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Two Contributions to the Theory of Annihilation of Positrons in Metals. 
I. Determination of the True Fermi Surface 

CHANCHAL K. MAJTJMDAR* 

Carnegie Institute of Technology, Pittsburgh, Pennsylvania 
(Received 12 May 1965) 

The theory of positron annihilation in metals, including electron-positron and electron-electron inter­
action, is discussed. It is well known that the Coulomb force of the positron causes very major changes in the 
motion of the electrons. Nevertheless, it is established that a sharp "break" in the angular-correlation curve 
of the two 7 rays resulting from the singlet-state annihilation occurs at precisely those angles where it should 
be expected in the absence of electron-positron interaction. The break is an image of the discontinuity in the 
momentum distribution present in "normal" metals. Positron annihilation in metals is therefore a useful 
tool for the investigation of the true Fermi surface. It is also demonstrated that the slope of the angular-
correlation curve at the Fermi momentum is related to the Gaussian curvature of the Fermi surface. 

INTRODUCTION 

THE usefulness of positron annihilation in metals 
for the analysis of their various electronic proper­

ties has been recognized for quite some time. The two 
principal experimentally measured quantities are an­
nihilation lifetime and angular-correlation of the 
emanating y rays resulting from the annihilation. In 
many cases, the effect of magnetic field on the annihila­
tion process has also been investigated; in a few cases, 
the effect of temperature and pressure on the lifetime 
and angular-correlation curve has been reported. The 
earlier experimental work has been reviewed and dis­
cussed by Wallace.1 

The lifetime measurements are done by standard 
delayed-coincidence technique. The annihilation rate in 
metals is about 1.1 to 2.2 times higher than that in free 
positronium (2.00X109 sec-1). It varies smoothly from 
high- to low-density metals and is lower in the latter. 
We shall, however, be mostly concerned with the inter­
pretation of the angular-correlation experiments. These 
are done by the usual coincidence techniques with 
scintillation spectrometers. The intensity of the angular-
correlation curve is a direct measure of a component of 
the center-of-mass momentum of the annihilating pair of 
particles. Extensive investigation along these lines is 
due to de Benedetti2 and his group and Stewart3 and 
his collaborators. These experiments are simple and 
direct, and the momentum distribution can be measured 
even for small impure samples of liquid metals. In 
fact, the precision available now enables Stewart3 to 
integrate or differentiate his data numerically and to 
find the slope of the angular-correlation curve directly 
or to determine the complete momentum distribution of 
electrons in metals, which, in many cases, looks like 
the simple distribution predicted by the Sommerfeld 
theory of metals. 

* Supported in part by National Science Foundation. 
1 P. R. Wallace, Solid State Phys. 10, 1 (1960). 
2 G. Lang and S. de Benedetti, Phys. Rev. 108, 914 (1957), and 

other papers. 
3 A. T. Stewart, Can. J. Phys. 35, 168 (1957); A. T. Stewart, 

J. H. Kusmiss and R. H. March, Phys. Rev. 132, 495 (1963), 
and other papers. 

The effect of temperature on the angular-correlation 
curve has occasionally been studied systematically. 
Preliminary results in this direction were reported by 
Stewart et al.SA For rare earths, the angular-correlation 
curve at several isolated temperatures has been obtained 
by Gustafson and McKintosh5; this has also been done 
for solid and liquid mercury.6 In the second part of the 
work, we shall describe how the effective mass of the 
positron in metals can be determined from these experi­
ments when systematically carried out.4*7 

Theoretical studies on the annihilation of positrons in 
metals naturally started with an application of the free-
electron theory of Sommerfeld to explain the lifetimes. 
This met with total failure. The total decay probability 
is directly proportional to the average density of 
electrons, 

n=(^7ra0
zrs

z)-1, 

(a0 is the Bohr radius), and thus proportional to 
r8~

3. The experimental results indicate a much slower 
variation. R. Ferrell8 attempted to correct the dis­
crepancy by taking into account the Coulomb inter­
action between the electron and the positron. Since the 
bare Coulomb interaction is too strong to be correctly 
treated by the perturbation theory, he used the short-
range potential derived by Bohm and Pines9 in the 
plasma theory of the electron gas and was able to im­
prove the theoretical result considerably. More am­
bitious attempts to take into account the interaction 
have been made by Kahana,10 who used the Bethe-
Goldstone equation11 to incorporate the strong two-
body correlation and secured very good agreement. 
Allowing for dynamic effects rather than using the 

4 A. T. Stewart and J. B. Shand, Bull. Am. Phys. Soc. 10, 21 
(1965). 

5 D . R. Gustafson and A. R. McKintosh, T. Phys. Chem. 
Solids 25, 389 (1964). 

6 D . R. Gustafson, A. R. McKintosh, and D. J. Zaffarano, 
Phys. Rev. 130, 1455 (1963). 

7 C. K. Majumdar, following paper, Phys. Rev. 140, A237 
(1965). 

8 R. A. Ferrell, Rev. Mod. Phys. 28, 308 (1956). 
9 D. Bohn and D. Pines, Phys. Rev. 92, 609 (1953). 
10 S. Kahana, Phys. Rev. 117, 123 (1960); 129, 1622 (1963). 
11 H. Bethe and J. Goldstone, Proc. Roy. Soc. A238, 551 (1957). 
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purely static interaction, the agreement has been made 
even better by Bergersen.12 

