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A general formula in the Coulomb Born approximation is derived for ionization of the hydrogen atom 
by electron collision when the atom is in any given initial state. Using this formula, calculations are made 
for the total ionization cross section and the ionization cross section per unit energy range of the ejected 
electrons for all substates of the hydrogen atom belonging to the principal quantum numbers n — 1, 2, 3, 4, 5. 
In addition, the ionization cross section of one substate from each of the principal quantum numbers n = 6,7, 8, 
9, 10 are calculated. The tabulated results cover the range of energies of interest in plasma calculations. Al
though the ionization amplitude is given in parabolic coordinates, the ionization cross section for a particular 
angular momentum of the atom can be obtained by a transformation of the ionization amplitude to spherical 
coordinates. Comparisons with experiment and other available theories are given. 

I. INTRODUCTION 

APART from its purely theoretical interest, ioniza
tion is one of the main atomic processes in stellar 

atmospheres. This process occurs also in gas discharges 
and in plasmas. While electron-impact ionization is the 
dominant process for highly excited states of atomic 
hydrogen rather than photoionization, the former cross 
section is known with less accuracy than the latter. In 
this paper we calculate the cross section due to electron 
collision in the Born approximation. Because of practical 
difficulties in the measurement of the ionization cross 
section of the excited states, the calculated values 
remain the only source for application. 

We review briefly the developments of the theoretical 
and experimental work on this particular form of 
ionization. The classical value of the ionization cross 
section with the atom in any initial state was calculated 
by Thomson.1 Massey and Mohr2 calculated, within the 
Born approximation, the ground-state ionization of the 
hydrogen atom. Burhop,3 extending the same technique, 
formulated the ionization from substates of the first 
excited state without giving any numerical results for 
the case of hydrogen. Yavorsky4 has given the ionization 
for all s states of hydrogen in the form of a triple sum 
and a triple integration. The results for 2s and 3s states 
are shown graphically in his paper. Mandl,5 rederiving 
the equations of Burhop, has given the results of ioniza
tion from the 2p, m = dtl states, again in graphical form. 
Later Swan,6 taking the equations of Burhop, has 
carried out the numerical integrations, which are tabu
lated for the states 2s, 2p, m = 0, ± 1 . In addition to a 
mistake of a factor of 2, the numerical integration in 
this paper does not appear very accurate. 

* Formerly The Theoretical Division. 
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2 H. S. W. Massey and C. B. O. Mohr, Proc. Roy. Soc. (London) 

A140, 613 (1933). 
3 E. H. S. Burhop, Proc. Cambridge Phil. Soc. 36, 43 (1940). 
4 B. Yavorsky, Compt. Rend. Acad. Sci. U.R.S.S. 49, 250 (1945). 
5 F. Mandl, The Ionization by Electron Impact of Excited 

Hydrogen Atoms (Atomic Energv Research Establishment, Har
well, England, 1952). 

6 P. Swan, Proc. Phys. Soc. (London) A6S, 1157 (1955). 

Outside of the Born approximation, Geltman7 has 
considered the effect of the Coulomb field of the nucleus 
on the incident electron, an effect which is neglected in 
the Born approximation. This effect is obviously im
portant at the threshold of ionization. He finds a law 
in which the cross section near threshold is proportional 
to the excess energy of the ionizing electron. 

The first measurement of the ionization of hydrogen 
by electrons was made by Fite and Brackmann.8 They 
showed that the measurement agrees with the Born ap
proximation beyond 100 eV. This measurement was 
followed by those of Boyd and Boksenberg,9 and 
Rothe et al.lQ 

Among other theoretical works of interest are the in
clusion of exchange in ionization by Peterkop,11 treat
ments of the ionization in the impulse approximation by 
Akerib and Borowitz12 and in the close-coupling approxi
mation by Taylor and Burke,13 and derivation of the 
threshold law for ionizing collisions by Rudge and 
Seaton.14 

The Born approximation consists in representing the 
ionizing electron by a plane wave, the bound electron 
by a hydrogenic wave function, and the ejected electron 
by a Coulomb wrave function. Physically, this means 
that, when the ionization takes place, the ionizing 
electron is far from the nucleus, so that only one electron 
is in the field of the nucleus. This approximation also 
involves the exclusion of two less important effects: the 
exchange of the two electrons, and the effect of the 

7 S. Geltman, Phys. Rev. 102, 171 (1956). 
8 W. L. Fite and R. T. Brackmann, Phys. Rev. 112, 1141 (1958). 
9 R. L. F. Boyd and A. Boksenberg, Proceedings of the 4th 

International Conference on Ionization Phenomena in Gases, 
Uppsala, 1959 (North-Holland Publishing Company, Amsterdam, 
1960), Vol. 1, p. 529. 

10 E. W. Rothe, L. L. Marino, R. H. Neynaber, and S. M. 
Trujillo, Phys. Rev. 125, 582 (1962). 

11 R. Peterkop, Proc. Phys. Soc. (London) 77, 1220 (1961). 
12 R. Akerib and S. Borowitz, Phys. Rev. 122,1177 (1961). Some 

calculations in this paper are in error (private communication with 
one of the authors). 

13 A. J. Taylor and P. G. Burke, Proceedings of the Third 
International Conference on Atomic Collisions, edited by M. R. 
C. McDowell (North-Holland Publishing Company, Amsterdam, 
1964), p. 256 

14 M. R. H. Rudge and M. J. Seaton, Proc. Phys. Soc. (London) 
83, 680 (1964); Proc Roy. Soc (London) A283, 262 (1965). 
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polarization of the atom by the incident electron. The 
exchange effect can easily be included in the Born 
approximation. This will be the subject of a later paper. 

