pol oscillators to random-noise excitation. 

I. INTRODUCTION 

THE subject of noise in laser oscillators has re­
ceived considerable attention in recent years. 

The earliest experimental work1 involved the deter­
mination of the linewidth of the laser output well above 

1 A. Javan, E. A. Ballik, and W. L. Bond, T. Opt. Soc. Am. 52, 
96 (1962). 

threshold. This width is due to random fluctuations in 
the phase of the oscillator. More recently experiments 
have been performed2"-5 which have detected and meas-

2 L. J. Prescott and A. van der Ziel, Phys. Letters 12, 317 (1964). 
3 J. A. Armstrong and A. W. Smith, Phys. Rev. Letters 14, 68 

(1965). 
4 A. W. Smith and J. A. Armstrong, Phys. Letters 16,38 (1965). 
5 C. Freed and H. A. Haus, Appl. Phys. Letters 6, 85 (1965), 
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ured the randomness in the amplitude or intensity of the 
laser light. The present paper will describe in detail the 
experiments we have carried out on the intensity fluc­
tuations in the light from various modes of cw GaAs 
injection lasers. 

Section I I will describe those properties of injection 
lasers pertinent to the noise measurements and will also 
give experimental details of the two independent 
methods which were used to measure the intensity 
fluctuations. The two methods are first, the coincidence-
counting version of intensity interferometry,6 and 
second, the method of single detector, excess photon 
noise.7 Section I I I presents the results of measurements 
of the intensity fluctuations both in the lasing mode and 
in the nonlasing modes. Also presented are measure­
ments of the correlation between the intensity fluctua­
tions in the light from different modes of the laser. In 
the case of the mode which lases, we present data on the 
intensity fluctuations as the injection current was 
varied from a value well below threshold to a value well 
above it. We have thus been able to observe the con­
tinuous change in the noise properties of the lasing mode 
which occurs at threshold. 

In Sec. IV we present an analysis of the results in 
terms of the noise properties of nonlinear oscillators, 
using the well-known and fruitful van der Pol model 
oscillator.8 I t will be shown that all of the experimental 
observations on intensity fluctuations and correlations 
and their dependences on injection current can be 
understood in terms of the response of single or of 
coupled van der Pol oscillators to random-noise excita­
tion. In the theoretical analysis to be given the electro­
magnetic field will, with a single exception,9 be treated 
strictly classically. The work of Glauber10 has shown 
that when a light source consists of a sufficiently large 
number of independent radiators (which is true of a 
laser below threshold), the quantum-mechanical de­
scription of the resulting total electromagnetic field is 
completely identifiable with a classical description. The 
connection between the classical and quantum descrip­
tions of a laser above threshold is a subject of current 
theoretical investigation. 

n . EXPERIMENTAL DETAILS 

Injection-Laser Properties 

The following facts concerning the GaAs lasers used 
in these experiments are pertinent. The p-n junctions 
were in the (001) plane. The lasers were small; the 

6 R . Q. Twiss and A. G. Little, Australian J. Phvs. 12, 77 
(1959). ' 

7 C. T. J. Alkemade, Physica 25, 1145 (1959). 
8 B . van der Pol, Phil. Mag. 3, 65 (1927); also in Selected 

Scientific Papers, edited by H. Bremmer and C. J. Bouwkamp 
(North-Holland Publishing Company, Amsterdam, 1960), p. 261. 

9 This exception is the treatment of the random noise which 
drives the nonlinear oscillator. The proper expression for the 
spectral density of the spontaneous fluctuations in the polarization 
of the active medium are taken from quantum theory. 

10 R. J. Glauber, Phys. Rev. 131, 2766 (1963). 
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FIG. 1. Mode structure of a selected laser in the region of 
threshold. The intensity (vertical) scale is different at each 
current. The mode envelope at 20.5 mA is indicated by the dashed 
line. The width of all peaks is instrument limited. 

active region was typically 2 by 5 by 150 ju. They had 
cleaved ends and etched sides; no reflective coatings 
were applied to the ends. The lasers were operated at 
^ 1 0 ° K in vacuum. At this temperature the threshold 
current for laser action is essentially independent of 
temperature; this is important since the heat dissipated 
in the diode varies with injection level. The diodes are 
driven by a stabilized dc current generator. A perhaps 
unique feature of injection laser oscillators is their 
ability to operate very stably right at threshold. This 
allows one to make measurements continuously 
throughout the regions below, at, and above threshold. 

The advantages of the small size of the active region 
are twofold. First, the short length of the lasers means 
that the axial mode separation is very large compared 
to other lasers—about 4.4 A in the lasers studied. This 
makes it very simple to isolate a single mode for study. 
Second, the narrow width of the lasers is very effective 
in discriminating against so-called off-axis modes. When 
the output spectra of injection lasers are examined under 
high resolution near threshold one often sees several (as 
many as five or six) families of modes,11 in each of which 
the individual members are separated by the axial mode 
separation; the members of these weaker families are 
often called "off-axis" modes. 