In sheer contrast to the positron lifetimes, the angular-
correlation curve seems to follow the behavior predicted 
by the free-electron theory extremely well.3 The Fermi 
momentum of metals can be determined with an accu­
racy of 1.0% or better in favorable circumstances and 
agrees well with the free-electron value. By studying 
single crystals, the anisotropy of the Fermi surface in 
metals like Be and Li (due to the periodic lattice po­
tential) has also been observed.13 The sharp break at 
the Fermi momentum observed at low temperatures dis­
appears when the metals are heated up; this will be 
discussed in paper II.7 

In view of the fact that the positron lifetime measure­
ments can be explained only by including strong 
electron-positron interaction,10 the above results are 
surprising. It is the purpose of the work to show that 
there is a break in the angular-correlation curve at the 
Fermi momentum even if the interaction is considered. 
Different physical quantities are affected in quite dif­
ferent ways by the interaction. The result will be 
proved to all orders of the perturbation theory in 
electron-positron interaction for "normal" metals. 

As usual, the term "normal" implies that the proper­
ties of such metals can be described by the perturbation 
theory and that a sharp Fermi surface, as denned by 
such an approach, exists in them. The concept of the 
true Fermi surface in the presence of electron-electron 
interaction has been clarified recently by the work of 
Kohn, Luttinger, and Ward14 and is briefly discussed 
below. Our result remains true for the fully interacting 
electron gas in the presence of a periodic lattice potential. 

It is also shown that the slope of the angular-correla­
tion curve at the Fermi momentum is proportional to 
the square root of the reciprocal of the Gaussian curva­
ture of the Fermi surface. This may be useful in the 
determination of the detailed shapes of the Fermi sur­
faces of metals. 

I. EVALUATION OF THE QUARTIC 
FORMULA OF ANNIHILATION 

The theoretical work is based on current many-body 
techniques extended to the electron-positron system. 
The graphs arising in the perturbation theory need not 
be explicitly evaluated; the result follows from their 
structural properties. As said above, in the angular-
correlation experiments one measures the probability 
that the y rays carry off a definite momentum Kz along 
the vertical z axis. We therefore want to know the 
probability P(K) that the annihilating electron-positron 
pair has total momentum K. Then by integrating over 

12 B. Bergersen, thesis, submitted to Brandeis University, 1964 
(unpublished). 

13 A. T. Stewart, J. B. Shand, J. J. Donaghy, and J. H. Kusmiss, 
Phys. Rev. 128, 118 (1962); J. J. Donaghy and A. T. Stewart, 
Bull. Am. Phys. Soc. 9, 238 (1964). 

14 W. Kohn and J. M. Luttinger, Phys. Rev. 118, 41 (1960); 
J. M. Luttinger and J. C. Ward, ibid. 118, 1417 (1960). 

the x and y components of momentum we get the 
probability P(KZ) for the z component of momentum to 
be Kz for the pair, which is experimentally measured. It 
is well known that P(K) is given by the quartic 
formula8'15 

P(K) = \<*o| E w'iVr 
p,p' 
a, <rf 

X^K-p.-^K-p'v-r'ip'.*' I *0> > (1-1) 
where \=a2/167r3m2 ,a is the fine-structure constant, and 
m the electron mass. Here b^,a, b\t(r are the annihilation 
and creation operators for electrons of momentum k and 
spin a. Similarly, d*^, <$*,„ are the corresponding opera­
tors for the positron. <r= + l or — 1 corresponds to spin 
up or down, respectively, along some fixed quantization 
axis. The expectation value is taken in the ground state 
of the fully interacting system, ^0 . 

As a limiting case, consider a free-electron gas and a 
positron without interaction. The ground state is the 
filled Fermi sphere €>F for the electrons, and the positron 
in the zero-momentum state 

*o=<W+o>ff|0>, 

where 10) denotes the vacuum state of the positron, and 
<r=±l. Then, clearly, 

P(K) = \{$>F | tfK,-*bKt-s | $F) 

[0, K>kF~ 
= X(nK(- s>F = A (1.2) 

11, K$kF-; 

kF~ is the Fermi momentum of the electrons. So the 
probability that the 7-ray pair has the z component of 
momentum K2 is 

P(iQ= IdKJKyPiK) 

= X7r[(^-)2-Z2
2] . (1.3) 

This is the usual parabolic formula for the free-electron 
gas.8 

Going back to (1.1), we notice that we can put o-'=cr, 
since all the interactions we are going to consider are 
spin-independent. 

P(K) = X<¥o|E 6V^*-P.-^X-P'.- .V*|¥o>. (1.4) 
p.p' 

or 

The fully interacting ground state is, of course, not 
known, and we have to use the perturbation theory to 
evaluate (1.4). The consistent approach here is through 
finite-temperature statistical mechanics, such as that 
described by Bloch and de Dominicis,16 or Luttinger and 
Ward.14 

There are several limiting processes involved, and a 
discussion, if not a proof in a mathematical sense, is 
clearly called for. The experimentally observed coinci-

15 J. M. Jauch and F. Rohrlich, The Theory of Photons and Elec­
trons (Addison-Wesley Publishing Company, Inc., Reading, 
Massachusetts, 1959). 

