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The atomic photoeffect in a screened Coulomb field is considered. Numerical calculations of the differential 
and total cross sections for the K and L shells are given. Screening is introduced by including an exponential 
damping term in the potential. The bound-state wave function and the screening parameter X are deter
mined by using a variational technique to fit the experimental ionization energy of the shell under con
sideration. The continuum electron is described by a partial-wave decomposition, and the interaction with 
the radiation field is treated in lowest order perturbation theory. A numerical program is developed to 
obtain the radial part of the continuum wave function. The cross sections are computed numerically and 
corrections to pure-Coulomb-field results are found to be small for the K shell but significant for the L shell. 
Results for X=0 are obtained and found to be in good agreement with previous theoretical work. This serves 
as a check on the accuracy of the numerical computations. A separate calculation using relativistic Hartree 
wave functions and potentials is carried out for mercury. Comparison of the results of this test calculation 
with the simplified exponential model indicates that the effects of screening are accounted for reasonably 
well by the model. 

I. INTRODUCTION 

RECENTLY detailed numerical calculations of 
differential and total cross sections for the atomic 

photoeffect were reported by Pratt et al.,1 who con
sidered the K shell using an unscreened Coulomb 
potential. These X-shell results were found to be in 
good agreement with previous calculations and with 
experiments. Ailing and Johnson2 have extended the 
work done in this field to the L shell and have found 
some discrepancies with the scant experimental data 
available for this shell. These discrepancies were 
assumed to be the result of the neglect of screening, 
which should modify the L-shell cross sections signif
icantly. The calculations done here, which cover nuclei 
and photon energies of possible future experimental 

* This work was supported in part by the U. S. Atomic Energy 
Commission. 

t Based on a doctoral dissertation submitted by one of us 
(J.J.M.) to the Department of Physics, University of Notre 
Dame, Notre Dame, Indiana. 

1 R. H. Pratt, R. D. Levee, R. L. Pexton, and W. Aron, Phys. 
Rev. 134, A898 (1964). Another numerical calculation has been 
done by S. Hultberg, B. Nagel, and P. Olsson, Arkiv Fysik 20, 
555 (1961). 

2 W. R. Ailing and W. R. Johnson (to be published). The 
relativistic Z-shell Born approximation is given by M. Gavrila. 
Phys. Rev. 124, 1132 (1961). 

interest, give quantitative predictions of the effect of 
screening on the photoeffect. For the sake of simplicity 
we restrict our consideration to central-field potentials, 
in particular to those of the form V(r)= — (aZ/r)e~~Xr. 
The limit A-->0 affords a check of our results with 
previous pure-Coulomb-potential calculations. We as
sume that the bound-state and continuum electrons 
interact only with the screened potential. Section II 
will include a development of the general formalism. 
In Sec. I l l a discussion is made of the numerical 
procedures used to evaluate the screening parameters, 
wave functions, phase shifts, and radial integrals. 
Programs to determine these quantities were written for 
the Notre Dame UNIVAC-1107 computer. These 
programs were constructed so that either the screened 
or the unscreened cross section could be evaluated by 
simply changing parameters. Because of this simple 
check an extensive error analysis will not be given. 
The new results for the screened Coulomb field are 
presented in Sec. IV where comparisons with experiment 
and with the unscreened calculations are made. The 
calculations cover the energy region 81 to 1332 keV 
and include Z=47, 82, and 92. 

A calculation using relativistic Hartree wave func
tions and potentials for mercury, Z— 80, with an energy 
of 354 keV is also presented in Sec. IV. 

A l 
Copyright © 1965 by The American Physical Society. 
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II. GENERAL FORMALISM 

A standard partial-wave decomposition of the 
photoelectric amplitude for both the K and L shells is 
carried out below. The K shell expansion is essentially 
identical with that obtained by Pratt et al.1 We consider 
an incident photon of energy co interacting with an 
electron bound in a spherically symmetric central field. 
The radiation interaction is treated in lowest order 
perturbation theory; thus we neglect effects of relative 
order a =1/137. All relativistic effects are included by 
treating the interactions of the bound-state and 
continuum electrons with the potential in an exact 
manner. We write our differential cross section in the 
form3 

da a pW 

with 

d£l 2w oo 
-hT.\Mfi\* 

with 

M fi = drxp/ot- ee^'T\f/iy 

(i) 

