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less sensitive on the lower limit and the "classical" 
method of calculating AE as the difference between the 
\s(jg and the 2pau potential curves is a much better 
approximation. It was the one used in the computation. 
Numerical checks showed the error to be less than 1% 
at F 0 =0.6 and then to increase slowly as VQ was made 
smaller. The method of summing simultaneous excita
tions made use of the approximate formula given in 
Eq. (21). The appropriate correction term for the con
tinuum was evaluated according to Eq. (22) and then 
added to the results from the approximate summation 
formula. 

Comparison of the results that include simultaneous 
excitation with Fig. 3, which shows the cross section 
when these events are ignored, demonstrates their im
portance. I t is apparent that the first Born approxima
tion must include these processes when it is possible for 
them to occur. This is especially significant since their 
influence is the strongest at the high energies where the 
Born approximation is most likely to be used. As yet 

I. INTRODUCTION 

A LARGE number of calculations have recently 
been performed of the scattering of electrons by 

atomic hydrogen, at low1-4 and at high energies. This 
is on the one hand a reflection of the increased interest 
in atomic scattering processes in the atmosphere of the 
earth and of the sun, for example, and on the other hand 
of the presence of high-speed computers which make 
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there is no experimental evidence to compare with these 
results, but the influence of simultaneous excitations on 
the dependence of the cross section is suggestive when 
one looks at the results obtained for the H2

+ , H2 

scattering system.17 
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possible large-scale calculations aiming at high accuracy. 
In view of the concurrent recent interest of the experi
mentalists and of the consequent improvements in 
technique, there is little doubt that relatively precise 
contact will be made shortly between the experimental 
results and theoretical calculations based on first princi
ples, even for energies at which the distortion of the 
hydrogen atom is great enough to more or less com
pletely invalidate the Born approximation. We might 
remark parenthetically that, roughly speaking, such 
contact has just about been made for scattering by an 
atom. It would obviously be extremely useful to the 
experimentalist to be able to normalize cross-section 
data by the use of reliable theoretical results. 

Because of the great similarity of the problems, in the 
course of studying e~H scattering the theorists have 
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The recently developed improved minimum principle for single-channel scattering is applied to a study 
of the s-wave elastic-scattering phase shift 770 of positrons by atomic hydrogen. The method requires the 
exact solution of the static one-body equation and of the corresponding static Green's function, and also the 
orthogonalization of the trial function to the hydrogenic ground-state wave function. The radial part of 
the trial function Q*f?t is chosen to be of the exponential-polynomial form, with linear and nonlinear varia
tional parameters; to simplify the orthogonalization, Q^t is expanded in Legendre polynomials whose 
argument is the cosine of the angle between the coordinate vectors of the electron and the positron. Rigorous 
lower bounds are obtained on 770 at various energies. The calculation includes the contributions from hydro
genic states with angular momentum /up to / = 5. For each energy, an estimate is made by extrapolation of 
the true contribution to 770 from 0 < / < 5 , and this estimate is used in turn to estimate the contribution from 
/ > 5 to 770. The rigorous lower bounds obtained and the estimates are compared with previous estimates of 770. 
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naturally tended simultaneously to consider e+H scat
tering. 2,5~8 The formal setting up of the e+H scattering 
problem is simpler because the Pauli principle does not 
enter, but at least at very low energies this simplicity 
is largely offset from a calculational point of view 
because of the tremendous distortion that the positron 
produces, presumably through the virtual formation of 
positronium5 in its ground state and in excited states. 
At zero energy, for example, it was rigorously proven5 

that contrary to simple expectations and to previous 
calculations, the scattering length is negative, reflecting 
an effective attraction between the positron and the 
hydrogen atom. 

The rigorous result just referred to was one of a num
ber of zero-energy calculations in atomic1-5 and nuclear 
scattering problems9-10 based on a minimum principle 
which provides a bound on the scattering length.9,11 

The extension of the minimum principle to nonzero 
energies was only recently derived in a really usable 
form,12-13 and the present positron-atomic-hydrogen 
calculation, restricted to the case of zero total angular 
momentum, represents the first serious application14-15 

of the method. 