16 C. Bloch and C. de Dominicis, Nucl. Phys. 7, 459 (1958). 



T H E O R Y OF A N N I H I L A T I O N OF P O S I T R O N S IN M E T A L S . I A 229 

dences are directly proportional to the number of posi­
trons N+ injected into the system; it is known that the 
thermalized positrons do not diffuse out again. Applica­
tion of statistical mechanics presupposes at least a 
macroscopic density of positrons; clearly to analyze the 
experimental data we need only a term proportional to 
the number of positrons; in other words, we are inter­
ested in the extreme low-density limit of positrons. 

The complication of working at finite temperature 
arises from the Kohn-Luttinger prescription14 of the 
double limit involved. We must let the volume of the 
system go to infinity first and then let the temperature 
approach zero. The effect of interactions on the shape 
of the Fermi surface, as defined in the elementary 
Sommerfeld theory of metals, is not correctly described 
by the standard zero-temperature perturbation theory 
due to Brueckner, Goldstone, and Hugenholtz.17 We 
shall define the Fermi surface of the interacting system 
precisely in Sec. IV. Here we note that the zero-
temperature theory can describe the interacting system 
correctly, if and only if there is a definite symmetry 
requirement that demands the perturbed Fermi surface 
to have the same shape as the unperturbed one. This 
would be the case, for instance, in a gas of fermions in­
teracting via a spherically symmetric potential. On the 
other hand, if the interaction is nonspherical, there is no 
reason why the Fermi surface should remain spherical. 
In the case of electrons in a metal, the interaction 
(Coulomb force) is spherically symmetric, but the un­
perturbed Fermi surface has only the symmetry of the 
lattice. The interaction would tend to distort the Fermi 
surface. Starting from the finite temperature statistical 
mechanical formulation, Kohn and Luttinger found cer­
tain anomalous diagrams,14 in which a particle and a 
hole have the same momentum label—a situation im­
possible at zero temperature. The contribution of such 
diagrams, by taking the volume 2 —> <*> limit first, and 
then T—»0 limit, is singular (the 0—»<x> limit ensures 
that one energy level actually coincides with the true 
chemical potential). Reversing the order of the limits, 
one would a priori exclude such diagrams and reach an 
absurd conclusion that the true Fermi surface always 
coincides with the unperturbed one, no matter what the 
interaction is. 

We therefore start at finite temperature to allow for 
any possible shift of the Fermi surface, due to the 
electron-positron interaction. We shall find that the 
break in the angular correlation curve occurs at the 
original Fermi surface. In Sec. IV, we include electron-
electron interaction and show that the break occurs at 
the "true" Fermi surface. 

The correct limiting procedure to evaluate (1.4) 
means that we calculate 

limlim lim P(K). (1.5) 
T-*0 0-*oo N+~*>0 

17 The Many-Body Problem, edited by C. DeWitt (John Wiley 
& Sons, Inc., New York, 1959). 

Here N+ —> 0 implies that we look for a term propor­
tional to the number of positrons, N+. Freed from the 
restriction of spherical Fermi surfaces, we shall be able 
to generalize our results formally to cases where a 
periodic potential is present. 

H. DIAGRAM ANALYSIS 

The complete Hamiltonian for the system is 

H=HQ+V, (2.1) 

# o = E ek-b\,,bk,*+Z €k+<*Wk.r. (2.2) 
k,<r k.o-

The interaction V will include either electron-positron 
interaction or electron-electron interaction or both, 
depending on the occasion. We shall consider the per­
turbation V to all orders. 

Let /*_ be the true chemical potential for the electrons 
and ju+ that for the positrons. Let iV_ and N+ be the 
total number of electrons and positrons present, re­
spectively. Then 

P ( K ) = X E ( M F ' , ^ F , ^ K - P ' ^ ) 

= X £ Gfop'jK;*), (2.3) 

where ( ) denotes an average over a grand canonical 
ensemble. In the Heisenberg representation, 

G(p,p';K;<r) 

= . (2.4) 

Going over to the interaction representation in the usual 
way, we have 

P(K) == A E 
»*'.' (F(fi)) 

= X E (r(^(/5)6tp,.V,^tK-p,-.^K-p')-,))L,(2.5) 
p.pV 

where 
F(fi) = ***e-»n% (2.6) 

T denotes the usual time-ordering operator. The sub­
script L denotes that the average is evaluated from 
linked diagrams alone. F(0) has the well-known 
expansion 

F(p) = E ( - Y / dmdm• • • dm 
i=0 J 

/3>ui>u2>--.>«i>0 

X F W F W - T W , (2.7) 
with 

V(u) = e«B'Ve-uH*. (2.8) 

Here we have made use of the fact that V conserves the 
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number of particles. The diagram analysis of (2.7) is 
well known, and we simply write down the rules for 
drawing diagrams associated with (2.5). The quartic 
operator of (2.5), which contributes X, is to be treated as 
a special vertex carrying total momentum K; in analogy 
with a topological term in the theory of linear graphs, 
we shall refer to it as a "rooted" vertex. It will occur 
once in each diagram and will be denoted by a dashed 
line. 

We first consider electron-positron interaction only. 