(2) 

where (p,iW) = four-momentum of final electron, (k,ico) 
= four-momentum of incident electron, 

- c :)• 
a being the Pauli spin matrices, and e SL unit vector 
specifying the polarization direction of the incident 
photon. We will consider the incident photon beam to 
be unpolarized and will count all electrons coming out, 
regardless of their spins. Therefore we must average 
over polarization directions and sum over final electron 
spins. Since we are interested in the cross section for a 
particular shell or subshell we sum over all electrons in 
the shell under consideration. In Eq. (1), 2 represents 
the polarization and spin sums. The wave function \f/{ 

describes the bound-state electrons of energy WB<1 
and \p/ represents the Hermitian adjoint of the contin
uum wave function 1/7 which is a solution to Dirac's 
equation for energy W> 1 having the asymptotic form 
of a plane wave plus an incoming spherical wave. The 
continuum wave function is written as a sum over 
partial waves. 

In the sequel we will use zero subscripts to denote the 
bound state and barred subscripts for the radiation field. 
Quantities without subscripts refer to the continuum. 

The bound-state wave function is given by 

where 

""xm 

V xo**— mm®' 

(v-- xm -* l,?n—1\ 

v- xm J- l,m-\-y 

(3) 

(4) 

Cxm
Jr = C(l\j;m-\,\)=—n\ -

Cxm-=C(l%j;m+ 

(5) 

The symbol C(hhh', niim2) denotes the Clebsch-Gordan 
coefficient as defined by Rose.4 Throughout we use the 
following notation, giving the angular-momentum 
quantum numbers as functions of x: 

l=x, j—l—h f ° r oc>0, 

/ = — x—15 7 = / + J for x<0. 
(6) 

We will also use l'(x) = l(—x), k=\x\, rjx=x/k. The 
wave function is normalized by requiring that 

/ ; 
r2<M/*o2+gx„2)=l-

Our continuum is described by 

(ig£ixm(r)\ 

xm \f£l~m{r)/ fx&-xm(fV 

(7) 

(8) 

where v is the large component of the plane-wave spinor 
and the x sum runs over all nonzero integers. The radial 
functions are normalized such that 

• I F + l - | i / 2 1 

I 
u 

. 2W J pr 

•T i ' - l - i 1 / 2 1 

• cos(pr+8x), 

(9) 

1W 

- j i / z 1 

— s'm(pr+8x). 
J pr 

Choosing k along the z axis the retardation factor of 
the radiation field may be expanded as 

e^ = Z(2l+iyjiMPi(cos6), (10) 

where jt(oor) is a spherical Bessel function of order I. 
The angular integration in Eq. (2) is straightforward 

when expressions (3), (8), and (10) are used. The 
matrix element can then be expressed in terms of the 
radial integrals 

' XXQI 

= iJ r2drji (wr)g9* (pr)fXQ (r), 

= ff rHrji{o>r)f*{pr)gm(r). 
Jo 

(11) 

1 We use natural units -h = me = c— 1. 

4 M. E. Rose, Elementary Theory of Angular Momentum (John 
Wiley & Sons, Inc., New York, 1957). His spherical harmonics are 
used as well. 
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TABLE I. Bound-state wave-function parameters for Coulomb potential. 

WE do C\ N 

K ( l -a 2Z 2 )^ 

,i (l-a2Z2)V2 

,11 ( l - c ^ Z 2 ) 1 ' 2 

,in (4 -« 2 Z 2 ) 1 / 2 

(~r 
CrT 

7 

2 

aZ 

2WB 

aZ 

2WB 

OLZ 

2 

2WB2+WB-1 fx WB(2WB-1) 

WB(2WB+1) II 2WB
2-WB~\ 

( — ) " 
\r(27+i)/ 

\WB(2WB-1)T(27+1)J 

( * y 

\T(2y+l)) 

When the spin and polarization sums are done in Eq. 
(1) the differential cross section can be written in the 
compact form 

da pW 
- = 4a— E[ |^oW| 2 +l^oW| 2 ] , (12) 
dQ, 00 »»0 

where 
1 

Fm0{6) — lL -[5W0,_!+#25W0i_i+#(x— l)5m0)i 
x k 

+x(x-2)Smo,Qe's'Qx(m(>)Pl"'>'+i(cose), (13) 