II. THE MINIMUM PRINCIPLE 

We here consider only the single-channel scat
tering of positrons by hydrogen atoms, and we are 

where ^ is regular at the origin and has the asymptotic 
behavior 

V—>\pTo(ri) $m(kr2+r)o)/[r2 sin(7?0— 0)] , 
r2-^oo . (2.3) 
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trial function used was somewhat crude and the contributions 

therefore restricted to incident energies FJ less than 
6.8 eV, the energy at which pickup becomes possible. 
Neglecting the possibility of annihilation we choose as 
our Hamiltonian 

jQr=-(f t 2 /2w)(Vi 2+V 2
2 ) -« 2 / r i+« 2A2-c 2Ai2, (2.1) 

where ri and r2 represent the electron and positron co
ordinates, respectively. The present paper will be con
cerned only with zero orbital angular momentum scat
tering and the wave function SF will therefore be inde
pendent of the Eulerian angles. Two standard choices 
of the three remaining coordinates include r\, r2, r i2 

and ri, r2, 0i2, where #i2 is the angle between ri and r2. 
Each choice has its advantages, but we chose the second 
set for two reasons. Firstly, we require the trial func
tion Q^t to be orthogonal to the hydrogenic ground-
state wave function ^ro(ri), and it is somewhat simpler, 
although not essential, to choose such a trial function if 
one uses rh r2, 6u coordinates. Secondly, with this 
choice it is somewhat simpler to generalize to higher 
partial waves.15 

Our problem is to determine the zero angular 
momentum phase shift, 170, defined by the solution of 
the equation, 

The constant 0, which satisfies 0<6<ir but is otherwise 
arbitrary, will be chosen later. The total energy of the 
system E is given by 

E=ETo+E'= -13.6 eV+h2k2/2m, 

while the ground-state wave function I/TO(VI) is nor
malized by 

/ ^W*(r iK 2 dr i= l . 

The projection operator P that appears in the non
zero energy minimum-principle formulation12 is here 
taken to be that which projects on to the ground state 
of the hydrogen target. Without loss of generality, we 
can include in P the projection on to the Po(cos0i2) 
state as well, since then the components of Q^t which 
are proportional to Pi for 1^0 are already orthogonal to 

for / > 5 were underestimated; this had the further effect of 
causing the estimates of the contribution from l>5, obtained by 
extrapolation, to be greatly underestimated. 

15 The p-w&ve and d-wave phase shifts for e+H scattering have 
been calculated by the techniques of the present paper by C. 
Kleinman, Y. Hahn, and L. Spruch, Phys. Rev. (to be published); 
and adiabatic and variational calculation have been performed by 
R. J. Drachman, Phys. Rev. 138, A1582 (1965), and by R. L. 
Armstead and C. Schwartz (unpublished), respectively. 

h2r d2 d2 / l 1 \ 1 d d~] e2 e2 e2 1 
— ( — + — sin0i2— + E {nratfCn/^HO, (2.2) 
2mL 6V12 dr2

2 V12 r2
2/sin0i2 #12 #12J r\ r2 rvi J 
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ipTo(ri)Po without adjusting the radial parts of the func
tion. In fact, the choice of the coordinates made above 
readily allows the construction of Q—l — P. We thus 
define, for an arbitrary function f(ri,r2,0i2), 

Pf(rur2,612) = ^To(ri) 

X / fTo(ri')f(ri',ri,ei2')ri'dri'd cosdy2, (2.4) 

where the | arises because of the integration over 
dcosdi>2, and the equation in the static approxima
tion by 

P(H-E)PVp=0 (2.5) 
with 

P*p=4sTo(ri)uQ
p(r2)/r2. (2.6) 

(Or 2 is a dummy variable and need not therefore be 
given a physical interpretation, but it can be inter
preted in the six-dimensional space defined by r / and 
r2 as the angle between these vectors. In the present 
case where we are dealing with L — 0, Pf is actually 
independent of d\>2.) Explicitly, we have 

[ - ^ / ^ 2 2 + F 0 o ( r 2 ) - ^ 2 > o p ( ^ ) = 0 , (2.7) 
where 

F00(r2)= (2/oo)6r^/ao[(i/f lo) + ( i / f 2 ) ] (2.8) 

is 2m/ h2 times the potential in the static approximation, 
and where Uop(r2) satisfies the boundary conditions 

«op(0) = 0 

u0
p(r2) -> sin(^2+77o

p)/sin(7?o
p-6>) , r2~>oo . (2.9) 

The determination of the static phase shift T?0
P is there

fore a completely trivial matter with the use of a 
computer. 

