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The problem of optical transitions in solids subject to a strong electric field Is discussed using time-
dependent wave functions. Expressions for the change in transition rate for direct and indirect transitions 
are obtained in terms of integrals of Bessel functions. Moreover, using approximations for the Bessel func
tions, it is shown that the change in transition rate for direct transitions, Td, and for indirect transitions, 
Ti, are given by 

Td = &*Fd(tp-*„*)/&» 
and 

r f = ^ / 3 F i ( € p _ . e & 0 ) / J S 2 / 3 > 

where E is the applied electric field, ep the excitation energy, and e0o the minimum energy gap. These formulas 
are valid both below and above the absorption edge. As a special case a machine computation of the change 
in the transition rate for Si with field applied in the [100] direction is presented. The results show a series 
of decaying peaks. In addition, a fine structure is predicted of the same kind as that predicted by Callaway 
for the Stark splitting. The details of the fine structure are analyzed and are shown to depend on the particu
lar structure of the bands both near and far above the minimum energy gap. Difficulties in the experimental 
observation of the fine structure arising from inhomogeneity of the electric field are discussed. 

INTRODUCTION 

TH E effect of an electric field on the absorption of 
light in the vicinity of the absorption edge has 

been discussed by a few authors. The results of Franz1 

and Keldysh2 which are based on time-dependent wave 
functions are restricted mainly to direct-gap materials 
and to photon energies below the absorption edge. 
Callaway,3,4 using a stationary-states method and 
Tharmalingam,5 using an effective-mass theorem, obtain 
more general results for the direct-gap case which are 
valid for wavelengths both below and above the ab
sorption edge. Moreover, Callaway,3-4 using the sta
tionary-states method, predicts that Stark splitting will 
produce fine structure in the absorption of light. 

In this paper we approach the problem using time-
dependent wave functions. I t is shown that expressions 
for the change in absorption may be obtained which 
are valid below, at, and above the absorption edge, for 
both direct and indirect transitions. Moreover, it is 
shown that the fine structure predicted by Callaway3-4 

is also predicted by the time-dependent wave-function 
approach. 

We shall focus attention here on indirect transitions 
in the presence of an electric field, and on some details 
of the fine structure. 

Expressions describing the change in indirect transi
tions in the presence of electric field with preliminary 
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application to silicon, have been reported previously.6 

Penchina7 has also found expressions equivalent to ours, 
and has also given a calculation for silicon with the 
field applied in the [100] direction. However, a special 
feature of our results is the inclusion of an approximate 
general form of the relation between changes in transi
tion probability excitation energy and applied field 
which is valid continuously from below to above the 
absorption edge. In addition, we give the result of an 
accurate calculation for silicon when the field is applied 
in the [111] direction. This case is of interest since both 
Handler's8 and our experiments were made for this 
direction of the applied field. Our calculation for this 
case goes to high excitation energies, where the required 
accuracy of the computation is very high and shows a 
set of secondary peaks for each process in addition to 
the one reported earlier.6-7 I t should be pointed out 
that the measurements are still quite sensitive at this 
range of excitation energies. 

By analyzing the details of the fine structure beyond 
the results reported by Callaway,3,4 it is shown that 
the fine structure might differ considerably in different 
materials, depending upon their particular band struc
ture and upon the direction of the applied field. Finally, 
however, certain experimental difficulties in observing 
this fine structure are discussed. 

Throughout the development, the only factors ex
pressed explicitly are those which are needed in the 
analysis of experimental data in which the absorption 
and the change in the absorption with applied electric 
field are measured directly, and where the attention is 
focused on Act/a. 
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THEORY 

The one-electron Hamiltonian for the problem of in
direct optical transitions in the presence of an electric 
field is 

ff=ffo+ffi, 
H1=eE-R+02e-*w^e^+08e- i k«'Re±^V i . (I) 

Ho is the unperturbed Hamiltonian; E the applied 
electric field; R the space coordinate of the electron; 
Oi the time-independent part of the electromagnetic-
radiation operator; and Ose~ika'R the time-independent 
part of the lattice-vibration operator corresponding to 
a phonon with wave number k«; o>i and o>8 are the fre
quencies of the electromagnetic radiation and of the 
lattice vibrations correspondingly; s and s' are positive 
constants which at the end will be taken to the limit 
zero. The electron-hole interaction has been neglected. 

We choose to solve the problem in terms of a time 
dependent wave function of the form 

*=a(*)B.(k; R; t)+a'(t)Bv(V; R; 0 
+b'(t)Bc(k; R; t)+b(f)Be<P; R; t) (2) 

k ' - k = k s . 