With the nucleus fixed, the total ionization cross 
section involves twelve integrals: six over the spatial 
coordinates and the other six over the momentum 
coordinates of the two electrons. For a given incident 
electron energy, the conservation of energy eliminates 
one integral.15 Cf the remaining eleven integrations, 
nine are carried out analytically, and integrations with 
respect to the magnitudes of the momentum transfer of 
the incident electron and the momentum of the ejected 
electron are carried out numerically by a computer. 

In the calculation that follows, the cross section for a 
given n and a particular bound electron orbital angular 
momentum / is not available, although it can be ob
tained by a unitary transformation of the ionization 
amplitude before the integration is carried out to find 
the total cross section. 

The outline of the method is as follows. With \f/% and 
\f/f the initial and the final wave functions, the ionization 
or excitation amplitudes are proportional to the 
expression 

V(K) = W (i)+t(r)<Pr, (I.l) 

known as the atomic form factor. \pf is a Coulomb wave 
function for the case of ionization. For the hydrogenic 
wave functions we can write 

^.(r) = exp[a»(J+i7)>t-(^)i'»(i7), 

^/(r) = exp[a/(J+ij)>/(J)v/(i j) , 
(1.2) 

with a* and a/ some constants, and my u/, Vi, and v/ 
some known analytic functions. Remembering that 
* = i (£- i7) and J V = i ( £ + ? ? ) ^ , Eq. (I.l) may be 
written 

V(K) = dW/dc, (1.3) 
where 

*=«,-*+<*/, (1.4) 

1 r00 

W(K) = - / exp 
4 Jo 

• iK~\ 

X / exp c hU*(fi)v/(v)dri. (1.5) 

It is enough to evaluate the first integral, as the 
second one is similar to the first. Assume that Gi(£,s), 
G2(£,0 are the generating functions of «»(£) and w/(£), 

Gi (* ,* )=E «.(?)*'', G 2 ( f , / ) = E «/(£)/ ' ; (T.6) 

15 The conservation of momentum is given up as the price 
of neglecting the motion of the nucleus. 

it follows that 

E £ / T / / / e x p j L + — ] { L ( f ) « / ( * ) < * £ 

= /" e x p i r c + — l f [ G 1 ( ^ ) G 2 ( f , / ) ^ . (L7) 

By using the closed forms of Gi(^s) and Giifcfy, the 
right-hand side of this equation can be evaluated. 
Suppose it is equal to S(s,t). If a Taylor's expansion of 
S(s,t) is made with respect to s and tf we obtain 

r fr iz-\ i <&Vo) 
exp c+— U\u^)uf(m=(ilfTl , (1.8) 

Jo IL 2 J ) dsW 

which is the desired analytic expression. Similarly, the 
second factor on the right of (1.5) can be evaluated and 
V(K) determined. 

II. FORMULATION 

Born Amplitude for Ionization and Excitation 

Consider a system of an electron and a hydrogen 
atom in an arbitrary state. Collision of the electron with 
the atom may result in the excitation of the atom into a 
different state, or its ionization. Let k0 represent the 
propagation vector of the electron before collision, and 
kx the same vector after collision; the equation for 
conservation of energy will be 

E = E0+(h2ko2/2m) = E1+(h2k1
2/2m), (II. 1) 

where E0 and E\ are the energies of the isolated atom 
before and after collision, and E is the total energy of the 
system. 

The excitation or ionization amplitudes are pro
portional to 

V(K)= / e x p p t o ^ t o M r J d V , (II.2) 

where 
K=k„-k1, (II.3) 

and \pi and \pf are the initial and final wave functions. 
The excitation cross section is given by16 

Qe 
8x H+ki dK 

\V(K)\*~ 
ArO-A-i K* 

(H.4) 

with ao the Bohr radius. In the case of ionization an 
additional integration should be performed over the final 
states of the ejected electron. Let k, 0k, <t>k be the polar 
coordinates of the ejected electron propagation vector k 
with respect to K as the z axis. The expression for the 

16 H. S. Massey, in Handbuch der Physik, edited by S. Fliigge 
(Springer-Verlag, Berlin, 1956), Vol. 36, Sec. 18. 



A 28 K . O M I D V A R 

cross section becomes with 

87T f d*kdK Nnln2m=[ — ) ( - ) X , (H.9) 

aG
2k0

2J Kz „ 

gTj. z-^max r+l r^T fk(rf-ki 

ao2&o2 

Mmax /-t-i ŷ TT /•fco-h/ci 

/ / / / lF(k>*)l 
Jo J—l J o J ko-ki 

2, w ^ O 
(11.10) 

1, w = 0 . 

Equation (II.8) can be expressed as a linear combina-
k2dkdxd<t>kdK tion of the hydrogenic eigenfunction in spherical polar 

X ? (II.5) coordinates, and the two representations are related 
K through a unitary transformation. As an example, <£ioo 

w n e r e and <£oio are the two zeroth-order eigenfunctions of the 
#=cos0fc, (ii.o) hydrogen atom in a weak external electric field, used 

a n d
 2_ in the first-order Stark effect. 

km&x
2=ko2-(Z2/a0

2n2), (II.7) T h e final s t a t e i n y should describe the ejected 
. . . . . . , . electron in the Coulomb field of the nucleus. It is 

with n the principal quantum number of the atom • i 19 

before ionization and Z the effective charge of the 
nucleus. 1 r 8 "i1/2 eihr 

Use of the Generating Functions 

i r P 1 
*(k,r) = -

27rLl-exp(-27r0)J 
exp(-27r0)J r ( l - # ) 

To evaluate V, we have to specify the initial and the f _u _ifi T , „ , , /TT 11\ 
final states. For the initial state we take the hydrogen J o\ ) , K - ) 
eigenfunction in parabolic coordinates,17'18 where 

««i«2m(^,*) = Arnina«exp[-|a(f+97)]($i7)m/2 

XL (a£)Lm
n2+m(ari) cosw<£; 