Gm„(0) = £ ijrf«*Q,(«o)Pi"<ri-1(cos»). 
x 

Explicit expressions for the Q's in terms of the radial 
integrals / and / are given for the K and L shells in 
the Appendix. Equations (13) as given are valid only 
for these shells. All Q's not given are zero due to selection 
rules. Using this notation we finally arrive at the 
remarkably simple expression for the total cross section 

pW 1 
aT=16wa— Z-Cle.(-f)|2+*2|<?,(-i)|2 

CO x k 

+^2(^2-i)iG,(i)i2+^2(^2-i)(^2-4)ie,(f)i2]. 
(14) 

III. NUMERICAL EVALUATION OF THE 
RADIAL INTEGRALS 

The problem is essentially completed once the various 
radial integrals / and / are computed and the phase 
shifts 8Z are found. In Pratt 's work1 the bound-state 
and continuum radial wave functions were determined 
numerically. Ailing and Johnson2 were able to solve 
analytically for the radial integrals using well-known 
expressions for the wave functions. I t is necessary here 
to treat the entire problem numerically because of the 
lack of analytic solutions for screened potentials. The 
discussion of this work will be separated into three 
parts covering the bound state, continuum, and radial 
integral problems. 

(A) The Bound State 

The bound-state radial functions are solutions to 
Dirac's radial equations 

d /GXQ(r) 

dr\FXQ(r) 

where 

\ / xo/r 1 + WB-V(r)\ 

J \1-WB+V(r) -(xJr) ) (xo/r) 

(Gxo(r)\ 

\Fn(r))' 

Gx0 (r) = rgxo (r), FXQ (r) = rfXQ (r) 

"0, (15) 

(16) 

The solutions for the K and L shells in a pure Coulomb 
potential V(r) = —aZ/r are well known and of the form5 

GX0(r) = N(l+WByiH'2nr)->e-»*(c0-c1r), 

Fxo(r) = N(l-WBy'i(2txr)ye~>"(ao- <nr), 
(17) 

wrhere the values of the parameters are given in Table I. 
To introduce screening into the photoelectric problem 

one chooses a model for the potential and solves for the 
bound-state wave functions numerically. Unessential 
mathematical difficulties are avoided by using an 
exponentially damped Coulomb potential 

V(r)=-(aZ/r)e- (18) 

The parameter X is chosen so that computed values of 
ionization energies 

IB=1-WB (19) 

agree with the experimental energies tabulated in Hill, 
Church, and Mihelich.6 Since photoelectric cross 
sections are very sensitive to IB, any screening model 
must reproduce its experimental value to yield reliable 
results. We choose the bound-state wave functions to 
have the same functional form as Eqs. (17), but treat 

5 M. E. Rose, Relativistic Electron Theory (John Wiley & Sons, 
Inc., New York, 1961), p. 179. A different phase convention for 
the radial wave functions is adopted here. 

6 R. D. Hill, E. L. Church, and J. W. Mihelich, Rev. Mod. Phys. 
10, 523 (1952). 
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TABLE II . Screening parameters X computed using the varia
tional method to fit experimental binding energies compared with 
the Fermi-Thomas parameter X= 1.12a Z1^. 

z 
92 
82 
47 

K 

0.0527 
0.0468 
0.0333 

Li 

0.0421 
0.0393 
0.0286 

Ln 

0.0438 
0.0407 
0.0296 

Lin 

0.0421 
0.0396 
0.0294 

Fermi-
Thomas 

0.0369 
0.0355 
0.0295 

/x and 7 as variational parameters. The coefficients N9 

WBJ CO, GI, ao, and #i are then given as functions of n 
and 7 according to Table I. 