The lasers used in these experiments were carefully 
selected to find those having a single set of axial modes. 
The noise characteristics of a given diode, and hence its 
suitability for our experiments, can be assessed simply 
from an examination of its spectrum above and below 
threshold. The spectrum of a typical laser used to study 
intensity fluctuations is shown in Fig. 1. The envelope-
narrowing characteristic of a homogeneously broadened 

11 P. P. Sorokin, J. D. Axe, and J. R. Lankard, J. Appl. Phys. 
34, 2553 (1963). 
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fluorescence line12 is clearly exhibited by this diode. The 
mode marked "A" is the one which lases. A study of 
mode A for this diode just below threshold with a 
Fabry-Perot etalon of 450 Mc/sec resolution showed no 
structure. We believe this mode to be a true single mode 
at all injection currents used in these experiments; the 
same is true of the other nonlasing axial modes. Diodes 
with the simple spectrum of Fig. 1 also showed the 
expected far field pattern, i.e., a rectangular bright 
stripe with its length perpendicular to the junction 
plane. Finally, we note that small changes in threshold 
and noise behavior usually occurred after a diode was 
warmed to room temperature and recooled to 10°K. 
Thus a quantitatively consistent set of data could be 
obtained only by keeping the diode cold for the duration 
of the experiments. 

Two-Detector Technique 

The coincidence-counting technique has been dis­
cussed by Hanbury Brown and Twiss13 and in great 
detail by Twiss and Little,6 and we will summarize only 
the major features of the method. The geometrical 
arrangement of the coincidence-counting experiments 
is shown in Fig. 2, and the block diagram of the circuitry 
is shown in Fig. 3. The coincidence rate nc may be ex­
pressed as 

nc=2nxti2TR(l+p) , (2.1) 

where th and m are the single channel counting rates, 
TR is the coincidence resolving time, and p is the fraction 
of the relative-mean-squared intensity fluctuation of 
the light source falling within the detector bandwidth 
{ITTR)~1. The first term in nc is the rate of random co­
incidences due to the finite resolving time. The value of 
p for a narrow-band, random-noise source of coherence 
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LIQUID HELIUM 
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PHOTOMULTIPLIERS 
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FIG. 2. Geometrical arrangement for the coincidence-counting 
experiments. The light from a single axial mode of the laser was 
isolated by the spectrometer, split into two equal beams, and 
allowed to fall on two identical photomultipliers. Coincidences 
between the output pulses of the latter were detected with the 
circuitry of Fig.̂  3. The white light and the Hg198 discharge lamp 
were used to adjust and test the apparatus as discussed in Sec. II. 

12 T. H. Maiman, Phys. Rev. 123, 1145 (1961). 
13 R. Hanbury Brown and R. Q. Twiss, Proc. Roy. Soc. 

(London) A243, 291 (1958). 
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FIG. 3. Coincidence-counting circuitry. By using dual coinci­
dence units the random and total coincidence rates were deter­
mined simultaneously. The resolving times of the two units were 
equalized by adjusting the coincidence discriminators. 

t ime rn is 
p=AsApTn/2rRy (2.2) 

where As is a spatial coherence factor which varies from 
0 to 1, and Ap is a polarization factor which varies from 
^ for unpolarized light to 1 for linearly polarized light. 
This expression holds only for rn<^TR, which is always 
the case in the work described here. In order to make 
As close to one, the geometry must be chosen so that 
spatial coherence is obtained over the detector aper­
tures, i.e., the central maximum of the diffraction 
pattern of the source at the detector must be larger than 
the detector aperture. The requirement may be ex­
pressed approximately as asdd/^R<l, where a8 and ad 
are the linear dimensions of the source and detector, 
respectively, and R their separation. This requirement 
can be easily satisfied for the diode without excessive 
light loss because of its high brightness. The spatial co­
herence factor has been evaluated by Hanbury Brown 
and Twiss13 for the special case of a circular source and 
square detector. We have used their results to estimate 
A8 for other source and detector shapes. In using the 
spectrometer to isolate a single mode, the diode was 
imaged on the entrance slit with 1:1 magnification. The 
image at the exit slit then forms the effective source for 
the experiment. The slits were adjusted to be wider 
than the images. 

The polarization factor Ap is § for unpolarized sources 
such as the Hg198 discharge lamp and the diodes below 
threshold. As the injection current in the diodes is 
raised through threshold the light output changes con­
tinuously from the unpolarized state to a linearly 
polarized state. 

The coincidence circuitry was of recent solid-state 
design,14 using fast transistors and tunnel diodes. Pulses 
from the photomultipliers corresponding to the emis­
sion of single photoelectrons are passed by the dis­
criminators and trigger standardized output pulses. 
These are fed into two coincidence units. The random 
coincidence rate is determined by inserting a delay in 
one of the inputs to one of the coincidence units. This 
delay is longer than the resolution time or the coherence 

14 Obtained from Edgerton, Germeshausen, and Grier, Inc. 
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time, whichever is longer. The other coincidence unit is 
used to determine the rate of undelayed coincidences. 
The fractional decrease in the coincidence rate due to 
the delay is called p. 

A coincidence resolving time of about 6 nsec was 
used, and the single channel rates were set to be about 
5X105 counts/sec by attenuating the light if necessary. 
A typical coincidence rate was thus 3000 counts/sec. 
The coincidence resolving time was determined by 
measuring the single-channel rates on the 10 Mc/sec 
scalers. 

The procedure used in studying intensity fluctuations 
was as follows. First the light from the narrow-band 
source being studied was allowed to fall on the photo-
cathodes of the photomultipliers. The delayed and un­
delayed coincidences were counted for 1 min. Then, 
using a system of shutters, the narrow-band light was 
blocked and the light from a tungsten lamp was sub­
stituted. The intensity of the white light was adjusted 
to be approximately the same as that of the first source. 
The delayed and undelayed white light coincidences 
were then counted for 1 min. The white light was then 
blocked out, the original light reintroduced, and the 
cycle repeated. This pattern was repeated until the 
number of random coincidences recorded for each light 
source was about one million. This required between 10 
and 15 min actual counting time. The use of the white 
light allowed a continuing check on the stability of the 
electronic circuitry. Any systematic difference between 
the two white-light coincidence rates can only be due 
to instrumental misadjustments, since the spectral 
density of the white light is far too low to produce any 
observable correlation in photon arrival times. 