R=2[iu(kr-k-r)Ji2, (11.12) 

with the appropriate asymptotic form 

^(k,r)-(27r)-3/V*r. (11.13) 

a = — ; »i, «2, w = 0,1, 2, 3, • • •, (II.8) Substitution of̂  (II.8) and (11.11) in (II.2) gives the 
n ionization amplitude in parabolic coordinates, 

2v Xl-e-w/ AT(1+0)J J J J L 2 2 J 

- ' n\ri2m f P 

4r(i+t/s)-

X(^)ml2Lm
ni+m(a^)L"',l2+m(av) cos(m<t>)u^J0(R*)(^+v)dud^dvd<l). (11.14) 

If we write 
i?*=[>2+<r2-2p<7 cos(4>-4>k)Ji*, (11.15) 

where 
p = 2 ( - W s i n ( * t / 2 ) t t ) 1 ' 1 , 
<r= 2 (-ink)1'* cos(8k/2) fr)1'2, ( I L 1 6 ) 

then R*, p, and <7 can be considered to form a triangle, and by the addition theorem for the Bessel functions,20 

Jo(R*)= E tnJn(p)Jn(<r) COSIt fo - t f t ) , (11 .17) 
ri=0 

where €n is defined in (10), it follows that 

f. Jo(R*) c o s w * f y = 2TJm(p)Jm(a) cosw<t>k. (11.18) 

17 L. I. Schiff, Quantum Mechanics (McGraw-Hill Book Company, Inc., New York, 1949), 1st ed., Sec. 16. 
18 H. A. Bethe and E. E. Salpeter, Quantum Mechanics of One and Two Electron Atoms (Springer-Verlag, Berlin, 1957). Sec. 6 
19 A. Sommerfeld, Ann. Physik 11, 257 (1931). ' 
20 G. N. Watson, Theory of Bessel Functions (Cambridge University Press, New York, 1958), 2nd ed., Sec. 4.82. 
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M a k i n g use of E q . (11.18) in E q . (11.14) we can wri te 

1 / 0 \1/2 

V(k,Kftk,4>k) = —[ ) cv&(m4>k)I(mnin2\kKek), (11.19) 

where 
vNnmtm C f f V , i 1 

J ( m » i » 2 | * i W * ) = / / / exp\ -Ua+ik)^+ri)+-K^-v)-u\ 
2T(l+ip)J J J I 2 J 

X ( ^ ) w t / 2 L w n 1 + w ( a ? ) ^ w « 2 + w ( ^ ) ^ ^ m ( p ) / w ( < 7 ) (£+v)dud&r,. (11.20) 

T h e ionization cross section as given b y E q . ( I I .5 ) , after in tegrat ion with respect to 0*,can now be wr i t ten ( a 0 = 1 ) : 

2Z / 2 T \ r*ma* rkQ+kl r + 1 kdkdKdx 
Q(ntnnln2) = [ — ) / / / \I(mnm2\kKek)\

2X . (11.21) 

Using the generating functions of the associated Laguerre functions and introducing 

* = * « + * « , q=-¥K, (11.22) 
we see that 

sni tn2 

ni,»2 {n\-\-m)\ (nv\-m)\ 

1 1 TNnin2m f r f r <*& m?/ -| 
= / / / exp —#(f+i?) — (̂f—i?) —f# 

(l-S)m+l (1-/)*H-1 2r(l + «P) J J J L 1-S 1-/J 

1 I 7TxV ningw 

at/ 
X (to)ml2u*Jm{p)Jm(sr) {£+ii)dud&ri= : , (11.23) 

( l - s ) - + 1 ( l - 0 m + 1 2r(l+//3) d# 
where 

r00 r°° r as i /-00 r a£ i 
£ / = / u^e~uduX Jm(p)Zml2exp\-(p+q) p £ X / /»Wi?m/2exp - ( ^ - ? ) U q . (11.24) 

Z7 can be evaluated by means of an integral given by Watson,21 

r00 am r a2 ~i 
/ Jm(az)e-**z*+ldz= exp . (11.25) 

Jo (2£2)-+1 L 4^2J 
By introducing 

P=(p+q)+l<*s/(l-s)l, Q=(p-q)+tat/(l-t)l, (11.26) 
we find t h a t 

Uss( ) T(m+1+il3)X . (IL27) 
\ 2 / r Sk 0klm+i+iP 

PQ-ikQ sin2 ikP cos2— 

By definition of Eqs. (11.26), 

dU dU dU /-iksmdk\
m (POy?-1 

— = — + — = ( 1 T(tf+l+m)X 
dp dP dQ \ 2 / r 6h 0k-irn+2+ip r ek ok-\«+*+« 

PQ-ikQ sin2 ikP cos2— 

XhfflfeU* cos2—+Q2 sin2—J- (m+l)PQ(P+Q-ik)]. (11.28) 

21 See Ref. 20, Sec. 13.30. 
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Equations (11.23), with some modification in Eq. (11.28), can now be written 

snHniI(mnifa) 7T (i(3—m)l/ — ik Mn0A m 

]T = \7lin2m ( ) 
mm (ni+tn)l(n2+m)l 2 ^ ^ (iff)\ \ 2 / 

Xl(l-s)(l-t)PQy (m+3) 
;in2(0,/2) cos2(^/2)\ -r<«+2+*7»> / , n v W 2 ) co&{6k/2)\ 

m —+ —) 
\ P Q I 

X { ( 1 - J ) 2 ( 1 - / ) | W / ^ ^ . (IL29) 

Expansion in Terms of 5 and t 

Since / (mn\n2) is independent of s and t, we can regard it as the coefficient of expansion of the right-hand side of 
Eq. (11.29) in powers of s and /. The expansion of the right-hand side is accomplished by a combination of the bino
mial and Taylor' expansions. 