Our basic inequality12 is 

kaQ cot(rj0—$)<ka0 cot(riQP—d)+Ae 

^kaQ co t [>o(MP)-0 ] , (2.10) 
where 

(h2/2ma0)Ae= 2(Q*hQHP*p) 
+ (Q*t,QLH+HGpH-ElQ*t). (2.11) 

With a0 the Bohr radius, we choose Qtyt to be of the 
form 

Q^t^HcuXiiin/ao) 
i,i 

Xccli(r2/a0)Pi(cose12)/(r1r2ao112) (2.12) 
with 

Xii(xi) = x1
l+1 exp(-bnxi) 

- ^ 1 ( 2 / ( l + M ) 3 C e x p ( - x 1 ) ] ^ (2.13) 
and 

wZi(x2) = x 2
m e x p ( ~ ^ x 2 ) , (2.14) 

where Xi=fi/ao and 80i is the Kronecker delta function. 
The distinction between / = 0 and H=0 in the form for 
Xu(ri) is a consequence of the fact that for /=j=0 the 

orthogonality to \//TO(^I) is automatically accomplished 
by the presence of the Pj(cos#i2), while for / = 0 one 
must choose the radial function XQi(n) to be orthogonal 
to^To(ri). 

The validity of the inequality (2.10) presupposes that 
Q^ft contains all states which give a negative expecta
tion value of the operator Q[H-\-HGpH—E~]Q, that is, 
that no more subtraction terms are necessary. There 
could be very few such states, if any, and our Qtyt will 
contain enough terms so that the validity of the in
equality is effectively guaranteed. The monotonic de
crease of the estimate of ka0 cot(r?o— #) serves as a 
partial check on the validity of the bound. Thus, while 
we cannot formally prove the rigor of the bound without 
an elaborate calculation, and while a certain degree of 
caution is always necessary, there can be very little 
question that we do in fact have a bound and that the 
calculational procedure has all of the advantages 
associated with a formal rigorous bound. 

The Green's function Gp satisfies the equation 

P(H-E)PGP=-P (2.15) 

and thus is factorizable, that is, we have 

Gp(rlyr2; r^r2
f)^T,{rl)^T^)gp(r2,r2

f) (2.16) 

with gp satisfying the equation 

(h2/2m)l-(d2/dr2
2) + V0o(r2)-k^ 

X {gp{r2,r2
f)r2r2') = - 5(r2-r2'). 

Since V0o(r2) is local, gp(r2yr2
f) can be given in the form 

(h2/2m)gp(r2,r2
f) = - ( l /^2f20[^op(r<>op(r>) 
- \ sin(277o

p-2(9)^op(f<)wop(r>)], (2.17) 

where the irregular function v0
p(r) satisfies the same 

equation as does uQ
p(r), that is, Eq. (2.7), and satisfies 

the boundary condition 

vop(r2) -> sm(VQ
p-d) cos(kr2+m

p), (2.18) 

where r< and r> are the smaller and the larger, respec
tively, of r2 and r / . gp as given by (2.17) assumes the 
correct asymptotic form required for the difference be
tween Pty and Ptyp with the asymptotic boundary 
conditions given by (2.3) and (2.9), respectively. 

For a set of suitably chosen nonlinear parameters bu 
and du in the trial function Q^t of Eq. (2.12), minimiza
tion of Ae of (2.11) can be carried out trivially with re
spect to variations of the linear parameters cu. Denoting 
the double sum in / and i by a single sum in p, we have 

A$=2 X CpNp+Y, CpKpqcq 
V P,q 

= 2C-N+C-KC, (2.19) 

where Np and Kpq are the elements defined in Appendix 
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C. A$ assumes its minimum value 

Ae^-N-K-KN (2.20) 
for 

C^-K-W, (2.21) 

and is independent of normalization since Qtyt appears 
quadratically in K and only linearly in N. 

We now consider the choice of the normalization con
stant 6. If 8 is chosen such that the inequality rjop<8< T?0 

holds, then we have a subtraction term on the right 
hand side of (2.11), but a sufficiently accurate wave 
function could easily take into account this subtraction 
term. However, for $ chosen outside the range given 
above, this spurious subtraction is not necessary. There
fore, we have made the particular choice in all of our 
subsequent calculations 

0=hw+riop, (2.22) 

for which in the present problem it is almost certain 
that rj0<d. Thic choice of 6 reduces the inequality 
(2.10) to the simple form 

kaQ tan(7?o- *?op) > - A^+„/> 0 • (2-23) 

A$*+riop will be written from now on simply as A. 

III. RESULTS OF THE CALCULATION 

A. Close Coupling Approximation 

If a few eigenstates of the hydrogen atom are chosen 
for XH(n) in (2.12), the exact phase shifts are sometimes 
available from the close coupling approximation (c.c.a.) 
calculations. These c.c.a. results have previously been 
shown to provide bounds on the true phase shift.16 

In order to check our program and also to obtain indica
tions as to how easily the minimum principle can re
produce the known results, we have calculated the phase 
shifts for a few cases for which Q^t contains one or more 
excited states of the hydrogen atom with principal quan
tum number n and orbital angular momentum /=n— 1, 
that is 2p, 3d, 4/, etc. These states can be put in trivially 
by simply setting bu=n~l in the trial function (2.12); 
the form (2.13) cannot, as it stands, handle the eigen
states with W+/+1 since they contain polynomials in 
r\ which are not of that form. 