As a shake-down experiment we repeated the deter­
mination of the intensity fluctuations in the 4358 A line 
of an air-cooled, microwave-excited, low-pressure Hg198 

lamp.15 The geometrical coherence factor involved in 
this experiment was 0.44. The value of p obtained was 
0.010±0.002, which corresponds to a random-noise 
band width of 860 Mc/sec. This value of the linewidth 
is in good agreement with previous determinations.16 

Single-Detector Technique 

The apparatus and procedure for measuring intensity 
fluctuations with the excess-noise technique are much 
simpler. The experimental arrangement is shown in 
Fig. 4. The noise voltage generated by the photocurrent 
in the load resistor is measured by a true rms volt­
meter.17 The bandwidth of the voltmeter circuit was 
approximately 10 Mc/sec and was held constant 
throughout the experiment. The desired quantity is 
the ratio of the noise voltage Vn measured with laser 
light incident on the detector to the shot noise V8 for 
the same average primary photocurrent Idc> The shot 

16 Obtained from Baird-Atomic, Inc. 
16 G. A. Rebka and R. V. Pound, Nature 180, 1035 (1957). 

See also Ref. 6. 
17 Hewlett-Packard model 3400-A. 
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FIG. 4. Single-detector arrangement for measuring excess noise. 
The fluctuations in the output current of the phototube were 
measured with an rms voltmeter. The dc photocurrent was deter­
mined simultaneously by using an RC divider network. The low-
frequency cutoff of 2 kc/sec was fixed by the divider, the high-
frequency cutoff of 10 Mc/sec by the voltmeter. 

noise was measured with white light incident on the 
detector. For a narrow-band random-noise source, the 
ratio of the two noise voltages is related to the coherence 
time r„ of the noise by 

( F n / F 8 ) 2 - l = r n / d c A s A p /e , (2.3) 

where e is the electronic charge. This expression holds 
only when the measurement frequency is less than the 
noise bandwidth l/(7rr»), which is always the case for 
the work described here. 

For the single-detector technique large values of /dc 
are required to achieve reasonable accuracy of measure­
ment; Vs

2 must be larger than the preamplifier noise. 
I t is necessary to make the source-detector separation 
as small as possible consistent with the requirement that 
A s ~ l . The actual value of As pertaining to the experi­
ment is difficult to determine because the emitting 
areas of the diodes are not precisely known, but esti­
mates indicate that it is close to one. Furthermore, it 
was found that the ratio Vn/Vs did not increase at 
values of the source-detector separation greater than 
the 30-cm value actually used, which is also consistent 
with A s ~ l . For purposes of comparison with the co­
incidence measurements, the ratio Vn/Vs can be con­
verted into an equivalent relative intensity fluctuation 
peq as follows: 

Pe q =C(Fn/F s ) 2 ~l] (e /2r i 2 / d c ) . (2.4) 

This assumes equal values of As and Ap for both experi­
ments. All of the single-detector measurements will be 
presented in terms of peq. 

III. EXPERIMENTAL RESULTS 

Our first measurements of the intensity fluctuations 
in laser light were made on the single lasing mode of the 
diode whose spectrum is shown in Fig. 1. This mode 
was isolated with a 0.5-m Jarrell-Ash spectrometer of 
resolution sufficient to exclude all other axial modes 
but insufficient to in any way artificial narrow the line-
width of the lasing mode.18 In Fig. 5 we show the rela-

18 We have made measurements of the linewidth of mode "A" 
both just below and well above threshold. Just below, its width is 
about 1300 Mc/sec; well above threshold the width is less than 50 
Mc/sec (Ref. 19). Both these widths are far smaller than the reso­
lution of the monochromator used. 
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FIG. 5. The relative intensity fluctuation p for the lasing mode 
as a function of injection current «/, measured by both the co­
incidence-counting and excess-noise techniques. The excess-noise 
data have been converted to an equivalent value of p as described 
in the text. The coincidence data have a constant absolute accu­
racy of about ±0.003 in p, whereas the excess-noise data have a 
constant relative accuracy of about ±10%. The dashed curve 
gives the mode power in arbitrary units. 

tive intensity fluctuation p as a function of injection 
current / for the single lasing mode. Also shown is the 
power in mode A. Data was obtained by both the co­
incidence-counting technique and the single-detector 
excess-noise technique. The agreement between the two 
methods for determining the amplitude noise is 
excellent. 

There are several features of the behavior of p which 
require explanation. Note that at injection levels near 
but below threshold (~22.8 mA in Fig. 5 and 20.5 mA 
in Fig. 6) the intensity fluctuations increase with in­
creasing diode current. The fluctuations peak around 
threshold and thereafter decrease, falling below the 
limit of detectability at injection levels ^ 2 5 % greater 
than threshold. The decrease in p above threshold is 
referred to as "quieting." As will be discussed in detail 
later, quieting is characteristic of all good oscillators. 
The increase in noise below threshold can be explained 
as follows: Below threshold the mode emits narrow­
band random noise, whose bandwidth, however, is not 
constant but decreases with decreasing net loss in the 
cavity. This decreasing net loss is of course due to the 
gain in the active medium. I t follows from Eq. (2.2) 
that decreasing bandwidth (increasing r„) causes p to 
increase. 