Let us introduce a bv 
a = K-ia, a* = K+ia. (11.30) 

Then it follows that 
i (a*-k)-(a-k)s i (a+k)-(a*+k)t 

P=—X — — , Q = -X . (IL31) 
2 1-s 2 1 - / 

With these values of P and Q substituted in Eq. (11.29), the factors on the right-hand side of this equation having 
integer powers can be expanded by binomial expansion while those having complex powers can be expanded by 
Taylor's expansion. We obtain in this way22 

snHn2l(mninz) T (i/3+m)\/—ik\m 

E — -=--Wm+*Xni»Vn——( (I-*2)™'2 

nm2 (»1 + W)!(W2+W?)- 2 (iff) ! \ 2 / 

2 /m+2+ji\/m+2+j2\ 

M2=0\ j 1 J\ j 2 ) 

X(a+k)-{mWn\a*+k)n\l.^ (11.32) 

OO -2C 2 /m+2+ji\/m+2+jo\ 

x E E E E E E ( . ) . )(a*-k)-i"+»Ha-k)» 
il=0 J2=0 Zi=0 /2=0 M1=0 M2=0\ ^\ / \ j 2 

where 
*i '2 ( ^ + w + l + ^i+^ 2)! 

y^(o,o)=z s CK/OC^/2 ) (-*)-+-
"i=o v2=o ( t-0-|_w-j_i)! 

X ( a + £ ) - < ^ > ( a * + £ ) / 2 ^ l - * ^ ^ ^ ^ , (11.33) 

^ M1M2" ^ 1 M 2 i 3*-Ml/*2 J ( 1 1 . 3 4 ) 

8 Vn/vz2/ 

a 
— ( m + l ) ( - ) ^ - M 2 ( a * _ £ ) ( a + £ ) ^ (11.35) 

4 

CMIM2= ( - ) " + " / V \(a*-k)2e2i^-(a+k)2e2i^~], (11.36) 

8 V n ' v*2/ 

^ t a n - ^ a / ^ - A O ] , 0 2 = t a i r ^ / ( £ + # ) ] , O < 0 ! , 0 2 < T , (11.37) 

5GLHM2,«I«2) = [1 - 50*i,wi)l[l - 5 (/x2,w2)] , (11.38) 
22 For details of this expansion see K. Omidvar, External Report X-641-64-192, Goddard Space Flight Center, Greenbelt, Maryland 

(unpublished). 
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&(ji,n) being the Kronecker delta. The coefficients CO,/) given in Eq. (11.33) are defined by the following recur
sion relationship and the initial values: 

C(p,I)=(l-l + v)C(v,l-l)+C(v-l,l-l), p^h (H.39) 

C(0,/) = 5(0,/); C( l , l ) = l ; C W ) = 0 for v>L (11.40) 

The first few values of C(v,l) are given in Table I. 
Equating coefficients of equal powers of s and / on both sides of Eq. (II 32), and neglecting a constant phase fac

tor in the amplitude of ionization, the following expression for I[mnin^) results: 

/(/w»i»2)= ( 2 ) ^ V ( » i + w ^ ^ , (H-41) 
y 

where 
^ ^ t a n ^ p o f c / C ^ + t t 2 - * 2 ) ] , 0 ^ 3 < 7 r , (11.42) 

and 7 stands for the set of 8 integers jihvinxjihvyii which must satisfy the following relationships: 

i i + / i + M i = w i , vi^h\ m AX\ 

The G(y) and H(y) are defined by 

/m+2+jA /m+2+j2\ 
G(7) = ( . )( . Khlhl)~lC(,1M)CM2)(2iay^ 

m+i+n+V2 /a+k\vl /a*— k\ n 

X [ I I ( ^ + « * ) ] ( ( 1 exP2tCO-1+/1)*1+(i2+/2)*2], (H.44) 

ff(7)=(l-S2)TO/2(l-tf)'Kl + ^ ( I I > 4 5) 

When 7(m«i«2) is substituted from Eq. (11.41) in Eq. (11.21), and Nnin2m is eliminated, we obtain 

Q(nmnin2) = 2 I q(nmnift2\k)kdkt (11.46) 
J k=Q 

T27(2a)2m+4 «i!»2! 1 
q(nmnin2\k) = X X-

(n i+m) ! (» 2 +w)! [ Z 2 + (w+1)2£2][1 - e~27rZ/r] 

where 

X / XS(fc,/0, (11.47) 

S(k,K)= f \Y,G{y)H{y)\Hx 
J -I 7 

+ 1 

= E E G ( 7 ) G * ( 7 ' ) / H(y)H*(y')dx. (11.48) 
7 7' 

q(nmnifi2\k) is the cross section per unit energy range changed, F(k,iT) remains invariant. Since £ and 7? are 
of the ejected electron in rydbergs. the variables of integrations, their interchange does not 

A glance at the form of H(y) in Eq. (11.45) suggests change V(k,K). By putting cos0& = £, this means that 
that integration with respect to x in Eq. (11.48) can be V(k,K) does not change under the following inter-
carried out by elementary methods. This will not be changes: 
shown here although the integration has been carried K+±—K n\±±n2 xr* — x. 
out for evaluation of the cross sections. 

We consider the integral 
Symmetry Considerations 

Equation (11.14) shows that when members of the / \V(k K x)\2dx 
pairs £, 77; K, —K; nh n2', and s in^ /2 , cos$k/2 are inter- J_x 
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- BORN 

- CLASSICAL 

- EXPERIMENTAL 

INCIDENT ELECTRON ENERGY UV) 

FIG. 1. Ionization of the ground state of the hydrogen. The 
theoretical curves, Born and classical, are compared with the 
experimental curve. 

which is the form that appears in the expression for the 
cross section. The integrand can be written as the sum 
of odd and even functions of x. The integral with 
respect to the odd function is zero. The integral with 
respect to the even function does not change when 
x +± — x. Then the above integral is invariant under the 
interchanges K+^—K, n ^ n i . Bearing this in mind, 

TABLE I. The Ciyf) values. 