V— J^ £ F«^tki-qf<ri^tk2+q,(T2^k2,«r2*k1,(rl. ( 2 .9 ) 
ki , k2 q 
01, trt q^O 

The restriction q9*0 comes from the fact that the 
smeared-out positive background exactly cancels the 
average attraction of the electrons, and the entire 
system is neutral with regard to the positrons on the 
average. The rules for diagrams are: 

(i) Draw all possible wth-order linked diagrams; in 
each there will be n interactions and only one rooted 
vertex. In the zeroth order, the rooted vertex alone 
occurs. With the wth-order diagram, associate a factor 
(—)n+nl/nl, where m is the number of closed fermion 
loops. 

(ii) For each electron line labeled by a single arrow­
head and momentum k, associate a factor 

iri 
r^fi-ck-)-1, r,=(2/+i)—h/*., G=O,±I , - - - ) . 

(iii) For each positron line labeled by a double arrow­
head and momentum k, write a factor 

wi 
p-KU-ek*)-1, £n=(2w+l) -+M + , 

( i » = 0 , ± l , - - . ) . 

/~ and g~ denote the Fermi functions for the electron 
and the positron, respectively, /+=1 — /", g+=l—g-y 

as usual, and ${m,n) is used for 5mn where the argument 
is complicated. 

III. EFFECTS OF ELECTRON-POSITRON 
INTERACTION 

Since the number of positrons is vanishingly small, 
the effect of the chemical potential M- of the electrons 
will be negligible. This is, of course, true even in the 
presence of electron-electron interaction, which causes 
a finite shift of the electronic chemical potential. Draw-

(iv) The electron line that begins and ends at the 
same time gives a factor 

similarly, the positron line under the same condition 
gives 

(v) At each vertex associate the proper V factor with 
correct momentum transfer. Note that the electron-
positron interaction is attractive and each V has an 
implicit negative sign. 

(vi) At each vertex the incoming fj+£m equals the 
outgoing fr+£m'. These restrictions give "energy" 
conserving 5 functions multiplied by 0. Hence count a 
factor p for each such 5 function. 

(vii) Sum over all the Vs and w's, and the free mo­
mentum indices. The spin summation requires a little 
consideration. This gives a factor 2n*-1, where m is 
the number of particle loops. The subtraction of 1 comes 
from the fact that the annihilation occurs in a definite 
singlet state; the spin of the electron may be up or down, 
but this fixes the positron spin. We shall see below that 
we have to consider only one positron loop. The other 
electron loops give a factor 2 each. The / and m sums 
can be carried out in the usual way.14 

As examples, we write down the contribution of the 
zeroth- and first-order diagrams (Fig. 1): zeroth order 
[Fig. 1(a)]: 

=2xz/-(«p-)r(e+K-p). 
p 

First order [Fig. 1(b)]: 

ing a self-energy graph of an electron interacting with a 
positron (Fig. 2), we notice that the summation over k, 
the momentum of the positron hole, goes essentially 
over the Fermi sphere of the positron, and we have a 
quantity like 

EF(k)r(*k+), 
k 

where F involves the matrix elements of the potential 
and other momentum sums. In view of the fact that 
the number of positrons is extremely small, we can re­
place F(k) by its value at k=0 and carry out the sum­
mation over the positron Fermi function g~(ek+), which 

P. P' h. h IP"P W h - €p-)j8(f«,- €P - )0({ m i - *K-p + MU- *K_p'+) 
tni, tn% 

„ „ /-(ep-)/+(aP'-)g-(eK_p+)g+(6K_p.+) 
= 4X Z » W , —— 7 

P.P' «p + € + K _ p — € p' — 6+K-p' 
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gives just the number of positrons X+. 

lim Z F(k)g-(e^) = F(0)i: g~(^+) = F(0)N+. (3.1) 
JV+-0 k k 

In the limit N+ —• 0 this becomes negligible, so that /*-
is unaffected to 0(A7+). 

All quantities in higher powers of N+ will, of course, be 
negligible. In evaluating (1.5) we are looking for a quan­
tity just proportional to JV+. This implies that all the 
diagrams we should consider will be "ladder-like" with 
regard to the positrons; in other words, there should be 
only one hole line for the positron when we draw graphs 
for evaluating (1.5). Otherwise, from each additional 
hole line present in the diagram, we will get a factor N+ 
by the above arguments. 

FIG. 1. Some dia­
grams arising in the 
perturbation theory; 
dashed line—the rooted 
vertex of the quartic 
operator; single ar­
row—electron; double 
arrow—positron; wavy 
line—interaction. 

P.I 

p . i 

P . I , 

K-

o-
K-

o-—o 
(0) 

(b) 

Pt w A ' 

P.«n\y _PfQ» 

K-P,n 

-p,m, 

Jjj/ 

(c) 

(d) 

Let us recall that the quartic operator for annihila­
tion gives a "rooted" vertex denoted by a dashed line 
in the graphs. We shall call the rooted vertex "sym­
metrical," if the electron and the positron, both in par­
ticle states, scatter both into particle states or both into 
hole states. The vertex is also symmetrical if they were 
both initially in hole states (Fig. 3). Otherwise the rooted 
vertex is "unsymmetrical" (Fig. 4). We do not have to 
consider scattering of positron holes into positron holes 
in the limit iV+ —•» 0. One can now verify the following: 
the contribution from all diagrams in which the rooted 
vertex is symmetrical and does not have a vertex cor­
rection can be written in the form 

P*(K)=£ /-(e-K_P)r(6p+)/?(P,K). 