Thus if we can independently estimate the depend­
ence of the single-mode linewidth below threshold on 
injection current we should be able to predict the varia­
tion of p with / below threshold. There are two ways 
of determining the linewidth. The first method is direct 
measurement. Figure 6 shows the variation of p versus 
/ for the same laser, taken several months before the 
run of Fig. 5, again for the single lasing mode. The 
single-mode linewidth was measured with a Fabry-
Perot etalon at 19.8-mA injection level; we obtained a 
value of 1300±200 Mc/sec. This linewidth corresponds 
to the value of p shown by the square and error bar in 
Fig. 6. 

The second method involves the envelope narrowing. 

The same mechanism which causes the single-mode 
emission to narrow is responsible for the gain narrowing 
of the mode envelope (fluorescence line) shown in Fig. 1. 
Near threshold the width Avm of a single mode near the 
center of the fluorescence line is related to the envelope 
width Ave by the expression12 

Avm= Avmo(Ave/Aveo)2, (3.1) 

where the subscript " 0 " denotes an unnarrowed width. 
The behavior of p predicted from this relation, and the 
observed mode polarization, is shown by curve B in 
Fig. 6, using an estimate19 of 60 000 Mc/sec for the 
unnarrowed mode width. Clearly the observed behavior 
of p below threshold is typical of that of a gain-
narrowed, random-noise emission. I t may be noted that 
p = 3X 10~4 for the unnarrowed mode, which is below 
the minimum detectable value of 2X 10~3. 

The measurements reported so far involved intensity 
fluctuations in the single lasing mode. By retuning the 
monochromator we can study the intensity fluctuations 
in the nonlasing modes as well. Figure 7 shows the rela­
tive intensity fluctuations p for the lasing mode and for 
the second and third strongest, nonlasing modes. Also 
shown are the powers in the three modes. The second 
mode is seen to be much more noisy than the lasing 
mode at and above threshold. As will be seen, this is 
because the output of the nonlasing modes continues to 
be narrow band random noise even after the strongest 
mode has begun to lase and its intensity fluctuations 
have fallen off. The value of p for the third mode is 
smaller than for the second because the gain narrowing 
in the third mode is less than in the second. The 
eventual bending over of the p-versus-7 curve for the 
second mode can be understood in terms of coupling 
between the various modes of the laser. 

0.03 

002 

o.oi 

20 21 22 
INJECTION CURRENT J (mA) 

FIG. 6. The relative intensity fluctuation p for the lasing mode 
plotted against injection current / for the same maser as Fig. 5, 
but measured at an earlier time. The experimental points are solid 
circles with bars indicating the standard deviations of the counting 
fluctuations. Curve A shows the output power of the mode in 
arbitrary units. Curve B is the behavior of p for narrow-band 
noise predicted from the observed envelope narrowing. The accu­
racy of this curve is indicated by the error bar at 7=19.7 mA. 
The value of p estimated from the measured linewidth is shown 
by the square. The dashed curve C is a smooth curve through the 
experimental points. 

19 J. A. Armstrong and A. 
196 (1964). 

W. Smith, Appl. Phys. Letters 4, 
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FIG. 7. Variation with injection current of the relative intensity 
fluctuations p« for the lasing and two nonlasing modes, derived 
from single-detector measurements. Also shown is the current de­
pendence of the correlation pn between the intensity fluctuations 
in the first (lasing) and the second (nonlasing) modes. The pn 
data were taken after thermal cycling of the diode to room tem­
perature, which caused small changes in the peak values of pn 
and P22. 

Experimental observation of coupling between the 
intensity fluctuations in different modes was made by 
using the intensity interferometer as a correlator. Using 
two monochromators, the light from one mode was shone 
on one detector and the light from another mode was 
shone on a second detector (with the beam splitter of 
Fig. 2 removed). The two photomultiplier outputs were 
then fed to the coincidence counter, and the fractional 
change in the coincidence rate when a delay was inserted 
in one channel gave the normalized correlation between 
the intensity fluctuations in the two modes. Typical 
results are shown in Fig. 8. We show the spectrum of 
the laser at the injection current where the correlations 
were measured, the relative intensity fluctuations in each 
mode pa, and the correlations between the intensity 
fluctuations in pairs of modes p#. Note that the correla­
tions which involve the lasing mode are negative, 
whereas the correlation between the two nonlasing 
modes is positive. The existence of both positive and 
negative correlations and their magnitudes can be 
understood in terms of the theory of coupled oscillators 
to be given in Sec. IV. The variation of the correlation 
coefficient p12 with injection level is shown by the 
bottom curve in Fig. 7. (Figures 7 and 8 refer to differ­
ent lasers.) 

IV. INTERPRETATION 

Our discussion of the experimental results will be 
based on the use of van der Pol's equation to describe 
the behavior of a laser oscillator driven by random spon­
taneous emission noise. We expect intuitively that the 
output of a lasing mode will be a superposition of an 
amplitude-stabilized, coherent signal and a weaker, 

random-noise signal. A nonlinear theory must be used 
since a linear theory is intrinsically incapable20,21 of de­
scribing the effects of noise on the coherent signal and 
conversely the effect of the coherent signal on the noise 
power and the noise bandwidth. 