Here subscripts v and c denote valence and conduction 

bands correspondingly. B is the Houston wave function 

JB=<^k(R)e-*k-Rexpr-- f e(k)dr\ k=k0+eE/, (3) 

<£k (R) is the periodic part of the Block wave function, 
€(k) is the corresponding energy for the unperturbed 
Hamiltonian. 

We assume that at /—> — a> a (0 = 1 and all other 
coefficients are zero. We then proceed to evaluate the 
other coefficients as functions of time. In the process we 
neglect the interaction between Bv and Bc produced by 
the operator eE- R. This interaction has been estimated6 

and found to be completely negligible in comparison 
with the main effect of interest. 

Using the usual methods, we obtain 

db' 
**—= <*.(k)|0,|*.(k)> 

dt 

Xexpj- f [€ c (k) -e*(k) -&^rU«<. (4) 

Both the matrix element and the exponent in Eq. (4) 
are time-dependent through the dependence of k on 
time. However, since the time variation of these ele
ments is much slower than that of the exponential 
term, we can write approximately 

«y=ft.(k)|0,|^(k)>exJ^ io)|+5. (5) 

We now obtain a/ in the same way, and use the results 
for a' and V to find 

(ihf 
db 

2 

dt 
= giQxpl--J (e-tp)<ZrJe<«+''><; (6) 

«=«.(k0-e.(k); 

€p=foojdbfoog . 

The factor g» is independent of the electric field of 
€— ep and of temperature and thus will not be given 
explicitly. 

The energy difference e is time-dependent through its 
dependence on k. Moreover, since € is a periodic func
tion of k, it is also a periodic function of time, with 
basic frequency wo, where OJ0 is given by 

XeE 
c o o = - (7) 

where 27r/X is the periodicity of the reciprocal lattice 
in the direction of the applied field. If I denotes the 
average of a then, the exponential exp[iy*f(c—i)Jr[] is 
also periodic with the same basic frequency. It is there
fore possible to expand this exponential in Fourier 

series as follows: 

exp - / {t—i)dr = E O (8) 

Using this expansion, we find that the transition rate 
for given ki and k8 is given by 

r(ftx;k.) lim - |&|2J(€0--f 
= [ \ t \giWcn\*-8(-+nuo--Y\ 

X/(€,)-
h 

(9) 

Here kL is the component of k perpendicular to the 
applied electric field and I(ei) is the relative intensity 
of the electromagnetic radiation as function of photon 
energy. We discuss only the transition rate since AT/T 
— Aa/a for any photon energy. 

The transition rate given in Eq. (9) is a sum of con
tributions of discrete values of ep and therefore for 
discrete values of photon energy. The separation be-
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tween the absorption lines is haio which is exactly equal 
to the magnitude of the Stark splitting predicted by 
Callaway.3,4 In fact, this result and the Stark splitting 
are essentially the same phenomenon observed from 
two different points of view. 

We now evaluate the coefficients cn. According to 
Eq. (8) 

4 T r2rluQ / rl e € \ 
cn~—/ expli I -dr—i-t—inwotjdt. 

a)0Jo \J h ft I 

Using the relation e+nho)0— e p =0 implied by Eq. (9) 
we get 

4?r r2rlUQ / rl e € P \ 
cn——/ e x p f i / -dr—i—t\dt. (10) 

o)J o W ft ft / 

We now define a continuous function 

4 ^ i»2irlo)Q 4TT f2Wwo / rl e ep\ 
P ( * i ; k . ; € p ) = — / e x p f i / -dr-i~t)dt. (11) 

UQJ o \ J h ft / 

Thus the transition rate for given ki, k s is given by 

T = [ [\P(kx]ks;ep)\
2 

ft4 n—« \ 
X |g i 

€p\~\dep 

ft ft/J ft 

We approximate e(k) by a sinusoidal function which 
preserves the positions of the minima, the value of e 
at the minimum and its curvature there; thus we 
obtain 

ft2 

€*1;k.(ftn)^€ff(ft1;k.)+ [sin(Xfti ,+c)+l] . (13) 
\2m 

Here eg(ki\ ka) is the minimum value of €ki;k,(ku); k\\ 
is the component of k parallel to the applied field; and 
m is an effective mass defined by 

(a) 

(b) 

(c ) -

1 1 1 

fn m* nth* 

1 1 a2 

— = e.(k), 
me* ft2 dku2 

1 1 d2 

= c ( k ) . 
w/,* ft2 d&u2 

(14) 