X 
0 
1 
2 
3 
4 
5 

0 

1 
0 
0 
0 
0 
0 

1 

0 
1 
2 
6 

24 
120 

2 

0 
0 
1 
6 

36 
240 

3 

0 
0 
0 
1 

12 
120 

4 

0 
0 
0 
0 
1 

20 

5 

0 
0 
0 
0 
0 
1 

comparison of Eqs. (II.5), (11.47) leads to the following 
equation: 

5 (ntfii | kK) = S (yi\ni \ k—K). 

A further symmetry exists with respect to k and K. I t 
is evident from Eqs. (11.44), (11.45) that 

G(y, -k-K) = G*(y,kK); H(y, -k-K) = H*(y,kK). 

INCIDENT ELECTRON ENERGY UV! 

NCIDENT ELECTRON ENERGY (eV) 

FIG. 3. The cross section for the initial states 2s and 2p, m = 0 in 
spherical coordinates. Theoretically the sum of these cross sections 
should be equal to Q(2010) +Q(2001). 

INCIDENT ELECTRON ENERGY («V) 

FIG. 4. Ionization of the hydrogen in the w = 2 level, 
averaged over all sublevels. 

INCIDENT ELECTRON ENERGY UV) 

FIG. 2. The cross section for the initial states 2p,tn—l in spherical 
coordinates. Theoretically it should be equal to Q(2100). 

FIG. 5. Ionization of the hydrogen when the atom is 
in each of the sublevels of the level w=3. 
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INCIDENT ELECTRON ENERGY («V) 

FIG. 6. Ionization of the hydrogen in the n = 3 level, 
averaged over all sublevels. 

Then by Eq. (11.48) it follows that 

5 (niti21 — k— K) = S {n\n21 kK). 

Combining with the previous result, it follows that 

S(n2nl\kK) = S(n1n2\k--K)=:S(n1n2\~kK). (11.49) 

INCIDENT ELECTRON ENERGY (#V) 

FIG. 7. Ionization of the hydrogen in the w = 4 level, 
averaged over all sublevels. 

A case of particular interest is the ionization per unit 
energy range of the ejected electron at k=0; this corre
sponds to the excitation of the hydrogen atom to the 
state n —><x>. Equation (11.47) shows that this cross sec
tion does not change with the interchange of nx and n2: 

q {nmn2n\ | 0) = q {nmn\n2 | 0). (11.50) 

«3» 
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/ \ i BORN 
1 \J /— CLASSICAL 

~ 

. ! _ _. 1 ! ! 

INCIDENT ELECTRON ENERGY UV) 

INCIDENT ELECTRON ENERGY 

FIG. 9. Ionization of the hydrogen atom in the states w = 6, w = 5; 
n = 7 , w = 6; « = 8 , m — 7; w = 9, w = 8 ; «=10, m=9. 

Multiplicity of States and the Total Cross Section 

Since ni+n2=n—tn—l, the number n\ can take the 
values 0, 1, 2, • • •, n—m— 1, or n— m values. The same 
is true of n2. Then the total number of combinations of 

FIG. 10. Ionization cross section of the hydrogen in the « = 1 
level per unit velocity range of the ejected electron. vt is the 
velocity of the electron before ejection, i.e., the averaged velocity 
of the electron in the ground state of the hydrogen atom. 

fi\ and n2 for a given n and m is n—m. The average 
value of cross section for a given n and m is therefore 

Q(nm)=(n—myi J^ Q(nrnn\n2). (11.51) 
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FIG. 8. Ionization of the hydrogen in the n — 5 level, 
averaged over all sublevels. 

VELOCITY Or EJECTED ELECTRON (!*•»• <A ^ ) 

FIG. 11. Ionization cross section of the hydrogen in the w = 2 
level per unit velocity range of the ejected electron. v2 is the 
averaged velocity of the electron in the w=2 level of the hydrogen. 
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FIG. 12. Ionization cross section of the hydrogen in the n = 3 
level per unit velocity range of the ejected electron. y3 is the 
averaged velocity of the electron in the n = 3 level of the hydrogen. 

VELOCITY OF EJECTED ELECTRON (Units of V4) 

FIG. 13. Ionization cross section of the hydrogen in the n = A 
level per unit velocity range of the ejected electron, v* is the 
averaged velocity of the electron in the « = 4 level of the hydrogen. 

For a given n the total number of states with different 
m is 2n— 1. The average cross section for a given n is 
therefore 

Q(n)= (2n-l)~l £ emQ(nm), (11.52) 

em defined in Eq. (11.10). Notice that the total number 

VELOCITY OF EJECTED ELECTRON (Units of V 

FIG. 14. Ionization cross section of the hydrogen in the « = 5 
level per unit velocity range of the ejected electron. v6 is the 
averaged velocity of the electron in the n = 5 level of the hydrogen. 

TABLE II. In this and the following tables and figures the cross 
section in parabolic coordinates is expressed as Q{nmn\n^)y with 
n the principal quantum number, m the absolute value of the 
magnetic quantum number, and Wi, w2 the quantum numbers 
corresponding to coordinates £, rj. In this table the ionization of 
the Is level is recalculated by the formula given by Massey and 
Mohr (Ref. 2) and is compared to Q(1000) as obtained from the 
general expression for ionization with an arbitrary initial state. 

Impact 
Ry 

1.00 
1.44 
1.96 
2.00 
2.56 
3.24 
4.00 
6.25 
9.00 

12.25 
16.00 
20.25 

energy 
eV 

13.6 
19.6 
26.7 
27.2 
34.8 
44.1 
54.4 
85.0 

122.4 
166.6 
217.6 
275.4 

6(1000) 

0.0 
0.57555 
1.0016 
1.0168 
1.1691 
1.1931 
1.1449 
0.93696 
0.74243 
0.59375 
0.48282 
0.39959 

0(1*) 
0.0 
0.57502 
0.99797 

1.1691 
1.1931 
1.1449 
0.93660 
0.74244 
0.59367 
0.48283 
0.39959 

of states for a given n is 

2 V = £ [2-8(mfi)~](n-m) 

r n "i 
+ 2 n(n— 1) (n— 1) \ = n2 

L 2 J 
as it should be. 