We compare our result with those obtained from the 
exact numerical solution of the coupled equations de
rived in the close coupling approximations.17,18 As shown 
in Table I, the agreement is satisfactory, although no 
attempt was made to optimize the choice of the non
linear parameters du\ we simply chose dit-=<fe_i+(0.1)i 
for i— 1, 2, • • •, 9 and ^0=0.2. Note that the phase shifts 
obtained by the minimum principle (MP) are in each 

16 Y. Hahn, T. F. O'Malley, and L. Spruch, Phys. Rev. 128, 
932 (1962). 

17 P. G. Burke and K. Smith, Ref. 4 and private communication. 
18 P. A. Fraser and R. P. McEachran (private communication). 

The calculations were based on the same code that was used in 
their article in Proc. Phys. Soc. (to be published). 

TABLE I. Phase shifts obtained for the close coupling approxi
mation (c.c.a.) in which the target can only be in its ground state 
or in certain specified excited states. The numerical (numer.) 
results were obtained by "exact" numerical solution of the coupled 
differential equations that arise in the c.c.a. The numerical results 
quoted are those of P. A. Fraser and R. P. McEachran* and are 
lower in each case than the values obtained by P. G. Burke and K. 
Smithb by two units in the last digit. The minimum principle 
(MP) results for the given c.c.a. are those of the present paper. 

States Method ka9=0.2 kaQ = 0A &z0=0.6 

Numer. 
Numer. 
MP 
Numer. 
MP 
Numer. 
MP 

-0.1145 
-0.0458 
-0.0458 

-0.0433 
-0.0434 

-0.2181 
-0.1531 
-0.1532 
-0.2175 
-0.2175 
-0.1512 
-0.1513 

-0.3042 
-0.2547 
-0.2550 

-0.2537 
-0.2540 

* See Ref. 18. 
b See Ref. 17. 

case either equal to or lower than the correct values, as 
they must be. It is also of interest to remark that the 
apparently rapid convergence of the phase shift as a 
function of / is completely misleading insofar as the final 
phase shift is concerned since the convergence in the 
principal quantum number n for a fixed / is extremely 
slow. This strongly suggests that the usual close coupling 
approximation, although it provides bounds,16 often 
converges very slowly as a function of the number of 
target eigenstates included. We might note that a MP 
calculation of a phase shift for a given c.c.a. provides a 
lower bound on the exact c.c.a. phase shift, and therefore 
on rj itself, since the exact c.c.a. phase shift provides a 
lower bound on rj. 

B. A Rigorous Lower Bound on q0 and an 
Estimate of i?o 

For the (rather limited) form of the trial function 
that we have chosen, there occur two nonlinear param
eters on and du for each linear parameter cu. Searching 
procedures for nonlinear parameters as well as a varia
tion in the form of trial function to test the long-range 
effect are described in Appendix A. Using the set of 
nonlinear parameters obtained by analyzing the effects 
of each I state separately, the linear parameters were re
determined by minimizing the full A, which includes 

TABLE II . The phase shifts 770 (J,MP) obtained by the minimum 
principle, in which virtual excitations to the target states with 
angular momenta up to and including / are allowed. These values 
are rigorous lower bounds. Ni gives the number of linear varia
tional parameters used for the given I while 2j gives the total 
number used for states up to and including /. 

ka0 = 0.2 

-0.1058 
0.0612 
0.1128 
0.1340 
0.1443 
0.1494 

ka0 = 0A 

-0.2001 
-0.0160 

0.0416 
0.0652 
0.0763 
0.0818 

ka0 = 0.6 

-0.2760 
-0.1114 
-0.0607 
-0.0406 
-0.0316 
-0.0272 

Ni 

7 
12 
10 
9 
8 
7 

s* 
7 

19 
29 
38 
46 
53 
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TABLE III. The phase shifts rjoil) obtained by including the 
estimated correction due to the inaccuracy in the trial function, 
and the estimate 17 o (°°) obtained by including the extrapolation 
contributions from / > 5 . Neither the 770 (0 nor rjo (00) are rigorous 
lower bounds. The number in parentheses represents our estimate, 
based on our own calculations, of the error in the last figure. 