Note that Eqs. (14) are not restricted to any particular 
direction of the applied field. Using the approximation 
Eq. (13) for e, it is easily seen that when v is an integer 

| P ( * 1 ; k . ; € J , ) | = / , ( x ) 

eg(h;k8)+(h2/m\2)-ep 

fta>o 

(15) 

Here Jv(x) is the Bessel function of order v. In most 
semiconductors and insulators and for electric fields of 
the order of 106 V/cm or less, it is found that v and x 
are large numbers. In such a case the Bessel function is 
a smoothly varying function and thus we can interpo
late P(ki; k8; €p) by Jv(x) also for nonintegral values 
of v. For excitation energies close to the minimum 
energy gap we find that \v—xl<^;x- In this case the 
following approximations are valid9: 

exp[-2 3 / 2 (^-x) 3 / 2 /3x 1 / 2 ] 
7 F ( x ) ~ for x<v, 

[ 2 T T V ^ - X ) 1 / 2 X 1 / 2 ] 1 / 2 

s in(x /3) r ( l /3) sin(27r/3)r(2/3) 
/ F ( x ) ~ 1 (x-v) 

3 T T ( X / 6 ) 1 / 3 3 T T ( X / 6 ) 2 / 3 

for x—v , 

I 2 V'2 / 7T 2 3 / 2 ( X - ^ ) 3 / 2 \ 

A(x)=( ) cosf—+ — ) 
\ T 2 i / y / s ( x - J ' ) 1 / V \ 4 3X

1/2 / 

for x>v-

To obtain the transition rate for direct transitions 
for given kL, the same steps are to be followed. I t is 
readily seen that changes will enter only in the value of 
gi and in the excitation energy €p, which will now be 
simply the photon energy alone. Thus for direct transi
tions we have 

(16) 

¥ (l+ma°-l)] 
dei 

X / ( € , ) — , (17) 
ft 

and for indirect transitions we have 

?K*i;ks)=/" \\gi\U
2(x)- t 5(-+m>o~Y] 

Jo L ft4 n—co \ f t k/J 

dep 
X / ( € i ) — . (18) 

ft 

Two extreme cases can now be considered. If I(ei) 
is a square pulse of unit height and of a width Aei, then 

case a: Ae£>>ftco0, 

c a seb : AeK<ft^o. 

I t is clear that Stark splitting will show up only in 
case b. 

x=-mX2o>0 

9 This approximation is not valid in the direction of the applied 
field in which minima of values very close to eQ are present within 
the basic period of €. 
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FIG. 1. Transition 
rate and change in 
transition rate for Si for 
an applied field of 40 
kV/cm in the [111] 
direction. 

Case a: From Eqs. (17) and (18) we obtain 

2TT Aez 
Td=\gd\

2J>2(x) , 
&4 hwo 

Ti=\gi\*j?{xy. 
2w Aei 

¥ flOln 

(19) 

(20) 

The over-all transition rate in the direct transition 
case is given by 

Td=Y,kMkL). (21) 

Since the dependence on kL enters only through eg(ki) 
the transition rate can be expressed in the form 

d(eg)Dd(eg)degy (22) 

where Dd(eg) is an appropriate density of states func
tion which can be shown to be given by 

Dd(eg) = Cd. 

Here Cd is a number independent of eg and eg0 is the 
minimum energy gap. 

In the case of indirect transitions 

T<= E ;Y(€.)2\(ifei;k.), 

where N(es)— (eho3slke— l )" 1 for phonon absorption and 
A7(es)= (eho)*ike—1)-1+1 for phonon emission. Here 0 is 

the absolute temperature. Since in the case of excita
tions close to the minimum energy gap the range of 
variation of es is relatively small thus we can replace 
iV(es) by AT(€s0) where €s0 is the energy of the phonon 
whose ks vector is the difference between the k values 
of the extrema of the bands. 

Since T»- given in Eq. (20) depends on kL and ks only 
through eg(ki; ks) we may write 

Tt = X(e9Q)[ Ti(eg)Di(eg)d€a, (24) 

A(eff) = C;(e,-e,0)3/2. (25) 

By taking the case £ - > 0 w e obtain the transition rate 
for the case E=0. 

r Aei 
Td=Md\ J?(x)—dt„, 

(23) Td(E=0) = M,r 

21"(«i-«,o)1-
(26) 

7r(/j2/m\2)1/2 

An 

-Aei. 