III. RESULTS AND DISCUSSION 

Using Eqs. (11.46)-(11.48), the ionization cross sec
tions of all sublevels of hydrogen belonging to the prin
cipal quantum numbers n=l, 2, 3, 4, 5 have been calcu
lated. The ionization cross section of one sublevel for 
each of the principal quantum numbers n=6, 7, 8, 9, 
10 has also been computed. Since the ionization cross 
sections of all sublevels of any principal quantum num
ber are approximately the same in parabolic coordinates, 
the latter calculation gives an indication of the ioniza
tion cross sections of ^ = 6 , 7, 8, 9, 10. Thus we have at 
our disposal the ionization cross sections of the first 10 
levels of the hydrogen atom. 

At the moment, aside from the Born approximation, 
the main calculation of ionization with applicability to 
higher states is the classical calculation. Thomson1 in 
1912, following his model of atoms with stationary 
electrons, considered the collision of a moving electron 
with an electron at rest caused by their mutual Coulomb 
interaction. When the energy imparted to the electron 
at rest exceeds its bound energy, the ionization takes 
place. Since the imparted energy decreases as the impact 
parameter increases, there exists a maximum of this 
parameter beyond which ionization does not take place. 
An integration with respect to the impact parameter 
between zero and its maximum gives the ionization cross 
section. The result is 

& = ( 4 / E 0 ) [ > 2 - ( I / f i e ) ] , (III. l) 
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TABLE III. Ionization cross section in W for the initial states 2s; 2p, w = 0, 1 in spherical coordinates. The corresponding results in 
parabolic coordinates are also given and compared. The averaged ionization cross section for « = 2 is designated by Q(2). 

Impact energy 
Ry eV 

0.25 3.4 
0.36 4.9 
0.50 6.8 
0.64 8.7 
1.00 13.6 
1.44 19.6 
3.24 44.1 
5.29 71.9 
7.29 99.1 

100 
200 
300 
400 
500 
600 
700 
800 
900 

1000 

Q(2p,tn=l) 

0 
10.80 

19.11 
17.37 
14.14 
7.584 
4.956 
3.721 
3.692 
1.961 
1.348 
1.031 
0.838 
0.707 
0.612 
0.541 
0.484 
0.439 

6(2100) 

0 
10.86 
17.48 
19.11 
17.37 
14.20 
7.584 
4.956 
3.722 

0(2*) 
0 

10.77 

17.62 
16.04 
13.31 
7.549 
5.079 
3.877 
3.849 
2.110 
1.475 
1.156 
0.950 
0.810 
0.707 
0.629 
0.567 
0.517 

0(2*) 
+ Q(2p,m = Q) Q(2p,m = 0) 

0 
9.387 

20.96 
20.58 
17.34 
9.599 
6.326 
4.766 
4.730 
2.529 
1.744 
1.352 
1.103 
0.934 
0.812 
0.719 
0.647 
0.588 

0 
20.16 

38.58 
36.62 
30.65 
17.148 
11.405 
8.643 

6(2010) 

0 
10.14 
17.14 
19.29 
18.31 
15.35 
8.575 
5.703 
4.322 

6(2001) 

0 
10.14 
17.14 
19.29 
18.31 
15.35 
8.574 
5.702 
4.322 

0(2010) 

+ 6(2001) 

0 
20.28 

38.58 
36.62 
30.70 
17.149 
11.405 
8.644 

0(2) 
0 

10.50 
17.31 
19.20 
17.84 
14.78 
8.079 
5.329 
4.022 

TABLE IV. The n—'i level ionization. The cross sections in xa0
2 due to all sublevels are listed for comparison. 

The averaged cross section is given in the last column. 

Impact energy 
Ry eV 

0.11 1.5 
0.16 2.2 
0.22 3.0 
0.36 4.9 
0.64 8.7 
1.0 13.6 
4.0 54.4 

6(3200) 

0 
60.1 
91.5 
91.3 
66.0 
46.4 
13.3 

0(3110) 

0 
56.2 
93.0 
99.5 
75.4 
54.1 
15.8 

0(3101) 

0 
56.2 
92.8 
99.3 
75.2 
54.1 
15.8 

0(3020) 

0 
50.8 
89.4 

101.3 
80.1 
55.9 
17.5 

6(3002) 

0 
51.1 
89.0 

100.8 
80.0 
59.1 
14.1 

0(3011) 

0 
56.9 
93.6 
99.5 
75.2 
49.3 
13.6 

0(3) 
0 

56.0 
91.8 
98.0 
74.3 
52.6 
15.0 

TABLE V. The w = 4 level ionization. The cross sections in xao2 due to all sublevels are listed for comparison. 
The averaged cross section is given in the last column. 

Energy impact 
Ry eV 

0.0625 0.85 
0.09 1.22 
0.125 1.7 
0.16 2.2 
0.36 4.9 
0.64 8.7 
1.0 13.6 

0(4300) 

0 
206 
287 
297 
196 
121 
81 

0(4210) 

0 
191 
297 
321 
226 
138 
92 

£(4201) 

0 
191 
297 
321 
226 
143 
96 

0(4120) 

0 
178 
287 
340 
249 
155 
105 

6(4102) 

0 
174 
294 
340 
248 
162 
111 

0(4111) 

0 
187 
297 
323 
232 
147 
87 

0(4030) 

0 
160 
279 
329 
250 
171 
119 

Q(4003) 

0 
151 
257 
297 
221 
145 
100 

0(4021) 

0 
183 
288 
328 
228 
145 
93 

6(4012) 

0 
182 
275 
326 
212 
135 
92 

0(4) 
0 

183 
289 
323 
229 
146 
97 

TABLE VI. The n — S level ionization. The cross section in 7ra0
2 due to all sublevels are listed for comparison. 