The proof is simple. Consider time-ordered diagrams. 
At the symmetric vertex, the two incoming particles 
have total momentum K. For the conditions stated 
above there are one electron and one positron hole pres­
ent in the diagram with total momentum K, since mo­
mentum is conserved at every vertex. If the incoming 

FIG. 2. Self-energy graph of an electron 
propagator due to positrons. 

k*q 

particles scatter into holes, the rooted vertex occurs at 
the upper end of the diagram, and the statement is 
obviously true. Similarly, if the rooted vertex is at the 
lower end of the diagram, the statement is true and is 
more tautology. If the particles scatter into particles, 
the same holds, because for a ground-state diagram the 
sum of the momenta at any horizontal section for par­
ticles and holes, with proper signs, must be zero, and 
for this subset of graphs only one electron hole is pres­
ent at the instant of the rooted vertex. From these elec­
tron and positron holes, we get the factors /""(e~K-P) 
and g-(e+

p), the simple Fermi functions. 
In the limit of zero temperature, this will give a break 

in the angular correlation curve at the Fermi mo­
mentum. For, 

lim lim lim P.(K) = lim lim f-(eK-)FT(K)j: g~(ep+) 
T-*0 0->oo i\T+-*0 T->0 0-»oo p 

= lim f-(eK-)FT(K)N+=S-(eK-)F0(K)N+, (3.3) 
T-*0 

where 6~(eK~) is a step function which is 1 if €KT^M-> 
and zero otherwise. As examples, we draw a few of these 
graphs (Fig. 5). The simplest topological class in this 
category is that of the ladders. 

Let us now consider a few diagrams that do not give 
such a free factor f~(eK~) and therefore are unlikely to 
have any contribution that will give a "break" at zero 
temperature. They may be called "unsymmetrical" 
graphs as the rooted vertex is unsymmetrical (Fig. 6). 
Two topological classes may be easily characterized; 
they are electron-hole positron scattering and those with 
a vertex correction. The latter is used in the usual sense. 
All these diagrams occur in second or higher orders of 
the perturbation theory. Those with vertex correction 

K - p ' 

K-P 

(a) 

9 

< 

(o.Z) jrIG 3p Symmetrical rooted vertex. J\ J\. 

K-p' K-p p P* K-p p 

(b) 

K-p' K-p p P* 

V..V 
(c) 
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M 
K-P ' p 

( a ) 
FIG. 4. Unsymmetrical rooted vertex. 

A" 
K-p' K-p 

P 

(b) 

show infrared divergence for long-range forces that can 
be cured in standard fashion. These unsymmetrical 
graphs will give rise to a "tail" in the angular correla­
tion curve. 

In the limit of zero temperature, the angular correla­
tion curve is no longer a simple parabola with a sharp 
cutoff at the Fermi momentum. However, it remains a 
curve with a discontinuity in slope at the Fermi 
momentum. 

IV. ELECTRON-ELECTRON INTERACTION 

Formal inclusion of electron-electron interaction is 
simple, if it can be treated by the perturbation theory. 
The result within this framework is almost obvious: 
The angular correlation curve still shows a break at the 
Fermi momentum, and the experiment shows up the 
true Fermi surface of the fully interacting system of 
electrons. This will follow from the fact that the dia­
grams we considered above are just a subset of the set of 
all diagrams that contribute to (1.5). 

Rules for drawing diagrams can easily be extended to 
include electron-electron interaction. The complete 
Hamiltonian for the system is 

k,(T k,ff 

+ 1 23 H ^^tki+q,<ri^tk2~q,«r2^k2,^kitai 
k i , ka q 
01, <T2 3 3^0 

+ E E 
ki , ka q 

V q0 ki-fq,oi&'k2—q,^2 ( •id+k dk2,(T2^ k i . a i . (4.1) 

q=0 terms are always cancelled by the background of 
uniform positive charge. Note, however, that the elec­
tronic interaction has a factor \ and is repulsive. 

Let us first consider the diagrams that give the break, 
that is, the graphs with a symmetric vertex without any 
vertex correction. The electron-electron interaction can 
do one of the following things. First it can embellish the 
subset with self-energy parts on each electron line in 
arbitrary fashion; in this case, the subset will serve as 
the "skeleton" diagrams, and we propose to call these 
the "skeleton set." Secondly, it can generate new topo­
logical classes; for example, a vertex correction at the 
rooted vertex on the electron lines. In the former case, 

K-P 

(b) 
FIG. 5. Some symmetrical 

graphs that give the "break" 
at the Fermi momentum. 

K-p, 

K-O. 

(c) 

the break is shown to persist, but now at the true Fermi 
surface. 

Let us consider the "skeleton set" and start with the 
simplest diagram. We can put arbitrary self-energy parts 
on the electron line in Fig. i(a). It is clear that for the 
extremely low-density limit of positrons we get lines in 
the diagram carrying momentum K, and one expects 
the break due to the Fermi functions from these lines 
(Fig. 7). However, there are anomalous diagrams present 
and the chemical potential is not equal to eF~, the un­
perturbed Fermi energy. 