The expectation value of the ionization energy is 
given by 

< J * > = 1 - dr( ,)H(r)( ) , (20) 
Jo \FX0(r)J \FXQ(r)J 

where H(r) is the radial Hamiltonian for the bound 
state with V(r) given by Eq. (18). The integral in (20) 
is done analytically and gives the binding energy as a 
function of the two variational parameters fx and y 
and the screening parameter X. The variations of (IB) 
with respect to /* and 7 give the following three nonlinear 
equations 

( 7 B ) = / B (experimental), 

d(IB)/d^0, (21) 

d{IB)/dy=0, 

which are solved numerically using a repeating linear 
interpolation approximation until all three parameters 
have converged to within 1 part in 106. The remaining 
coefficients are obtained by using Table I. Various 
other parameterizations were considered; all yielded 
screening parameters which agreed to within 1 part in 
103. Table II gives a list of the values of X used in 
evaluating the K- and L-shell cross sections. The 
Fermi-Thomas parameter 

XFT=1.12aZ1/3 (22) 

is included for comparison. Table III includes a 
representative set of numerically computed parameters 
and compares them with the corresponding values for 
the pure-Coulomb-fleld parameters. 

TABLE III . The bound-state parameters /u and WB defined in 
Table I for Z=82. The experimental 1—IB would equal WB 
(Coulomb) if screening effects were not significant in lead. 

Shell 

K 
Li 
Lu 
Liu 

Numerical 

0.5970 
0.3080 
0.3081 
0.2893 

Coulomb 
M 

0.5984 
0.3153 
0.3153 
0.2992 

Numerical 
WB 

0.8025 
0.9522 
0.9519 
0.9573 

Coulomb 
WB 

0.8012 
0.9490 
0.9490 
0.9542 

Exper
imental 
1-IB 

0.8279 
0.9690 
0.9703 
0.9745 

(B) The Continuum State 

The continuum radial functions are also solutions to 
Eqs. (15) with WB replaced by W=l+w-IB(exipt.); 
they are normalized according to Eqs. (9). The proce
dure used for solving this set of coupled equations is to 
integrate them numerically to a point ro chosen so 
large that the potential is negligible. At this point the 
radial functions are matched to free-field solutions 
using the relations 

gx(pro) = L(W+ l)/2Wj!*(Ajx(pro)-Bnx(pr0)), 
/ * ( ^ o ) = ~ [ ( T F - l ) / 2 J T F (23) 

X 04 y*_i (pr0)—Bnx-i (pr0)), 

where j x and nx are spherical Bessel functions. The 
coefficients A and B are determined by the matching 
procedure. If we let 

4 = Ccos[*,+J (*+!)*] , 

5 = Csin[8,+J(*+l)ir] , 

the asymptotic solutions are 

g*(pr) —> t(W+l)/2Wyi>(C/pr)cos(pr+8x), 
r—*oo 

f*(pr) —» [( I^- l ) /2^] 1 ' 2 (C/ / ) r )s in(^+a i ) . 

(24) 

(25) 

In order to investigate the errors introduced by match
ing at the point r0 we consider a transformation given 
by Rose7 

g*(pr) = L(W+ l)/2Wjl*(C(r)/pr)cos(pr+Ur)), 
Uipr) = L(W- l)/2Wj»(C(r)/pr)sin(pr+ 3x(r)). (26) 

Using (26), the radial equations (15) can be rewritten 

1 dC x aZ 
— — = — cos2(pr+8x)-\ e~Xr sin2(^r+Sx), 
C dr r pr 

(150 
dox x aZ 
— = — sin2(/>r+3*)H er^[W+cos2(pr+$x)~]. 
dr r pr 

When these equations are matched to free-field solutions 
at r0 one sees that oscillations of the order 

AC/C~(aZ/pr0)e-^, A8x~(aZ/prQ)e-^(W+l) (27) 

TABLE IV. Unscreened Ln shell total cross sections in barns for 
uranium. (1) Present work, (2) Ailing and Johnson (Ref. 2). 

(keV) (1) (2) 

81 
103 
279 
354 
412 
663 

1332 

320.2 
163.8 

9.704 
5.103 
3.420 
1.055 
0.236 

322.6 
162.6 

9.710 
5.102 
3.422 
1.055 
0.236 

7 M. E. Rose, Phys. Rev. 82, 470 (1951). 
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w (keV) 

81 
103 
135 
167 
208 
279 
354 
412 
662 

1000 
1332 

are being 
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K- and Z-shell total cross sections in barns for 

K shell 

(1) 

153.1 
84.99 
58.99 
20.04 
8.501 
4.884 

A T O M I C 

uranium. (1) Present work with 
screening, (3) Ailing and Johnson 

(2) 

155. 