/ 
0 
1 
2 
3 
4 
5 
00 

kaQ=0.2 

-0.105(0) 
0.064(1) 
0.118(2) 
0.142(3) 
0.154(3) 
0.161(5) 
0.182(11) 

&flo = 0.4 

-0.200(0) 
-0.012(1) 

0.049(2) 
0.076(4) 
0.090(4) 
0.098(7) 
0.119(13) 

&ao = 0.6 

-0.275(0) 
-0.107(1) 
-0.053(3) 
-0.029(4) 
-0.018(5) 
-0.011(5) 

0.009(12) 

coupling between states of different /. The resulting 
phase shifts rjo(J,MP), which include contributions from 
states of angular momenta up to and including /, with 
coupling effects accounted for, are given in Table I I . 
They are the main results of this paper and represent 
rigorous lower bounds on the s-wave phase shifts for 
the fictitious problem in which the hydrogen atom is 
allowed to be virtually excited to states with arbitrary 
principal quantum numbers but with angular momenta 
only up to and including I. They also provide rigorous 
bounds on the true phase shifts J?0. 

As noted previously the present choice of the co
ordinate system makes it trivial to satisfy the or
thogonality requirement, but it has the well-known 
drawback that ??o(0 as a function of / does not converge 
very rapidly. Furthermore, the component of the wave 
function with angular momentum / becomes increasingly 
difficult to obtain as I becomes large, presumably due to 
the singular interaction component of the form r<Vr>?+1. 
We have made first a crude estimate of the error in 
??o(7,MP) due to the inaccurate trial function Q^u The 
corrected estimate of the total contribution for states of 
angular momenta up to / is denoted by rjo(l). We then 
extrapolated to l>5 using the corrected values 770(0. 
Details of the correction and extrapolation procedures 
are given in Appendix B, while Table I I I contains the 
nonrigorous estimated phase shifts. Table IV compares 

TABLE IV. Various estimates of the s-wave phase shift at &a0 = 0.2. 
The values obtained by the MP give rigorous lower bounds. 

Authors all 5 ls-f all p all s+al\ p all states 

Spruch-Rosenberga • • • • • • • • • 0.156 
Ruffineb • • • 0.045 
Schwartzc -0.105 ••• 0.188 
Temkind • • • • • • 0.056 
Bransdene • • • • • • • • • 0.057 
MP-rigorous -0.106 0.052 0.061 0.149f 

MP-estimated -0.105 0.054 0.064 0.182 

a See Ref. 5. An "almost MP calculation." 
b See Ref. 7. A self-consistent calculation. 
c See Ref. 2. An interesting variational calculation. 
d See Ref. 8. A nonadiabatic calculation. 
e See Ref. 19. A perturbation calculation. 
f This value is obtained by allowing virtual excitations only to states 

with 0 < I < 5 . 

the various estimates2-5'7,8,19 of the s-wave shift at 
&ao=0.2. 

IV. DISCUSSION 

We have obtained rigorous lower bounds on the phase 
shift, and have obtained estimates of the phase shift. 
The estimates were crude because of the difficulty in 
simulating the wave function for large / and also be
cause of the slow convergence in /. Our calculation 
shows however several interesting features of the e+H 
scattering problem. As expected the effect of the target 
distortion during the collision is very important, pre
sumably due to the virtual formation of positronium. 
Thus the contribution from large / states seems to be 
dominated by the behavior of the wave function in the 
region r i ^ r 2 . However, the wave function near this 
region is very difficult to calculate due to the singular 
behavior of the potential — e2/Vi2. This is in contrast 
to the e~H scattering problem where the Pauli principle 
plays a major role and imposes stringent boundary 
conditions at f i=r 2 , and where the repulsive potential 
minimizes the importance of the region r i~ r 2 . We are 
currently repeating the calculation using rh r2, and ri2 

coordinates in the hope of obtaining better lower bounds 
as well as reliable upper bounds on the phase shift. 

We have also seen from the values of ?7o(7,MP) that 
the usual close-coupling approximation is hopeless in 
the e+H problem because of the slow convergence in / 
and also in n. For problems for which a large number of 
target states contributes collectively the close-coupling 
approximation is not reliable and the analytical-
variational type method used here will generally be 
much more convenient. 

The present study further clarifies some aspects of 
the applicability of the minimum principle. Once the 
operator Q\_H-\-HGpH~\Q and the wave function P^p 

are constructed, the variational problem involved in a 
M P calculation is completely identical to that of the 
Rayleigh-Ritz method for bound-state problems. Con
trary to variational principles of the Kohn and Hulthen 
type, one obtains a rigorous lower bound on the phase 
shift which improves monotonically as the trial func
tion is refined. Therefore one can trivially decide which 
of two trial functions is the better one, and, in particular, 
one has an unambiguous criterion for choosing between 
different sets of nonlinear variational parameters. 