I t may be shown that van der PoPs equation is the 
proper nonlinear description of gas-laser oscillators. 
Lamb22 gives a semiclassical discussion starting with 
Maxwell's equations for the field in the mode and in­
cluding the source term which produces the field. The 
requirement of self-consistency, namely that the field 
in turn gives rise to the source, is imposed and the source 
is written as a function of the field, keeping terms up to 
third order in the field in a quantum-mechanical per­
turbation calculation. This procedure is familiar from 
the recent work in nonlinear optics.23 As is also the case 
in nonlinear optics, the nonlinear source terms may be 
either in phase or out of phase with the field in the mode. 
For modes near the center of an homogeneously 
broadened fluorescent line only the out-of-phase part 
of the nonlinear polarization is important. In such a 
case Maxwell's equation for the field in the mode takes 
the form of van der Pol's equation. Similarly, analysis 
of the N M R maser clock leads to van der Pol's 
equation.24 

The explicit demonstration of the applicability of this 
famous equation to the case of the GaAs injection laser 
has not yet been given. Certainly there are properties 
of injection lasers which are not reflected by this rela­
tively simple nonlinear differential equation. I t is a 
reasonable expectation, however, that the properties of 
injection lasers which are essential to their operation 
as oscillators are describable in terms of van der Pol's 
equation and in what follows we will assume that such 
is the case. 

The problems involved in analyzing the intensity 
fluctuations in the output of a laser will be treated as 
follows. First, assuming the output to be a superposition 
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71 
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FIG. 8. The relative 
intensity fluctuations p« 
and the correlations p# 
between three modes 
(one lasing, two non­
lasing) in a cw GaAs 
laser with the spectrum 
shown. 

- />„*+0.010-

20 A. Blaquiere, Ann. Radioelec. 8, 36 (1953); also 8,153 (1953). 
21 J. A. Mullen, Proc. IRE 48, 1467 (1960); see also M. J. E. 

Golay, Proc. IEEE 52, 1311 (1958). 
22 W. E. Lamb, Jr., Phys. Rev. 134, A1429 (1964). 
23 J. A. Armstrong, N. Bloembergen, J. Ducuing, and 

P. Pershan, Phys. Rev. 127, 1918 (1962). 
24 P. Grivet and A. Blaquiere, in Proceedings of the Symposium 

on Optical Masers (Polytechnic Press, New York, 1963), p. 69. 
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of an amplitude-stabilized field and a weaker, stationary 
random-noise field, we will compute the value of the 
relative intensity fluctuation p to be expected. This 
value of p will turn out to depend on four parameters: 
the coincidence resolving time, the correlation time of 
the amplitude fluctuations, the power in the weak-noise 
field, and the power in the amplitude-stabilized field. 
The relationships which exist between these last three 
quantities will then be calculated from analysis of the 
response of a single van der Pol oscillator to random 
excitation. The final problem will be to write down the 
equations for several van der Pol oscillators coupled by 
the active medium of the laser and all driven by the 
random noise corresponding to spontaneous emission. 
Analysis of these coupled equations will provide ex­
planations for the observed correlations between in­
tensity fluctuations in different modes. 

Expressions for p 

Assume the oscillator output to have the following 
form: 

E(t) = E0cos(a>Lt+4,L)+en(t) = Ecoh(t)+en(t) . (4.1) 

Here COL is the frequency of the laser, \//L is the random 
phase of the coherent signal, and en(t) represents sta­
tionary Gaussian random noise. The output noise en is 
to be distinguished clearly from the random noise which 
drives the laser mode; the two types of noise will have 
different bandwidths, powers, and different statistical 
properties. In what follows we assume the total field 
E(t) to be linearly polarized and to have constant 
phase across the detector apertures (i.e., we assume 
A. = A P =1) . 

Now expand en(l) in a Fourier time series over a long 
interval T=vQ~l. 

E(t) = Eo co s (w L /+^ ) + Z r hr cos(2wrv^+<t>r) . (4.2) 

Here r is an integer, the hr are Fourier amplitudes which 
have appreciable value only in the neighborhood of 
r — ooL/2wvo, and the 0 r are identically distributed, in­
dependent random phases of the Fourier components. 

The instantaneous power in the mode can be written 

P ( 0 = i > coh+i > »+£oZr*r 
XCOS[(27TfJ>0 — UL)t+<t>r-—>pLl 

+ i I r ^ hrha cos[27r(r—s)v0+<f>r—0J , (4.3) 

where PCoh==iEo2 and Pn= ( |) ]T r kr
2. The instan­

taneous output of the detector will simply be expression 
(4.3) multiplied by a detector efficiency a expressed in 
pulses/sec/W. 

Calculation of the expected rate of coincidences now 
follows very closely the derivation given in Appendix B 
of Ref. 13, except that there is an additional source of 
fluctuations due to the beats between the stabilized 
field and the noise field. We assume a coincidence re­
solving time TR, and also for simplicity that each de­

tector is of equal sensitivity and that each is irradiated 
by the field of Eq. (4.3). The coincidence rate is 

R=2rR(PGoh+Pn)2 

smr2w(r—s)i>QTii] 
+ E *r2*.2 

r>s 2ir(r—s)vo 

sinr27r(n>o— V£)TR~] 
+ £ o 2 £ * r 2 . (4.4) 

r 2w(rVQ—VL) 

The first term is the random coincidence rate due to 
the finite resolving time; the second term was derived 
by Brown and Twiss and interpreted as due to bunching 
of photon arrival times; the third term is new and 
represents the intensity fluctuations due to interference 
between the noise and the coherent signal. Expres­
sion (4.4) can be simplified if the correlation time r n of 
the noise power Pn is much less than or much greater 
than TR. One changes from summation to integration 
by putting 

hHhr^ [ g2{v)dv. (4.5) 
r JQ 

If Tn<^TR, we find 

R=2TR(Pcoh+Pny+ f g*(v)dv+Pcohg
2(vL) . (4.6) 