59.9 
20.4 

4.93 

neglected. For the results q 

L\ shell 

(1) 

367.3 
208.5 
108.7 
64.65 
37.74 
18.44 
10.43 
7.302 
2.520 
1.071 
0.614 

uoted here 

(3) 

382.4 
219.0 

19.86 
11.25 
7.891 
2.727 

0.665 

ro was 

P H O T O E F F E C 

screening, 
(Ref. 2) without screening. 

Lu shell 

(1) 

300.3 
150.1 
68.58 
37.11 
19.80 
8.675 
4.528 
3.024 
0.923 
0.365 
0.205 

(3) 

322.6 
162.6 

9.710 
5.102 
3.422 
1.055 

0.236 

(2) Pratt et al. 

U 
(1) 

263.2 
122.3 
51.56 
26.25 
13.19 
5.357 
2.647 
1.711 
0.481 
0.180 
0.098 

IV. RESULTS 

T 

(Ref 

A 5 

1) without 

ii shell 
(3) 

297.6 
139.4 

6.213 
3.070 
1.984 
0.555 

0.112 

chosen equal to 120. The worst errors that arise in the 
screened calculations are for the L shell with a; =81 
keV, Z=47 in which case the oscillations are of the 
order of 1 part in 104. 

To integrate the continuum functions out to r0, the 
coupled first-order equations (15) were reduced to two 
second-order uncoupled equations. A fixed-interval, 
five-point integration procedure given by Kopal8 was 
used with step size h. His analysis for error propagation 
indicates that the integration be started at a point 
rj— jh, where j^k, in order that errors be bounded. 
In fact j— 2k was used here. A power series was devel
oped to take the wave functions from r=0 to r=ry. 
Step sizes of /?=0.0625 and 0.125 are considered. The 
disagreement in results for the two step sizes is less 
than the errors introduced by the fitting process at ro. 
For this reason ^=0.125 is used in results quoted here. 

(C) The Radial Integrals 

The radial integrals / and / are evaluated using 
Simpson's rule with step size h. Contributions beyond 
jur=20 are neglected since the bound-state wave 
function has decreased by a factor of at least 10~7 

from its maximum value. The two step sizes were used 
in selected cases and yield results which agree to four 
significant figures up to an energy of 412 keV. Agree
ment deteriorated somewhat at higher energies. The 
Bessel functions used were generated in double precision 
using the method of Corbato and Uretsky.9 

(A) Theoretical Comparisons 

Table IV includes Zn-shell total cross sections for 
X = 0, Z=92, and compares them with the results of 
Ailing and Johnson.2 The disagreement is largest at 
small photon energies and vanishes at higher energies. 
This can be attributed to the fact that the oscillations 
referred to in Eq. (32) are not negligible for A = 0 and 
small electron momentum. However, when X is not equal 
to zero we can expect such discrepancies to disappear. 
In addition, the agreement of results at high energies 
implies that the integration mesh is fine enough to 
yield at least three significant figures for the screened 
cross sections given here. Results for the unscreened K, 
Liy and Lm shells show much the same agreement with 
previous computations.1*2 

Table V compares K- and Z-shell total cross sections 
with screening to previous unscreened calculations for 
uranium. One notices that screening uniformly decreases 
the total cross section. Percent reductions are relatively 
independent of energy for the range considered and are 
of the order of 1, 7, 11, and 14% for the K, L\, Lu, 
and Zin shells of uranium. 

Table VI lists new results for silver (Z=47) and 
lead (Z=82). Percent reductions for these nuclei are 
approximately 2, 25, 32, and 28%, for the K, L\, Lu, 
and Lm shells of silver and 1, 10, 15, and 16% for the 
K, Li, Lu, and Lm shells of lead. 