The construction of Gp is not difficult for the present 
problem, but it is expected to be more involved for 
multichannel problems with or without exchange effects. 
The integrals involving Gp also require a large portion 
of the computer machine time although they usually 
contribute only a small fraction to the final phase shift. 
Therefore, except for a very simple problem such as 
e+H scattering, it is desirable to set up the calculation 
in such a way that, if possible, an explicit evaluation of 
Gp can be avoided. 

B. H. Bransden, Proc. Roy. Soc. (London) A79, 190 (1962). 
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In the present approach, one first calculates 7]op and 
then uses the minimum-principle formulation to cal
culate the quantity Ae which effectively takes us from 
rjop to T]. The worst possible situation is that for which 
7)op is large and negative and ??o~0. In that case a small 
fractional error in A$ introduces a large fractional error 
in the estimate of 770. This situation is precisely that 
with which we are faced in the present problem, and one 
would generally hope to do rather better than we have 
done here. In particular, for e+H scattering with L>1, 
the accuracy of r\L should be comparable with that of 
Ae. If VQ— i7op<^ I W I , the accuracy of 770 should be 
much greater than the accuracy of A#; this favorable 
situation occurs in e~~H scattering. 

Considering the various difficulties discussed above, 
the values of the phase shift given in Table I I I compare 
reasonably well with the result of Schwartz2—we cer
tainly had not expected to improve upon his results— 
and we may now proceed to study the higher partial 
waves15 where little is known, to e~H scattering for 
various partial waves, and to other scattering systems of 
interest. 

A very interesting article has recently been published 
by Sugar and Blankenbecler.20 I t can however readily 
be shown that their expression for the upper bound on 
cot(rj—0) is identical to the bound expression given 
earlier12 and used here. [See Eqs. (2.10) and (2.11).] 
The word identical is used in the sense that the same 
trial function gives the same result. (Some inter
mediate calculations could be performed differently.) A 
similar remark holds for their bound on elements of the 
K matrix. 

Note added in proof. As noted above, there will be 
occasions, particularly for more complicated problems, 
when there will be some advantages associated with 
methods that do not demand the explicit evaluation of 
Gp. (This can be true even for variational bounds that 
are formally equivalent to that used in this paper.) One 
possibility is rather obvious. In the present (relatively 
simple) context, for example, the problem of the de
termination of Gp reduces to the problem of the de
termination of {gp(r2,?'2/)r2f2/}. Now in fact we do not 
need this latter quantity, but only integrals involving 
this quantity. Consider then the determination of 

/('*) = J"igpM)r*WW)drj, 

where ffa') is some known function. With L(t2) the 
differential operator appearing in the differential equa
tion [following (2.16)] that defines {gp(r^r2)r2r2\, it 
follows that 

L ( r 2 ) / ( r 2 ) = - / ( r 2 ) . 

I(r<i) can therefore be obtained directly as the solution 
of an inhomogeneous differential equation without gp 

20 R. Sugar and R. Blankenbecler, Phys. Rev. 136, B472 (1964). 
[Also, L. Rosenberg, Phys. Rev. 138, B1343 (1965).] 

(or equivalently Gp) having been obtained. The situa
tion will be more complicated when identical particles 
are involved in a process. A number of possible ways of 
avoiding the explicit use of Gp have been explored20,20®; 
this should remain a fruitful avenue of research. 
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APPENDIX A: SOME DETAILS OF THE 
CALCULATION 

We summarize in this Appendix the procedure used 
in the choice of nonlinear parameters, the random func
tion generator routine used as a partial test of the cor
rectness of the minimum obtained, and the use of an 
alternate form of trial function to examine the long-
range effect. 

The nonlinear parameters bu and du in the expression 
for Q^t are chosen on the basis of a very primitive 
searching procedure in which each pair of bu and du 
is varied systematically while the rest of the parameters 
are held fixed. Meaningful results can be expected even 
with such a rudimentary form of searching precisely 
because the minimum principle asserts that the larger 
the phase shift the better it is. As each additional term 
is introduced into the trial function, its nonlinear param
eters are varied while the rest of the parameters are 
held fixed. The old parameters are then revaried, again 
one pair at a time, for further improvement. Two im
portant simplifications are found possible in the course 
of the search. Firstly, the coupling between states of 
different / is not very sensitive to the values of the non
linear parameters, and thus they are determined for 
each / separately; only the linear parameters are rede
termined in the final calculation which includes coupling 
between all states with / < 5 . The coupling significantly 
affects the values of the phase shift; the reason that the 
results are nevertheless relatively insensitive to the 
values of the nonlinear parameters may be that the 
off-diagonal elements of K which couple different I 
states do not involve the kinetic energy (derivative) 
term but only the relatively smooth potentials to be 
integrated over. The second simplification is to neglect 
during the search that part of K which involves the 
Green's function Gp, denoted by G. G has to be evalu
ated numerically and thus requires over 90% of the 

»» Y. Hahn, Phys. Rev. 139, B212 (1965), Appendix A; and M. 
Gailitis (unpublished), and P. G. Burke (unpublished). 
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total machine time, although its contribution to A is 
only a few percent. The rest of the integrals in K can be 
calculated analytically for the simple form of the trial 
function we have chosen. 