Consider the simplest of such diagrams [Fig. 7(b)]. 
The diagram is anomalous, because a hole and a par­
ticle carry the same momentum, which would not be 
possible in a zero-temperature graph. Its contribution is, 
neglecting sign and numerical factors, 

P.P' * 0Gv 

xz 
etm0+ 1 

-0(6. - « + K - p / P) ' /3*G-i-€,-

= XZ71p-p,/-(e>)r(e+K_P)L 

02 

P.P' « 0Gv - P ) 2 

(4.2) 

The I sum must be carefully done. If we naively pass to 
the zero-temperature limit, we get zero; 

1 1 

-z If-*-
wiJ (f—ep- • ) 2 

= 0. (4.3) 

The fact that such diagrams do not give vanishing con­
tribution was first pointed out by Kohn and Luttinger,14 

and the correct evaluation is 

0 ' (f*-«p-)2 2 « i c ( f - 6 p -

1 • ( -
_ 0-*oo 

*(«p--/i_), (4.5) 
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K*p,-p-p' 

FIG. 6. Some unsym-
metrical graphs. 

K*q-pt 

(b) 

K-p*q t t K"P' 

(c) 

according to the procedure of Luttinger and Ward.14 In 
the zero-temperature limit, the contribution is, in fact, 
singular. Such singular parts are responsible for the 
shift of the chemical potential from the unperturbed 
Fermi energy to the true value #— The situation is 
similar to the mass renormalization in field-theoretic 
problems. 

With insertion of self-energy parts the electron propa­
gators become renormalized. Since the interaction is 
translationally invariant, they are still diagonal in 
momentum space. Consider a graph in which an elec­
tron line enters, things of arbitrary complexity happen, 
and then a single-particle line emerges. The initial state 
and the final state must have the same character. Such 
modified propagators for momentum state k we shall 
call Sk(£i). Let us denote by fiGk(£i) the contribution of 
all irreducible self-energy parts, that is, the diagrams 
that cannot be separated by cutting a single line. We 
have conveniently taken out a factor 0 that comes from 
the over-all / conservation. Then the modified propa­
gator can be written as 

5k'(f«) = /8-1(f i - ek-J- '+ZS- ' fo- «k-)-x 

XGi( r , ) ( ? , - a r O ^ + z S - ' f a - O - 1 

XGktti)(ti-ttr)-iGk(?i)(t;l-6k-)-
1+ • • • 

= /S-1D-»-«k--GkCfj)J-1- (4-6) 

With this definition we can write down the contribution 
of the diagrams of Fig. 7 as 

Ci^xEE 
Aio+ e£m0+ 

P i |8(f , -«p--G f ( f i ) ) ™ |3&,-e+K-p) 

o-o K-p 

( 0 ) 

"O K-P 

FIG. 7. Insertion of 
self-energy parts on the 
electron line (due to 
electron-electron inter­
action). 

(b) 

Pi 

I—o 
\^f K-p 

'« (C 

M V ^ ^ A 

• Pi"* ttP« ^ K-Q K-P 

(d) 

and, in the limit of low positron density, 

eno+ 

i /5(r*-eK—-GK(n)) 
(4.7) 

The / sum actually represents the mean occupation 
ft* of the momentum state K for the interacting electron 
gas. A detailed discussion of this quantity has been 
given by Luttinger.18 Since the definition of the true 
Fermi surface is based on this quantity, it will be con­
venient to summarize his results here. Let 

nK=rxE" 
etio+ 

i Si-*r-ChL(£i) 
(4.8) 

In the limit of zero temperature, this function may have 
a discontinuity. In this limit, 

/•/i-4-ioo 

nK=(2xO~1/ d 
J p——too 

* ( ^ ) / C f - * - - G K ( f ) ] . (4.9) 

In deforming the contour, the following analytic proper­
ties of GK(£) are useful: GK(£) is analytic everywhere ex­
cept the real axis; also, for x real, 

GK(x±:iO+) = KK(x)^iMx), KK, JR real, (4.10) 

so GK has a discontinuity JK across the real axis. Further 

/ K ( * ) £ 0 , (4.11) 

and as x approaches /z__ 

/ K ( * ) = C K ( * - M - ) 2 , C K > 0 . (4.12) 

By closing the contour to the left, (4.9) becomes 

i ftK = {2iri)~l j dx{ [_x— €K~ -K^(x) — iJK(x)~]-lc.c.}. 

(4.13) 
» J. M. Luttinger, Phys. Rev. 119,1153 (1960); 121,942 (1961). 
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j , (4.14) the Fermi surface of the interacting system. 
, I I . . ««•« ,** Studying (4.14) in detail, he has shown, within the 

p,l, 1r *Pii2 K-p,m2T y J o \ / > 7 

III i iK-p.m, framework of the perturbation theory, that the mo-
v w *~~~V mentum distribution of the electron system has a dis-

FIG. 8. A diagram of first order in electron-positron interaction, cont inu i ty on this Fe rmi surface. 
with electron propagator completely renormalized. T h e Fermi surface so defined h a s t h e same vo lume as 

the unperturbed one; the interactions may, at most, de-
KK and J K are, in general, smooth functions of K and form it. In the case of spherically symmetric inter-
any possible discontinuity in nK as function of K can action, where symmetry requires it to remain a sphere, 
come only from a singularity in the integrand in the its radius must remain kF~, the unperturbed Fermi 
neighborhood of M- where JK vanishes. Consider the K momentum. 
values which satisfy the equation Returning to the positron problem, we shall consider 