The new results indicate that iT-shell screening is 
negligible as had been anticipated. Z-shell screening 

TABLE VI. Screened total cross sections in barns for the K and L shells of lead and silver. 

co (keV) 

81 
103 
279 
354 

K 

99.95 
54.40 

Z - 8 2 
L\ Lu 

256.7 149.3 
142.1 72.25 
11.46 3.737 
6.354 1.910 

Lm 

146.4 
66.89 

2.774 
1.360 

K 

10.21 
5.283 

Z = 
Li 

32.13 
16.33 
0.974 
0.510 

= 47 
Lu 

4.602 
2.006 
0.072 
0.034 

Lm 

6.537 
2.783 
0.093 
0.044 

8 Z. Kopal, Numerical Analysis (Chapman and Hall Ltd., London, 1961), Sec. IV-K. 
9 F. J. Corbato and J. L. Uretsky, J. Assoc. Comp. Mach. 6, 366 (1959). 
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TABLE VII. Ratio of total cross sections for the K and L shells of 
uranium. (1) Present work, (2) Ailing and Johnson (Ref. 2). 

FIG. 1. Calcula
tions of L-shell an
gular distributions 
for uranium Z = 92 
and photon energy 
co=103keV. 

60 90 120 
9 (degrees^ 

effects become more important for low-Z elements. 
This can be explained by the fact that the inner-electron 
screening reduces the nuclear charge seeen by L-shell 
electrons. This reduction is relatively independent of Z 
and therefore yields a larger percent effect for low-Z 
elements. 

With one exception screening effects increase slightly 
as one progresses through the L shells. This is a reflec
tion of the fact that the mean radius of the bound-state 
electron increases slightly in going from L\ to L m and 
therefore a small increase in the effect of screening is 
expected. 

(B) Comparison with Experiment 

(i) Angular Distributions 

Experimental i£-shell angular distributions have been 
obtained for uranium by Hultberg10 at 412, 662, and 
1332 keV and Sujkowski11 at 279 keV. Sujkowski's 
result is in good agreement with unscreened calculations 
except at forward angles where his result is too large. 
The present work does not indicate any significant 
changes in i^-shell angular distributions. 

Uncorrected L-shell angular distributions have been 
obtained by Sujkowski11 for uranium at a photon energy 
of 103 keV. Figure 1 shows the present results for this 
case. In general screening does not affect the shape of 
the angular distribution. Roughly there is a uniform 
percentage reduction in the angular distribution from 0° 
to 180°. 

(ii) Total Cross Sections 

Colgate12 has measured total cross sections for the 
K shell of uranium. His results are 58.6, 19.9, and 4.7 b 
for photon energies of 412, 662, and 1332 keV, respec
tively. These are in slightly better agreement with 
screened results as comparison with Table V indicates. 

10 S. Hultberg, Arkiv. Fysik 15, 307 (1959). 
11 Z. Sujkowski, Arkiv Fysik 20, 269 (1961). 
12 S. Colgate, Phys. Rev. 87, 592 (1952). 

co (keV) 
(1) 
(2) 

279 
4.61 
4.31 

354 
4.82 
4.41 

412 
4.90 
4.48 

662 
5.08 
4.65 

1000 
5.26 

1332 
5.38 
4.88 

Total cross sections for the L shell have not been 
measured. Hultberg,10 however, has measured the ratio 
VK/VL for uranium in the energy range 412 to 1332 keV. 
He finds the ratio to be essentially independent of 
energy and equal to 5.3±0.2. Table VII gives this 
ratio from the new calculation as well as Ailing and 
Johnson's unscreened results.2 

The photon energies 81, 103, and 279 keV correspond 
to Sujkowski's11 experimental energies for Z=92 . He 
has measured the ratio (aLX+aL„) /1<TLUI for 103 keV. 
His value is 3.03db0.15. This is to be compared with the 
new result of 2.93 and the unscreened result of Ailing 
and Johnson of 2.74. Figure 2 contains other experi
mental points11,13 for this ratio and compares them with 
screened and unscreened predictions. I t is hoped 
that future experiments will reduce the error bars. 
Sujkowski11 has also measured the quantity <rLn/<rLni 

for 81 keV and gives a value of 0.92±0.15. The new 
result of 1.14 is in poorer agreement than Ailing and 
Johnson's result of 1.08. 