The choice of the trial function Qfyt as given by (2.12) 
is a reasonable one since it is then possible to include 
two nonlinear parameters for each linear parameter. 
On the other hand, the nonlinear parameters are very 
difficult to search for, and there is ever present the 
danger that one may fall into one of the local minima 
that can be present in the multidimensional parameter 
space of the bus and du's. To check on the possibility 
that at a given stage in the calculation we have not 
fallen into a local minimum from which it is difficult to 
emerge by studying small variations of the nonlinear 
parameters, we used the random function generator 
routine which generates widely varying sets of values of 
the bus and du7§. None of the sets however gave values 
of A lower than the one obtained by the search pro
cedure, which indicates that the search procedure had 
led to the region which contained the absolute minimum. 

We have also examined the effect on A of the varia
tion in the form of the trial function. Since the im
portance of the long-range interaction of the form r~4 

is well understood21 at low energy, we included in Q^t 

the inverse-power behavior asymptotically for o)u. 
Such forms were essential in obtaining convergence at 
the zero energy variational calculation.2 The results 
differ very little for two forms of trial function at 
ka0=0.2. 

APPENDIX B: ERROR ESTIMATION AND 
EXTRAPOLATION 

We now discuss the method used in estimating the 
correction to rj0(l,MF) due to the poor trial function 
Q^t, and the extrapolation procedure used to obtain 
j j 0 ( /=oo) . 

Due to the strong coupling between different / 
states, discussed in Appendix A, and due to the com
plexity of the error function ()Q= Qtyt~ Qtyf it was found 
to be very difficult to make precise corrections. For the 
purpose of learning how to estimate the correction, we 
have constructed several set of test cases such that suc
cessive sets are an improvement over the previous sets 
in that more terms are added to the previous sets. Our 
problem is then to see how well we can predict the 
(known) A(/) for the better sets using the values from 
the poorer sets. 

Some readily available values to be used in the pre
dictions are Az

(0), A(0)(/), and Aj(0). The superscript 
zero denotes the deletion of the G term in K, and the 
bar denotes the value obtained by using the trial func
tion of the set to be predicted. (For the true problem, 
we still can obtain A*co) by including a large number of 

21L. Spruch, T. F. O'Malley, and L. Rosenberg, Phys. Rev. 
Letters 5, 375 (1960); T. F. O'Malley, L. Spruch, and L. Rosen
berg, J. Math. Phys. 2, 491 (1961). 

linear parameters, and the value Az(0) obtained can 
thus be regarded as "exact.") A(0)(/',MP) is obtained 
by including states up to /', while Ar(0)(MP) is for the 
/' state only. 

For a diverse choice of test sets, a correction formula 
which gave reasonably accurate predictions was found 
to be 

A(/) = A(/,MP)[1+(A^)(/,MP))-1 £ FvDvWv~], 

where 

Fv = [A<°>(/',MP)- A «»(/ '-1, MP)] , 

Dv = [Ar(0) - Av(0) (MP) ] / Ai> <«> (MP), 

Wi> = slowly varying function of /', Dv, and A r
(0)(MP). 

Various choices are again possible for the functional form 
of Wv, and we have found that Wv = [1 - Q>'2 InAO/4]1 /2 

seems to give a good fit with an approximate accuracy of 
30% of the corrections in each test case. 

Obviously the procedure described above is far from 
conclusive. However, the use of T?O(0 obtained by in
cluding the correction is found essential in extrapolation 
to />5 ; the rigorous values t|0(l,MP) consistently un
derestimate the contribution from states with />5 . 

The convergence of r?0 in I is very slow for the e+H 
problem. This difficulty is not new, and Schwartz,22 

for example, obtained the I dependence of the forms 
l~A and l~% for the singlet and triplet states, respec
tively, of the two-electron bound-state system. His 
argument on the singularities near ri~r% may be taken 
over readily for the present case but with an important 
modification due to the strong coupling that exists be
tween states of different /. By explicit numerical cal
culation, we have found that the function i<V, which 
takes into account the coupling effect, behaves for large 
values of V very roughly as 

*W'Ar ( 0 ) (MP) . 