(27) 

T^MJ J^(x)—-(eg-eg0yi2deg 

r(5/2)r(i /2)/r(3) 
Ti{E= 0) = M% A«,(«p- «»o)2. 

7r21'2(^/mX2)1'2 

Mi and Md are factors independent of the electric field, 
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FIG. 2. Evaluation of the transi
tion-rate fine structure for £<0. g go 

^ ••..•'.:wi'l.-1.'-.W:5s': 
^ r —:-: - ^ ^ i ; ^ • wr- -̂  

and of the difference between excitation energy and 
the minimum energy gap; thus they will not be given 
explicitly. 

The expression for Td is equivalent to the result 
obtained by Callaway4 and Tharmalingam5 though they 
look different in form. The difference arises from the 
difference in the approximation for the shape of the 
bands. Similarly, Penchina's results7 for the indirect 
case are equivalent to those presented above. However, 
Eqs. (26), (27), and (16) allow us to obtain some simple 
results which might be of use for experimental 
considerations. 

From Eq. (16) it is evident that for all three ranges 

v<x) vc^x) and v>x 

-J>(x) = E-v*F[ . 

Using this result in Eqs. (26) and (27), we obtain 

/€g0— €i\ 
Td = E^Fd[ , (28) 

Ti=E^F 
£2/3 / * 

(29) 

These expressions are valid continuously from below to 
above the absorption edge, within the limits of accuracy 
of the approximation in Eq. (16). From Eqs. (26) and 
(27) for E=0, we see that 

Td{E = 0)^(el-eg0)
1/2 = E^(el~ego/E^yi\ 

Ti{E=0) ex ( € p - M ) 2 = £4/3 ( e p _ €g0/E^Y. 

Correspondingly, we obtain 

ATd= E^Fd(eg0- et/EW), (30) 

ATi=E^Fi{€g,-ep/E?^). (31) 

A special case of particular interest is silicon with an 
applied field in the [111] direction, because much ex
perimental work has been done on this material under 
this condition.68 Moreover, the experiments actually 
show great sensitivity at excitation energies consider
ably above the absorption edge. Therefore we present 
here a calculation which is valid considerably above the 
absorption edge, and for field applied in the [111] 
direction. 

The results shown in Fig. 1 are for transitions from 
the heavy hole valence band to the conduction band, 
with an applied field of 40 kV/cm and for the transverse 
optical phonon. I t should be noted that the calculation 
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o < C < i 

FIG. 3. Evaluation of the transition-
rate fine structure for 0 < £ < 1 . 

of ATi considerably above the absorption edge has to 
be very accurate, because ATi/Ti gets to be about 5%. 
The calculation of T* presented here is accurate to \%. 
The computation was done by machine and thus other 
cases may easily be computed. 

Several points should be emphasized: As in the case 
of direct transitions (as shown by Callaway4) the in
direct transitions also lead to several smaller peaks in 
addition to the large first one. The position of these 
peaks shifts as seen from Eq. (31) according to the rule 
(ez— €ffo) ̂  ^2/3- The height of all these peaks varies as 
E4lz which is confirmed by the Em dependence of the 
first peak given by Penchina.7 The width of all the 
peaks, however, is shown here to increase as E?lz mean
ing that smaller electric field will allow better resolu
tion between different processes. It should be pointed 
out that the presence of internal electric fields like the 
ones calculated by Redfield10 will tend to destroy the 
EAiz dependence at low applied fields and will also tend 
to smooth out the secondary peaks since their position 
depends on the electric field 
Case b: Here I(ei/ti) in Eq. (17) is of unit height for 
a bandwidth Aej such that Aei^h&o. In this section we 
discuss the fine structure of the transition rate; since 

this structure is more pronounced for direct transitions 
than for indirect ones we shall concentrate mainly on 
the direct transitions. 

From Eq. (17) we see that contributions to the transi
tion rate are made only when e/h+nuQ-— ei/h=Q, where 

X r2WX 

e = — / (ec— €v)dku, (32) 
2wJ o 

and ec and ev are the true, not the approximated func
tions of kXu The dependence of I on kL is not directly 
related to the dependence of eg cmki. In fact, in some 
cases it does not have to have an extremum for the 
same kx for which eg has its minimum. However, for 
simplicity, we shall restrict ourselves here to the case 
where e has an extremum, i.e., de/dki=0 for any direc
tion of ki at the same point that eg has its minimum. 