The averaged cross section is given in the last column. 

Impact energy 
Ry eV 

0.04 0.54 
0.0625 0.85 
0.09 1.22 
0.16 2.2 
0.36 4.9 
0.64 8.7 
1.0 13.6 

0(5400) 0(5310) 0(5301) 0(5220) 0(5202) 0(5211 

0 
586 
724 
593 
321 
185 
120 

0 
569 
775 
695 
358 
218 
144 

0 
569 
777 
670 
365 
218 
144 

0 
539 
791 
758 
408 
245 
166 

0 
543 
806 
759 
408 
250 
166 

0 
558 
784 
722 
388 
213 
139 

.) 0(5130) 0(5103) 0(5121) 0(5112) 0(5040) 0(5004) 0(5031) 0(5013) 0(5004) 

0 
505 
784 
800 
448 
275 
180 

0 
505 
784 
797 
420 
256 
149 

0 
539 
740 
743 
387 
222 
146 

0 
539 
784 
740 
375 
200 
132 

0 
472 
754 
796 
470 
286 
193 

0 
435 
668 
671 
318 
139 
96 

0 
515 
774 
753 
412 
240 
159 

0 
481 
704 
668 
340 
186 
124 

0 
515 
734 
683 
362 
211 
139 

0(5) 

0 
533 
765 
725 
386 
225 
147 
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TABLE VII. The cross section for ionization from the levels 
n = 6, 7,8,9,10 in units of irflo2- For each level, the component with 
the greatest magnetic quantum number is computed. Since in 
parabolic coordinates all components of a given level have approxi
mately equal values, the following table gives an indication of the 
cross section of the level considered. 

Impact 

Ry 

0.0121 
0.0144 
0.0225 
0.0256 
0.0400 
0.0900 
0.1600 
0.3600 
0.6400 
1.0000 

energy 

eV 

0.16 
0.20 
0.31 
0.35 
0.54 
1.22 
2.2 
4.9 
8.7 
13.6 

Q(6500) 

1056 
1339 
921 
448 
262 
170 

0(7600) 

1307 
2697 
2009 
1292 
608 
341 
227 

0(8700) 

3441 
4140 
4498 
2761 
1705 
788 
437 
290 

0(9800) 

2514 
7137 
7350 
6408 
3608 
2154 
990 
564 
362 

0(10 900) 

4935 
8550 
11096 
10742 
8449 
4542 
2642 
1212 
687 
440 

where Qi is the cross section in units of ira0
2, E0 is the 

impact energy in rydbergs, and n is the principal 
quantum number of the atom. The result of this simple 
classical calculation is in fair agreement with experiment 
and the quantum-mechanical Born calculation, although 
it gives a smaller cross section and the position of the 
maximum is displaced. An improvement in Thomson's 
calculation is to take the motion of the bound electron 
into account. This has been done approximately by 
Gryzinski.23 Let us introduce a= (n2Eo)~1', then accord
ing to this author Eq. (III. l) should be replaced by 

Qi=(Ton4g(niEQ)J (III.2) 

where o-0=4.03077ra0
2 and 

f [ ( 5 / 3 ) - 2 a ) ] , a<h 
g(n,Eo) = a(l+a)~wx\ " ' ' "" " (III.3) 

l (4V2/3) ( l -a ) 3 ' 2 , a>\. 

I t should be noticed that in both Eqs. (III . l) and 
(III.2) the cross section falls off asymptotically as Eo'1, 
while in a quantum-mechanical Born calculation the 
corresponding asymptotic form is lnEo/Eo.2i 

For comparison, in Fig. 1 the Born, the classical, and 
the experimental curves are drawn. I t is seen that close 
to the threshold the experimental curve agrees better 
with the classical, but asymptotically it favors the 
quantum-mechanical calculations. 

In Tables I -VII I and in Figs. 2-14, the total and the 
partial ionization cross sections are recorded and dis
played. For n=\ and 2, in addition to parabolic 
coordinates, spherical coordinates have been used, and 
the calculated values are recorded and compared. 

Let the wave functions in parabolic and spherical 
coordinates be represented by \p {running and <t>(nlm), 
then for n=2, 

23 M. Gryzinski, Phys. Rev. 115, 374 (1958); 138, A305 (1965). 
An improvement upon the calculation of Gryzinski is performed 
by R. C. Stabler [Phys. Rev. 133, A1268 (1964)] in which a 
subsidiary approximation made by Gryzinski in averaging the 
cross section over the initial angular distribution of the bound 
electron is dropped. The result, however, is in less agreement with 
the experiment. Here we quote only Gryzinski's results. 

24SeeRef. 16, Eq. (20.5). 

*(2010)= ( l /v2) |>(2s)+*(2p0)] 

lK2001) = (l/v2)[>(2s)-0(2/>O)] , 

and by Eqs. (II 2), (II 5), 

Q(2010)+Q(2001) = Q(2s)+Q(2pO), (I1I.5) 

The above equivalence is indicated in Table I I I and 
Fig. 3. 

Originally the ionization of the 25 and the 2p, m = 0 
states was computed numerically by Swan.6 Swan's 
results are larger approximately by a factor of 2 because 
of being incorrectly multiplied by a factor of 2 and being 
obtained by a cruder method of numerical integration.25 

A study of the figures and tables indicates the follow
ing observations: 

(1) The ionization cross section of excited states 
grows as fast as the classical law of wVao2 only for 
incident energies large compared with the ionization 
energy of the level concerned. For intermediate energies 
the cross section grows less rapidly. 

(2) Most of the contribution to the cross section is 
from the region of zero-energy ejected electrons, & = 0, 
as is seen from Table VIII. At & = 0, the interchange of 
ti\ and ti2 does not change the partial cross section 
[cf. Eq. (II 50)]. Figure 5 shows that, because of the 
large contribution of the k=0 region, when n\ and w2 are 
interchanged the total cross section remains the same to 
about three significant figures.26 The k = 0 region contri
bution is consistent with the assumption made about 
the wave functions of the two electrons. 