J 0 

The integral in (4.6) is written r n i V by Brown and 
Twiss and constitutes their definition of r». In the same 
spirit we write the last term as arnP„PCOh; this defines 
a parameter a, which clearly depends on the shape of the 
noise-power spectrum g2(v). This parameter has the 
values 1, V2, and 2 for rectangular, Gaussian, and 
Lorentzian shapes, respectively. The final expression 
for p is 

/ Tn\/Pn
2+aPnPooh\ 

p = ( — ) ( . (4.7) 
\2TRJ\ (Pn+Pcoh)

2/ 

Although we will not use it here, we also give the ex­
pression for p derived from Eq. (4.4) when Tn^>rR. I t is 

p = (Pn
2+2PnPcoh)/(Pn+Pcoh)\ (4.8) 

Response of van der PoFs Oscillator to 
Random Noise 

In order to apply expression (4.7) to the observations 
of p we must know the dependence of both Pn and r n 

on Pcoh. These relations can be found from analysis of 
the response of the nonlinear van der Pol oscillator20,21 

to random noise. That is, we must solve the equation 

d2E/dt2+(r-a+yE?)dE/dt+uL
2E= (o:T

2/c2)N(l) . 

(4.9) 

In this equation E is the electric field in the cavity 
mode, whose bandwidth in the absence of gain is r. 
Apart from a frequency factor, (a—yE2) is the gain of 
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the active medium. The field-dependent term in the 
gain is due to saturation; i.e., the gain of the medium 
decreases when an oscillation is allowed to build up. 
N(t) is a random function of time and represents the 
spontaneous fluctuations in the dipole moment of the 
medium25 due to spontaneous emission. The time 
average of N(t) is zero but the average of N2(t) is not. 
The spectral density of (N2(t))t is D(v) and contains all 
the information we can have about the noise driving 
term N(t). 

The coefficients a, y, and the spectral density D(v) 
depend on the matrix element for transition from the 
upper to the lower level, on the fluorescence lineshape, 
and on the relaxation times of the states. The detailed 
expressions for two-level solid-state or gas systems have 
been given by Lamb22 (for a and 7) and by Wagner 
and Birnbaum25 (for D). We will not repeat these ex­
pressions since the detailed expressions for a, 7, and D 
will certainly be different for semiconductor lasers. The 
dependence of these coefficients on the level populations 
is of importance to us, however. Since we are assuming 
that the two-band injection laser is similar to the two-
level systems which lead to van der Pol's equation, we 
will assume that the populations of the conduction and 
valence bands play roles analogous to the level popula­
tions. Both a and 7 are linearly proportional to the 
difference in population between the upper and lower 
levels; the spectral density of the noise driving the 
oscillator D(v) is linearly proportional to the population 
of the upper level. 

Consider the solution of Eq. (4.9) in the absence of 
noise, i.e., N(t) = 0. We try a solution E(t) = Eo COS(COL/). 
If we discard the nonlinear terms at frequency 3UL, to 
which the medium may be assumed opaque, the trial 
solution works if 

EQ
2=(4/3y)(a-r). (4.10) 

Thus the output power of the mode is proportional to 
the difference between the (linear) gain and the loss in 
the cavity. When the field has the amplitude £0 given 
by (4.10), the net gain (or loss) in the mode is zero, as 
it must be for stable oscillation. 

The presence of noise affects the oscillator in several 
ways. For a given population inversion the coherent 
output power is lowered by an amount proportional to 
the noise power in the mode. More serious effects are 
the introduction of random phase and amplitude modu­
lation into the mode output. 

Equation (4.9) has been discussed by several 
authors,20,21 and a particularly lucid treatment has been 
given by Caughey.26 His results are directly applicable 
to the present problem. We summarize his method for 
solving Eq. (4.9). Assume a solution of the form of 
Eq. (4.1) but omit the random phase of the coherent 

25 W. G. Wagner and G. Birnbaum, J. Appl. Phys. 32, 1185 
(1961). 

26 T. K. Caughey, Trans. Am. Soc. Mech. Engrs. (Trans. ASME) 
81(3), 345 (1959). 

signal, since our experiments are not sensitive to phase 
noise. The difficulty in the present problem comes from 
the nonlinear term in the gain in (4.9). Using the 
method of Rice,27 Caughey calculates the power spec­
trum of Es(t) assuming the E(t) given in (4.1). The 
power spectrum of E(t) is simply (%)E0

28(v— vL)+g2(v). 
The power spectrum of Ez contains many terms, 
centered about either VL or 3VL. All of the latter are dis­
carded. The terms centered about VL are of three kinds; 
the first has a delta-function spectrum around VL and 
is due to the coherent signal beating with itself three 
times; the second type of term represents noise with a 
power spectrum proportional to g2(v); such a term 
comes from the beat of the coherent signal with itself 
and then with the noise en. Finally there are terms in 
which (a) the noise en beats with itself and then with 
the coherent signal or (b) with itself three times. These 
latter terms (a) and (b) are centered about VL but they 
have noise spectra which are more spread out than 
g2(v). Moreover, they correspond to non-Gaussian 
noise.21 These non-Gaussian terms must be neglected 
in order to proceed further; this neglect is not serious 
as long as the approximation en<Eo is valid. What 
follows is restricted then to an oscillator well above 
threshold. 