Therefore it may be reasonable to expect that r)Q(l) 
will converge as l~3. Although an Z~4 dependence is not 
entirely ruled out, we made a two-parameter fit of 
ijo(l) using the form 

A £ (lf+B)~\ 

The value B—1.30 is adequate for the various energies 
considered, but we had to use 4̂ = 0.42, 0.93, and 1.24 
for kao=0.2, 0.4, and 0.6, respectively. Because of the 
large error contained in T}0(4) and 7}o(5), the final phase 
shift 170 cannot be determined very accurately. 

We believe that, although our result is in fair agree
ment with that of Schwartz which is presumably the 
most reliable so far, more accurate lower as well as 
upper bounds should help further clarify the situation 
since there are some uncertainties yet to be investigated 
in the methods employed by various authors. 

22 C. Schwartz, Phys. Rev. 126, 1015 (1962). 
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APPENDIX C: MATRIX ELEMENTS 

The vectors N and the matrix K appearing23 in (2.19) are defined as 

Np= Nu = / dr2uii(x2) Uu(r2)u0
p(r2) (2ma0/h

2), 
Jo 

Kpq=Kiiji> = Mutji'—Giiji>, 
with Gutji' defined by 

/»0C 

Gnji>= / r2r2dr2dr2uu{x2)l)
ru(r2)g

p(r2,r2)V
rji>(r2

f)coji>(x2)(2mao/h2). 
J0 

The quantities Muji' and Uu can be conveniently defined in terms of the following expressions: 

f00 /r<\mr'n 

Z(m,nyb;r)= dr'[ — ) —e~br', 
Jo \ f>/ r> 

1 r™ (n—tn—l)\i n-m-i (2n-~l — s)l n-m-i (2n—l—s)l } 
I(tn;n,b;n,d) = — drZ(tn,n,b;r)rne~dr= U " 1 £ g*+d~l £ h* , 

a0J0 (b+d)2n { *-o (w—w—l—-y)! ««o (n—m— l—s)\ J 

with g=l+J/Z> and h=l+b/d. We give explicitly the expressions for Uu and Muji> for /, / /==0, 1, and 2. The 
matrix elements for l,lf>2 will be supplied on request. I t is simply a matter of performing some integrals involving 
Legendre polynomials. We set (2m/h2) = l amd a o = l in the following. 

/ = 0 : UiQ(r2)= -4[Z(0,2,i4«,; r ,)-a<Z(0,2,2; r , ) ] , 

4 r 1 8 - 1 

(Di0tjo)3l(BiQtJoy (AioAjoYJ 

-2I(0,2,Bi0tjQ; 2,Di0jQ)+2ajI(0,2,Am; 2,AOJo)+2a»/(0,2,.4 io; 2 , A o , ; o ) - 2 ^ / ( 0 , 2 , 2 ; 2,£ io.;o), 

/ = 1 : ^ i ( r 2 ) = ( 4 / ^ ) Z ( l , 3 ^ a ; r 2 ) , 

M a j i < ( 4 ! ) 2 / ( £ W ^ ^ ^ 

-2 / (0 ,4 ,5 a , y i ; 4 , A U i ) - f / ( 2 , 4 , £ t W i ; 4 ,Ai , ; i ) , 
M i 0 , i i= (2/v3)/(l ,3,^o, , i ; 3 , A 0 , , i ) - ( 2 / ^ ) ^ / ( 1 , 3 , ^ ! ; 3,Ao.;i). 

/ = 2: *7*2(r2) = - (4/ v
/5)Z(2,4,^ i 2 ; r2), 

M i 2 J 2 ^ ( 6 ! ) 2 / ( ^ 2 J 2 ^ ^ ^ ^ 

- 2 / ( 0 , 6 , J W ; 6,A-2,y2)-(4/7)/(2,6,^2,i2; 6,A-2,;2)-(4/7)/(4,6,^2fy2; 6,J9i2J2), 

I a , ; 2 = (4/V
/15)/(l ,5,5 t l ,y2 ; 5,Ai,i2)+(6/7)(f)1 /2 /(3,5,^ l ly2 ; 5,Ax,;.), 

Mi0tj2= - (2/V5)/(2,4,^0 ,y2 ; 4,Ao,y2)+(2/V
/5)a t /(2,4,^ i 2 ; 4,D i 0J2) . 

We have used the following notation: 
Au=l+bu, ai=SAi0~

3, 

Bii,n' — bu-\-bji>, Dutji> = du+dji'. 
23 Throughout this Appendix, we have (inadvertently) interchanged the order of the indices i and / as compared to the notation 

of the remainder of the paper. 