(3) The ionization cross sections of different sublevels 
in a given level are comparable to each other in parabolic 
coordinates. 

(4) The maxima of partial cross sections in Figs. 10-
14 occur when the velocity of the ejected electron is half 
its velocity before ejection. The repetition of this 
pattern for ionization of n~ 1, 2, 3, 4, 5, averaged over 
all substates, is in agreement with the classical theory 
of ionization in which the excited-state cross sections 
can be obtained from the ground-state cross section by 
appropriate scaling of energies of the incident and the 
ejected electrons. However, the fact that remains un
explained is that the maxima have the same positions 
for all values of the incident energies. 

In all the tables the last significant figure may be in 
error by a few units. In a few cases, especially for higher 
values of n, the next-to-the-last significant figure may 
also be in error by a few units. 

In a calculation which will be reported later, extension 
of the present theory to the higher excited states of 
hydrogen will be considered. 

25 T. J. M. Boyd, Proc. Phys. Soc. (London) 72, 523 (1958), and 
D. McCrea and T. V. M. McKirgan, ibid. 75, 235 (1960), in de
termination of the ionization of the 2s and 2p, m=0 states with 
zero velocity ejected electrons, find similar discrepancies. 

26 The asymmetry in the cross sections, which apparently causes 
the weakening of some Stark components in a canal ray tube, is due 
to the higher order corrections in the cross section. See E. U. 
Condon and G. H. Shortley, The Theory of Atomic Spectra (Cam
bridge University Press, New York, 1963), Chap. 17, Sec. 1. 
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TABLE VIII. The ionization cross section per unit energy range of the ejected electron for the first five levels of hydrogen. fa2 and k* 
are the energies of the incident and ejected electrons in rydbergs. The cross section for a given fa2 and k2 has been averaged over all 
sublevels for the particular level concerned. 224+1 means 224X10+1, etc. 

V2 

£o 2 \ 

1.0 
1.44 
1.96 
2.00 
2.56 
3.24 
4.00 
6.25 
9.00 

\ # 

w\ 
0.25 
0.36 
0.50 
0.64 
1.00 
1.44 
3.24 
5.29 
7.29 

\k* 
k<?\ 

0.11 
0.16 
0.22 
0.36 
0.64 
1.00 
4.00 

V2 

k<f\ 
0.0625 
0.09 
0.125 
0.16 
0.36 
0.64 
1.00 

V2 

0.04 
0.0625 
0.09 
0.16 
0.36 
0.64 
1.00 

0 

~~0 
2.6148 
2.7376 
2.7304 
2.5614 
2.3216 
2.0844 
1.5942 
1.2473 

0 

0 
185.6 
181.3 
163.1 
124.6 
96.20 
51.07 
34.10 
26.04 

0 

0 
224+1 
215-fl 
164+1 
107+1 
740 
227 

0 

0 
130+2 
124+2 
109+2 
595+1 
366+1 
248+1 

0 

0 
498+2 
461+2 
315+2 
158+2 
942+1 
630+1 

1/256 

0 
2.5828 
2.7085 
2.7014 
2.5350 
2.2976 
2.0627 
1.5772 
1.2337 

1/256 

0 
176.7 
174.0 
156.7 
119.7 
92.34 
48.93 
32.63 
24.91 

1/256 

0 
201+1 
196+1 
150+1 
977 
672 
204 

1/256 

0 
106+2 
105+2 
934+1 
506+1 
311 + 1 
210+1 

1/256 

0 
372+2 
358+2 
247+2 
122+2 
709+1 
471 + 1 

1/64 

2.4881 
2.6235 
2.6169 
2.4578 
2.2277 
1.9995 
1.5277 
1.1941 

1/64 

._ 
153.0 
154.4 
139.5 
106.5 
82.00 
43.21 
28.73 
21.89 

1/64 

0 
144+1 
137 + 1 
118+1 
761 
522 
154 

1/64 

0 
549+1 
676+1 
616+1 
334+1 
203+1 
136+1 

1/64 

0 
139+2 
189+2 
136+2 
650+1 
371 + 1 
244+1 

1/16 

2.1419 
2.3166 
2.3121 
2.1796 
1.9763 
1.7724 
1.3502 
1.0525 

1/16 

0 
81.58 
99.48 
91.87 
70.32 
53.80 
27.83 
18.31 
13.86 

1/16 

610 
535 
346 
235 
65.0 

1/16 

169+1 
105+1 
628 
407 

1/16 

298+1 
141 + 1 
794 
505 

(a) » = 1 

1/4 

1.1175 
1.4642 
1.4667 
1.4150 
1.2886 
1.1537 
0.87048 
0.67209 

(b) w = 2 

1/4 

25.55 
21.95 
16.73 
8.317 
5.334 
3.972 

(c) w = 3 

1/4 

61.0 
40.3 
10.0 

(d) w = 4 

1/4 

102 
68.2 
42.1 

(e) n * 5 

1/4 

105 
60.9 
38.2 

9/16 

0.72071 
0.73398 
0.77583 
0.72091 
0.64715 
0.48371 
0.36901 

9/16 

6.283 
5.296 
2.602 
1.640 
1.208 

9/16 

9.51 
2.27 

9/16 

7.75 
7.94 

9/16 

6.82 
5.12 

1 

0.37420 
0.37786 
0.34517 
0.25764 
0.19443 

1 

1.768 
0.9803 
0.6131 
0.4491 

1 

0.704 

9/4 

0.09409 
0.07860 
0.05890 

9/4 

0.2147 
0.1361 
0.0994 

9/4 

0.099 

4 25/4 

0.02710 
0.02160 0.00903 

1 25/4 

0.0443 
0.0326 0.0133 
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