_ ~—K ( W O (4 14") the first-order diagram in electron-positron interaction, 
~~ ~ but take the electron propagators to be completely re-

This describes a surface in the K space. If there were no normalized by the electron-electron interaction. Let us 
electron-electron interaction, KK=0 and (4.14) would denote by Sk

+(Zm), the positron propagator. Then the 
define the Fermi surface in the conventional free- contribution of the above diagram (Fig. 8) can be 
electron theory. Luttinger calls the surface defined by written as 

C 2 ^ E 7 , M , , E ^ p ( ^ 1 ) ^ V ( ^ 2 ) ^ + K - p ( ^ i ) 5 + K - p ' ( U ) ^ ( f ; i + ^ l , ^ 2 + ? m 2 ) , (4.15) 
p,p' U,h 

mi, mi 

where 8(tn,n)^z5mn, as before. I t is convenient to utilize the fact that the renormalized propagator satisfies the 
integral representation18,19 

r Pv(v) 
5 /

P(fi)= / dv. (4.16) 

pp(r?) is the spectral function of the propagator; its analytic properties have been investigated in detail.18 For a 
noninteracting system, pP(^) = 5(?7— ep~). So 

cy^x £ r,p_p>, L / dndm . (4.17) 
P,p' li.lt J-vJ-ac P4({h-r}l)tfh-V2)(£ml-eK-p+)(&n2-6K-P>+) 

mi, m% 

We perform the I, m sums by the usual method, to obtain 

Pp(^l)Pp'(^2)/-(t?l)/+(r?2)g-(e+K-p)g- f(€+K-pO 
(irjidrj 

s 

In the limit of low positron density, we get 

/

OO /.00 

/ d^dm*'*""* ^'""J "*'/ W" /Q x" ~~y / <V" — y / , t (4>18) 
-00 J - 0 0 

00 

C2c^2\X+Y, ^IK-P'I / / drjn drj2 

Vi~ V2— e+K-P ' 

~2X.V+ J diipKMf-MFirii; K, V). (4.19) 

F(rii) K, V) is a smooth function of K. Now the spectral part alone, and using 

function may be written as19 , , s, „ , /A „*\ 
PK(I?I) = 2 K 5 ( I 7 I — £ K ) , (4.21) 

PK(I?I)==5(I7I~€K""-A"K(I?I))+PK(I7I) , (4.20) where 
u -t ^ * w •• A ^ • , i EK=eK~+KK(EK) (4.22) where PKKVV 1S smooth function, and the integral over 

PK(I?I) gives nothing singular. Taking the 5-function is a true single-particle excitation energy of the system 
of the electrons, and 

19 P. Nozieres and J. M. Luttinger, Phys. Rev. 127, 1423, 1431 
(1962). ZK-1 = {1 - IdKxW/dQ}^ (4.23) 

li.lt
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is a measure of the discontinuity of the momentum dis­
tribution at the Fermi surface, one gets the contribution 

C 2 = 2 A ^ K A / - ( £ K ) F ( E K ; K9V)+ • (4.24) 

In the limit of zero temperature, this gives the "break'' 
at the true Fermi surface. 

Now it is easy to generalize the result to any arbitrary 
graph of the skeleton set. Obviously, the contribution of 
any such graph can be written as 

C - A E g - ( * + K - P ) ( 
P J-c 

dviPpM 

X f W % P , ^ , P ) . (4.25) 

The function F(r)i; p,V,V) is a smooth function. As 
before, in the limit of low positron density, the contribu­
tion has a part containing a Fermi function with the 
true single-particle excitation energy, EK; 

C^XN+ZK f B(ri-EK)f-(ri)F(r, K,V,V)dV+ • • • 
J — oo 

- X A ^ K / - ( ^ K ) F ( £ K ; K, V,V)+ • • • . (4.26) 

This part gives the break at the true Fermi surface in 
the limit of zero temperature. The other parts from these 
diagrams give smoothly varying contributions and will 
therefore add to the tail of the angular-correlation curve. 
This completes the demonstration that the angular-
correlation curve will showT a kink at the true Fermi 
surface. 

The generalization of this result to the case where the 
electrons and positrons move in an external periodic 
potential of a lattice is completely straightforward and 
will not be described here in detail. The above con­
clusion is based on the validity of the perturbation 
theory and is therefore restricted to normal metals. I t 
is natural to inquire what happens in superconductors 
where the perturbation theory has failed. It is found, as 
one might expect, that there is no kink in the angular-
correlation curve at the Fermi momentum; otherwise 
the curve is hardly affected. The entire change is of the 
order of the ratio of the energy gap to the Fermi energy, 
and detection of such a change necessarily demands ex­
tremely high precision not presently available. 

V. RELATION OF THE SLOPE OF THE ANGULAR-
CORRELATION CURVE WITH THE GAUSSIAN 

CURVATURE OF THE FERMI SURFACE 

Another interesting quantity that can be extracted 
out of the angular-correlation experiment is the Gaussian 
curvature20 of the Fermi surface. We shall show that 
the slope of the correlation curve at the Fermi momen­
tum is proportional to the square root of the reciprocal 

20 B. Spain, Tensor Calculus (Oliver and Boyd, Edinburgh. 
1953). 

of the Gaussian curvature of the Fermi surface. Since 
the curve at zero temperature is continuous but not 
differentiable, one has to take the slope at (kF~±:Q). At 
finite temperature, there is no difficulty. 