Thus the power spectrum of Ez(t) is found to be 

(3Pn+3Pcoh)
2g2(v)+(3Pn+IPGoh)

2Pcohd(v-vL) . (4.11) 

As Caughey points out, this is the same as if the noise 
part of E(t) had been put through a linear device of 
gain 3(Pn+PCOh) and the sinusoidal part oiE(t) through 
a linear device of gain (3Pn+§PCOh). With this picture 
in mind one can now write Eq. (4.9) in the form of two 
separated, linear equations, one homogeneous, for the 
sinusoidal part of the solution, the other inhomogene-
ous, for the noise part. These equations are 

d2EGoh/dt2-{a-r-y(3Pn+^Pcoh)}dEGoh/dt 

+coL
2Eooh=0, (4.12) 

d2en/dt2- {a-r-y(3Pn+3Pcoh)}den/dt 
+uL

2en=(a>L
2/c2)N(t). 

The solution to the first of these is similar to (4.10) 
except that it now reads 

E0
2= ( 4 / 3 7 ) ( a - r ) - 4 P n . (4.13) 

This is the effect of the noise in decreasing the coherent 
output for given linear gain. The second equation is 
simply the Langevin equation for the Brownian motion 
of a damped harmonic oscillator.28 If the driving noise 
is Gaussian, so is en{t). Equation (4.13) can be used to 
eliminate PCOh from the second of Eqs. (4.12). The 
treatment of the noise properties of the linear damped 
harmonic oscillator driven by noise is then standard. 

27 See Selected Papers on Noise and Stochastic Processesf edited 
by N. Wax (Dover Publications, Inc., New York, 1954), p. 276 ff, 

28 See Ref. 27, p. 133, 
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The noise power Pn and the noise bandwidth Avn are 
given as follows: 

PnccD/Pcoh 

for PC Oh»Pn. (4.14) 
Avn oc Pc o h 

These are the relations between the noise properties of 
the mode output and the coherent signal. They show 
that the amplitude noise power in the mode is inversely 
proportional to the coherent signal, and also that the 
noise bandwidth is linearly proportional to the coherent 
power. The spectral density of the amplitude noise, in 
other words, decreases very rapidly with increasing 
strength of oscillation. (The inverse relationship 
between Pn and PCOh holds only so long as the spectral 
density of the driving noise D can be considered in­
dependent of the excitation level. This will be true in a 
limited region above threshold, where the output power 
is changing much more rapidly than the excitation.) 

We can now return to Eq. (4.7) to describe the varia­
tion of p as the laser goes through threshold. Below 
threshold PCoh is zero and the expression for p is simply 
( r n /2r«) . The variation of rn (which apart from a nu­
merical factor is the reciprocal of the bandwidth) may 
be seen from the second of Eqs. (4.12). Since we are 
below threshold the complications due to nonlinearity 
are unimportant and all terms containing y may be 
dropped. The output of the mode is narrow-band 
random noise with the same statistical properties as the 
driving noise N(t). The noise bandwidth is (r—a). 
Since a is proportional to the population difference, it 
increases with increasing excitation, and hence as thresh­
old is approached from below the bandwidth of the noise 
power decreases. This means that the value of p de­
tected in our intensity interferometer with its limited 
bandwidth will increase. This is what is observed. 

Far enough above threshold for Eq. (4.2) to hold we 
can substitute the results of (4.14) in (4.7) and find the 
variation of p above threshold to be proportional to 
CPcoh)~3. This rapid decrease above threshold is also 
consistent with the rapid decrease actually observed. 
Within the experimental error of ± 2 5 % , the curve for 
p u in Fig. 7 varies as (PCOh)~3 for values of J between 
22.2 and 24.6 mA. 

In the region right at threshold, where the magnitudes 
of P0oh and Pn are comparable, the approximations 
made in the theory break down and it becomes very 
difficult to find a meaningful way in which to linearize 
van der Pol's equation. We cannot therefore predict 
theoretically the magnitude of the peak in the p-versus-/ 
curve. 

Intensity Correlations 

We have seen that the observed variation of the in­
tensity fluctuations in a single lasing mode may be 
understood in terms of the response of van der Pol's 
oscillator to random noise. We will now show that the 

observed correlations between the intensity fluctuations 
in different modes can be understood in terms of the 
reponse of coupled van der Pol's oscillators to random 
noise. 

Van der Pol long ago29 considered coupled circuits, 
but the coupling mechanism he derived for rf circuits 
is different from that which operates in the active 
medium of a laser. Although this problem is related to 
the case of multimode oscillation treated by Lamb,22 it 
must always be kept in mind that the injection lasers 
considered here oscillate in one mode only, with the 
other modes producing narrow band noise. The coupling 
between the modes occurs via the nonlinear response of 
the medium to the total electric field present. For 
definiteness we assume three fields present at frequencies 
coi, co2, and co3; further let us assume that it is mode 2 in 
which laser oscillation will occur. As in nonlinear optics 
we calculate the Fourier components of the total polar­
ization23; at &>i the nonlinear polarization has contribu­
tions proportional to Ei3, E*?Ei, E^Eh plus others if 
the modes are equally spaced in frequency. When 
mode 2 is oscillating, however, its field strength is con­
siderably greater than either Ei or E3, and the only 
important nonlinear terms are proportional to E2

2Eh 

£2
3, and E£Ez, at frequencies coh «2, and a>3, respectively. 