(C) Hartree Calculation 

As a final check on the model, cross sections are 
computed for mercury, Z=80 , at co = 354 keV using 
relativistic Hartree wave functions and potentials.14 

The tabulated wave functions for the bound state are 
numerically interpolated. Corrections are made to the 
potential for the absence of the photoelectron and the 
tabulated values are fit to 

F ( r ) = - ( a / r ) [ l + 7 9 ( / 6 - ^ + ( l - 0 ^ x , r ) ] . (28) 

Z « 92 

I experimental (Sujkowski ) 

P experimental (Herrlonder et al15) 

screened (present work) 

unscreened (Ailing and Johnson2) 

FIG. 2. Comparison 
of ratios of Z-subshell 
cross sections com
puted using screened 
and unscreened wave 
functions with exper
iment. 

140 180 220 260 
w(keV) 

13 C. J. Herrlander, R. Stockendal, and R. K. Gupta, Arkiv. 
Fysik 17, 315 (1960). 

14 D. F. Mayers, Proc. Roy. Soc. (London) 241, 93 (1957). 
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TABLE VIII. Hartree potential parameters. 

O N A T O M I C P H O T O E F F E C T A 7 

t 
Xi 

x2 
X 

0.7110 
0.0202 
0.1103 
0.0458 

0.7795 
0.0221 
0.1555 
0.0387 

0.7761 
0.0220 
0.1493 
0.0401 

0.7789 
0.0221 
0.1533 
0.0391 

The values for /, Xi, and X2 for the various shells are 
given in Table VIII. The screening parameter X is 
included for comparison. 

The single term potential model is an adequate 
representation of the Hartree potential in the bound-
state region. The two disagree by about 1% at the 
location of the wave-function maximum. Since this 
region contributes the dominant portion to the radial 
integrals the model should predict screening effects 
reasonably accurately. 

TABLE IX. 

Coulomb 
Screened 
Hartree 

Total cross 

K 

49.82 
49.37 
49.1 

section for Z = 

Li 

6.409 
5.703 
5.73 

= 80 o> = 354 keV 

Ln 

1.892 
1.594 
1.57 

in barns. 

£111 

1.403 
1.176 
1.10 

Table IX lists the total cross sections computed. 
The estimated accuracy of the calculations using 
Hartree functions is 1-2%. 
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APPENDIX 

(A) K and L\ shell: 

Q.(i) = [l/(2i+l)I/,._1.M.1-/Xl_1,J_I]f 

e«(-*w*.-u'+Q/(2/+i)] 

(B) Ln shell: 

e.(*) = CV(2/'+l)]Cy,.1,J'+i-^.1.i--i], 
<2,(-4) = /*.u+P/(2/'+l)] 

X[/7,,,,,--i+(/'+l)7 l,,,,.+,]. 
(C) Z-ni shell: 

(3/2) ^ 
<?«(*) = [ (2 / - l ) / , , _ , , n . 2 

(2H-3) (2 /+ l ) (2*- l ) 

- 2 (21+ l ) / , . _ s , ,+ (2/+3)/ I ,_ 2 , ,_ 2 ] , 

(9/2) ^ 
<?.(*) = -ni+2)(u-i)ix_ol+2 

(2l+3)(2l+l)(2l-l)L A > *• '•>+* 

- (21+ l ) / , . _ 2 i I - (l-1)(2/+3)/*,_2,,_2] 

1 
\_Jx,-l,l'+\ — Jx,-l,l'-\~\ , 

6x(-i) = 

(2)i/2(2/'+l) 

(9/2)"2 

(2H-3)(2/+l)(2Z-l)L 
(l+l) (1+2) (21-1) 

21(1+1) (21+1) 
Xlx,-2,l+2-\ Ix,-2tl 

+ (/-l)/(2/+3)7 x,-2,l-2 ~ 
(2) 1/2 

(2/'+l) 

X[/V,._8 . , ._1+(/'+l)/ i e ,_ i ,P+ ,], 

(3/2ym(l+l) 

0 ^ ( - j ) ° ( 2 / + 3 ) ( 2 < + 1 ) ( a - 1 ) [ ( ' + 2 ) ( 2 ' - 1 ) , " " 

-(2/+l)/ , ._2. ,-( /- l)(2/+3)/x ._2 > I_ !] 

(3/2)"»/'(/'+l) 

(2/'+l) 
\_Jx,-2,i'+l — Jx,-2,l'-i] . 