In this case it is seen that l can be expressed around 
the extremum in the form 

€=€O+$(^)(e f f-e0o) : (33) 

10 D. Redfield, Phys. Rev. 130, 916 (1963). 

in which <p is the angle of kx measured with respect to 
an arbitrary reference on a plane perpendicular to the 
direction of the applied field. 

In principle, J can be positive or negative, and its 
absolute value may be larger or smaller than 1 depend-
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FIG. 4. Evaluation of the transition-
rate fine structure for £ > 1. 

.-7.::..-/.V..7 

•Silt 

if 

C>| 

arc cotangent £ 

ing on the details of the band structure. The values of The density of states is zero for eg<ego. Thus for £>0 
eg for which transitions are allowed for a given value n has a maximum, wmax= — wi; for £<0 w has a mini-
of €̂  are mum wmin= — w^; Wi and W2 depend on ei but are 

€i - co nfe»0 independent of | £(*>) |. 
€ = € 0_j > (34) From Eqs. (17) and (21) and using the fact that 

£(<?) £(<?) ^ (x ) depends on ki only through eg, we obtain 

trjf-w In—00 ^£ u 0J0L \& nJ An J 

+ — f I X) J,*<x)\g*\%\ f r*(-+nc*--W)"PdtJQ{<p)d<p, (35) 

where Q(<p)degd<p is the density of states as a function of <p, which is independent of e0 since this is the direct 
transition case. The integration over <p is separated into regions in which £ is either only positive or only nega
tive. Integrating over eg first and then over ei we obtain 

2w 
•-L 

Q(v) 2TT /•« 2w rn 00 
Td=-A«\ E /^Mkdl^rfH—AeW L ^2(x)|g<*l2—7<^; 

^4 ^ <rt n=—»»2 a*) 
„G(*). 

a (36) 
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o< £<i 

V 0° 

(a) (b) (c) 

FIG. 5. Form of fine structure in the transition rate (a) £<0 (b) 0 < £ < 1 (c) £ > 1 . 

here 

a' ho)n 

To obtain a more visual notion of the kind of results 
which may be obtained we use Figs. 2, 3, 4. In these 
figures we plot J„2(x) as a function of eg— effo and ei~ ego. 
From the form of J/(x) it is clear that the lines for 
which 7„2(x) is constant are (eg~ eg0)~ (ei—eg0) = con
stant. The points at which contributions to the transi
tion rate are made for given et are given by the 
intercepts of the lines (ei~ eg0) = constant and the lines 

(ti— effo) = € 0 ~ egQ+%(<p) (eg— eg0) + nhcoo. 

Thus the transition rate for a given value of <p is the 
sum of the shaded columns. We now consider three 
cases. Case 1: £<0 , shown in Fig. 2. This results in a 
transition rate below the absorption edge of the form 
shown in Fig. 5(a). Note that as ei increases Td on the 
average increases, but the steps are negative whereas 
in between the step Td increases. Case 2: 0 < £ < 1 ; 
shown in Fig. 3. This results in a transition rate as 
shown in Fig. 5(b). Here the steps are positive and Td 

also decreases between the steps. Case 3 : 1 < £ ; shown 
in Fig. 4 which gives a result as shown in Fig. 5 (c). The 
only case discussed by Callaway4 corresponds to £ = 1 . 

When integrating over <p we note that e0 is inde
pendent of <p. Thus the position of the steps is unaltered, 
and the overall value of Td will resemble one of the 
forms shown in Fig. 5. 

In conclusion, we should make a few remarks on the 
problem of actually observing the fine structure. In 

addition to the high resolution and low temperatures 
necessary there is an additional difficulty. As seen from 
Eq. (36) and the discussion that follows, the positions 
of the steps are given by 

For ei in the vicinity of the energy gap, e0— ei is of the 
order of electron volts whereas hu0 for fields of 105 V/cm 
is of the order of millielectron volts. Thus n will usually 
be of the order of 100 or more. Accordingly, in order to 
observe the steps the electric field should be uniform 
to better than 1%. Moreover, to obtain large values of 
hu0 the electric field should be applied in the direction 
of small periodicity of the reciprocal lattice. However, 
if the field is applied slightly off such a direction the 
value of e will be changing. I t can be shown that if 
the variation of I within a period is small compared to 
hcoQ this will result in only small deformation of the 
steps as shown in the dotted curves of Fig. 5 which 
will become worse as the variation of I increases. In 
conclusion, in order to observe the fine structure, the 
applied electric field should be much larger than the 
existing internal field and it should be very uniform and 
well oriented. 
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FIG. 2. Evaluation of the transi
tion-rate fine structure for £<0. 