We shall use the free electron model entirely in this 
section. According to Eq. (1.3), the probability P(KZ) 
goes to zero at the Fermi momentum, but the approach 
to the Fermi momentum, which is reflected in the slope 
of P(KZ)—KZ curve, will be determined by the curvature 
of the Fermi surface. Considering the spherical Fermi 
surface at zero temperature, we get 

dP(Kz) 

dKz 

— — 2w\kF • (5.1) 
kF~ 

Since the Gaussian curvature of a sphere of radius a is 
1/a2, its reciprocal R is a2, 

dP(Kz) 

dKz 

= -2ir\Rli\ (5.2) 
kF 

Let us consider the electron gas at finite temperature, 
but neglect any positron momentum for the present. 

P(Kz) = \f jdKJKy 
—00 

\KJ+Ky*+K*-{kF-y 
:\ exp -

= 2w\mk 

ImknT 
+i r 

BTM 1+exp (5.3) 
L I 2mkBT J J 

and 

dP 

dKz 

-=-2w\K 
/ 

• \K*~(kF-y 
e x p [ + i 

I 2mkBT 1 (5.4) 

Since the Fermi function is singular at zero tempera­
ture, the limit of zero temperature is nonuniform and 
has to be taken with care. For comparison with ex­
perimental results, we take the limit J—>0, with 
Kz=kF~-0, 

lim [_dP{Kz)/dKz~] = - 2w\kF~ 

The right limit (Kz=kF~+0) goes to zero: 

dP(Ks) 
lim -=0 . 

T^0(Kz*=kF~+0) jg 

At finite temperature, there is no difficulty: 

dP(Kz)\ 

(5.5) 

(5.6) 

dKz 

•• -±X2w\kF-= -\irkF-. (5.7) 
kF ,T 

file://-/irkF-
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Hence the slope at finite temperature is half in magni­
tude of the value at zero temperature. The agreement 
of this result with the experimental curves of Stewart 
on sodium is excellent.3 

Once again, we can write (5.7) as 

dP(Kz) 

dKz 

^-XTTRV2. (5.8) 
kp ,T 

The spherical Fermi surface is of course trivial, but the 
corresponding results can also be easily proved for a 
general ellipsoidal Fermi surface. One can also incorpor­
ate the effect of positron momentum easily.7 For a 
spherical surface, the result is 

dP{Kz) 

dKz 

r 1 /m+*T\ll2-\ 
= - i r X # H l ( 1 . (5.9) 

kF~,r L TVAMTJ J 

w+* is the positron effective mass; the measurement of 
this quantity will be considered in Part II of the work. 

These results can be sharpened a little further by 
considering only a locally ellipsoidal Fermi surface. 
Suppose we can represent the energy surface in the 
neighborhood of the Fermi momentum hF~ by 

E=n--a(kF--K,)+bKx*+cK% (5.10) 

where Kz is along the normal to the Fermi surface at 
kF~~. Hence the surface on which £=/u_ is given in the 
vicinity of kf~ by 

-a(kF~-Kz)+bKx
2+cKy

2=0. (5.11) 

The area of the Fermi surface at Kz is given by the 
area of the ellipse 

bKx
2+cKy

2= ~a(Kz-kF~) 

and is equal to 

wa(kF~-Kz)/(bc)li2. (5.12) 

The number of electrons at Kz contributing to annihila­
tion is 

P(KZ) = const / dKxdKyd^itK-). 

0-(€K~) is the zero-temperature limit of the Fermi 
function: thus 

P(Kz) = constira(kF~-Kz)/(bcyi2. (5.13) 
Hence 

dP(Kz) 

dKz 
= — const , 

kF- (bcyi2 

(5.14) 

To calculate the Gaussian curvature R-1, we cal­
culate the principal radii of curvature in the xz, yz 
planes. For the xz plane, Ky = 0. 

bK/=-a ,{Kz-kF~). 

1 tfKJdK* 

R*{kp-) [\+(dKx/dKz¥Ji* kF~ 

imilarly, 
[ i ? a (^ - ) ] - 1 =-(2c /a ) . 

SiOW, 

R=RxRy=Uc/a2
y 

nd so 

dP(Kz) 

dKz 

= -const27ri?1/2 

kF~,T=*0 

2b 

a 
(5.15) 

(5.15') 

(5.16) 

(5.17) 

At finite temperature one gets 

dP(K,)\ 

dKz 

— — const wR1 n. (5.18) 
kF ,T 

The factor \ comes from the Fermi function being equal 
to \ at finite temperatures exactly at the Fermi energy. 
This precise factor J is a result of the free-electron 
model where the jump at the Fermi momentum is 
unity. If the electron-electron interaction makes the 
step at the Fermi momentum smaller, the factor will 
not be \ but will be greater than \. 

VI. CONCLUSIONS 

We have demonstrated that the 7-ray angular-cor­
relation curve will have a sharp kink at the Fermi mo­
mentum of normal metals, even though the effects of 
the Coulomb force of the positron cause major changes 
in the electronic motion, in particular, the annihilation 
rates. We have also shown a connection of the slope of 
the angular-correlation curve with the Gaussian curva­
ture of the surface. It is hoped that these will be useful 
for detailed analysis of the Fermi surfaces by the posi­
tron-annihilation techniques. 
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