We can therefore write down three equations for the 
three fields. 

J 2 E 1 / ^ 2 + { r - a 1 + 7 i £ 2 2 } ^ i / ^ + c o 1
2 £ i 

= (u1
2/c2)N1(t), (4.15a) 

d2E2/dt2+{r-a2+y2E22}dE2/dt+^22E2 
= (co2

2/c2)N2(t), (4.15b) 

d*E3/df+{r-as+ysE22}dEs/dt+uz2Ez 

= (co3
2A2)iV3(0. (4.15c) 

These are the equations which govern the fields in the 
three modes when the injection current is above thresh­
old for laser oscillation in mode 2. In the approximation 
we are using the equation for the oscillating mode is un­
changed, whereas the equations for the other modes are 
altered in the same way by the strong field at a>2. 

WTe use these equations first to discuss the relative 
intensity fluctuations in the nonlasing modes. For this 
purpose we can replace E22 in the first and third equa­
tions by its time averaged value. Equations (4.15a), 
(4.15c) are then simply Langevin equations: The solu­
tions Ei(t) and Ez(t) will have the character of random 
noise and will be Gaussian if the Ni(t) are. The band­
width of this noise is given by the factor which multi­
plies dE/dt; that is, (r—ali3) below threshold and by 
(f—ai,3+7i)3E22) above threshold. Since thea 's increase 
with increasing excitation, we see that below threshold 
the bandwidth of the output noise emission of the mode 
will decrease, and, in our detector of small bandwidth, 

29 B. van der Pol, Phil. Mag. 43, 700 (1922); also in Selected 
Scientific Papers (see Ref. 8). 
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give rise to a measured value of p which increases with 
injection level. In the nonlasing modes, however, (r—a) 
never decreases to zero; it has some finite positive value 
when mode 2 goes into oscillation. The variation of the 
bandwidth of the nonlasing modes above threshold for 
mode 2 depends on the detailed form of the various a 
and 7 coefficients. I t can be shown that the bandwidth 
will not decrease below a limiting value. This implies p 
in the nonlasing modes should tend to a constant value. 
However, it will be shown at the end of this section that 
there is good reason to expect the p's in the nonlasing 
modes to fall off gradually from their highest values as 
the coherent power is further increased. Such behavior 
is actually observed in the intensity fluctuations of the 
nonlasing modes (see Fig. 7) and implies the bandwidth 
of the nonlasing modes eventually increases with in­
creasing / . 

We now use Eqs. (4.15) to explain the correlation 
between intensity fluctuations in different modes.We 
make use of the fact that £2

? is not always equal to its 
time average value but rather fluctuates around it. I t 
is clear from Eqs. (4.15a), (4.15c) that when the in­
tensity of the lasing mode fluctuates up there is a cor­
responding decrease in the output of the nonlasing 
modes, since their gain suffers additional suppression. 
Similar reasoning shows that a decrease in intensity in 
the lasing mode should coincide with increasing in­
tensity in the nonlasing modes. Thus the equations 
clearly predict the negative correlation observed 
between the fluctuations in the lasing and nonlasing 
modes. 

Furthermore, since E£ enters all of the equations for 
nonlasing modes in the same way, it is clear that all 
nonlasing modes tend to respond in the same way to 
fluctuations in the intensity of mode 2; this provides 
the explanation of the positive correlation observed in 
the noise emission from separate, nonlasing modes. 

We can also calculate the expected magnitude of the 
cross-correlation coefficient pn. We have seen in the 
previous discussion that all of the nonlasing modes are 
influenced in the same way by the fluctuations in the 
lasing mode. Hence it is a reasonable physical picture 
to describe the fluctuations in terms of two modes only, 
one which is lasing and one which is not. We then 
assume that in the steady state the total instantaneous 
intensity of the two modes is constant. This is the same 
as assuming that the fluctuations in the two modes are 

equal and opposite. With this assumption one can show 
very readily that p i 2 = — pn (P1/P2) = — P22 (P2/P1). 
Despite the greatly simplified model used to derive 
these relations they reproduce within 30% the measured 
Pi2-versus-/ curve above threshold. At or below thresh­
old they should not be expected to apply since in this 
region the lasing mode is not strong enough to dominate 
the other modes. 

The equations in the last paragraph can be used to 
explain the bending over of the curve of p22-versus-/ 
which is evident in Fig. 7. These relations clearly imply 
P22 = PM(PI/P2)2; furthermore, we know that well above 
threshold pn varies as Pf~z, and Pi saturates at a con­
stant value. Under these conditions P22 varies as P i - 1 

which is consistent with p22 versus / in Fig. 7. This 
result depends on a two-mode model; this model is 
fairly good for the diode of Fig. 7 since the power in the 
third strongest mode is down considerably from the 
second strongest. 

V. CONCLUSION 

Using two independent methods, which give quan­
titative agreement, we have measured the intensity 
fluctuations in the lasing mode and in the nonlasing 
modes of cw GaAs lasers. We have observed the change 
in the noise properties of the lasing mode as it passes 
through the threshold region. We have observed the 
output of the nonlasing modes to be narrow-band 
Gaussian random noise at currents above threshold, 
where the lasing mode has quieted and is best described 
by an amplitude-stabilized field plus a weaker noise 
field. We have shown that all of the observations are 
consistent with the description of the lasing mode as a 
van der Pol oscillator. And finally we have seen that 
the observed mode coupling is consistent with the de­
scription of the several modes as coupled nonlinear 
oscillators. 
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