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A variational method of solving the Boltzmann transport equation in a magnetic field is extended to high-
frequency problems. The variational functional does not have an extremum at the solution, but a saddle 
point. It is shown that the approximations to the conductivity satisfy a sum rule which is also satisfied by 
the exact result, provided reasonable trial functions are used. Alternative variational principles have been 
formulated by several authors and some of these are discussed. The variational equations used in this paper 
can also be derived by Blount's method, and this casts more light on their nature. It is shown that when the 
current carriers are not degenerate and the band is parabolic, the use of Sonine polynomials in the carrier 
energy as trial functions has certain formal advantages, but that in actual calculations simple powers of the 
energy give the same results. The method is applied to a calculation of the frequency-dependent magneto-
conductivity for mixed ionized-impurity and polar optical-phonon scattering, using parameters appropriate 
to w-InSb at 77 °K. The results are used to calculate the Faraday rotation and ellipticity as a function of 
magnetic field at a frequency of 35 Gc/sec. It is suggested that measurements of the Faraday ellipticity can 
give useful information about the scattering mechanisms in a material. 

1. INTRODUCTION 

IT is well known that in treatments of transport 
problems starting from the Boltzmann equation, 

a magnetic field plays much the same role as a high-
frequency electric field; the circular frequency a> of the 
electric field is simply replaced by the cyclotron 
frequency OJC. This parallel is also apparent in the 
variational description of transport phenomena, and 
the magnetic operator M and the frequency operator ft 
have the same formal properties. (The exact definition 
of these operators is given in Sec. 2.) The scattering 
operator L is Hermitian and positive definite, but M 
and 0 are anti-Hermitian. As a consequence, it is 
possible to set up a simple variational principle1 which 
maximizes the conductivity when o> = coc=0, but the 
properties of M and 0 make this difficult when they are 
present. 

In this paper variational principles in the presence 
of M and 0 are first considered, and the simple but 
nonextremal principle formulated some time ago2 for 
problems in a magnetic field is extended to the fre­
quency-dependent case. This form of the variational 
principle has been used in actual computations of 
solid-state properties.3,4 I t is shown that approximate 
solutions obtained by this method satisfy certain sum 
rules which also hold for the exact solutions. Other 

* Work supported in part by the U. S. Office of Naval Research 
under Contract No. NONR 1834(12), and by the Air Force 
Office of Scientific Research, under Air Force Grant No. 328-63. 
Most of this work was done while both authors were at the 
University of Illinois, Urbana, Illinois. 

1 J. M. Ziman, Electrons and Phonons (Clarendon Press, 
Oxford, England, 1960). 

2 F. Garcia-Moliner and S. Simons, Proc. Cambridge Phil. Soc. 
53, 848 (1957). 

3 F . Garcia-Moliner, Phys. Rev. 130, 2290 (1963), hereafter 
referred to as I . 

4 F . Garcia-Moliner, Proc. Roy. Soc. (London) A249, 73 (1958). 

variational principles which have been formulated5-7 

are discussed, and their respective advantages for 
practical computations are compared. 

The variational equations are then set up and 
formally solved, and it is shown that the use of Sonine 
polynomials as trial functions simplifies the formal 
treatment somewhat, but that it does not improve the 
convergence. The formalism is applied to a case of 
mixed polar-optical and ionized-impurity scattering, 
and the results of a calculation of the frequency -
dependent magnetoconductivity and of the Faraday 
rotation and ellipticity are presented. 

2. VARIATIONAL PRINCIPLES FOR THE 
BOLTZMANN EQUATION 

If k is the wave vector of charge carriers in a solid, 
Ek the corresponding energy eigenvalue, and /k° the 
equilibrium distribution function, the presence of an 
external electric field sets up a nonequilibrium distribu­
tion fk which, in the linear approximation, is cus­
tomarily1 written as 

/k = /k°-$k(d/ k ° /d£k) . (2.1) 

This defines 3>k which is to be found by solving an 
equation of the form 

mk=Xk^~evk. S(cVk°/d£k) • (2.2) 

Here e is the charge of the carrier and \k the velocity 
of the state k. Henceforth the label k will be omitted 
unless it is needed for clarity. 

5 B . B. Robinson and I. B. Bernstein, Ann. Phys. (N. Y.) 18, 
110 (1962). 

6 E. I. Blount, Phys. Rev. 131, 2354 (1963). 
7 M. Bailyn, Phys. Rev. 126, 2040 (1962). 
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In the presence of a magnetic field H and an electric 
field varying as ei(X>\ the operator R is the following: 

R=L+M+tt, (2.3) 

where L is the linear integral collision operator, exten­
sively discussed by Ziman,1 M is the magnetic operator 

M<f?= ~ {e/he) (df/dE) (v x ) H . V k # , (2.4) 

and 0 is the frequency operator 

m=-iu{df>/dE)$. (2.5) 

Thus <£> is in general a function of k, H, cu, and £, and it 
is a complex function if w5**0. For any two functions <£ 
and ^ of the same space (assuming all appropriate 
boundary conditions) the scalar product will be defined 
as 

<$,*>= /$**<&; < f t s ( 4 * V * M J W * 8 . (2.6) 

I t can be shown that the following equalities hold: 

(<f>,L*)=(%L$}*; 

<<^M*)=-<*,M#)*; (2.7) 

thus L is Hermitian, while M and 0 are anti-Hermitian. 
These properties of L and M are discussed by Ziman1 

for real functions <£> and Sir. 
One possible form of writing a variational principle 

is the following: Let <$± be the function # in a magnetic 
field ± H , and remember that * indicates complex 
conjugation, that is i—> — i or 0—>—0. A suitable 
variational functional is then 

£ ( $ ) = <^.* i» + >-<#-* ,X>-<X,# + >. (2.8) 

By an extension of a formalism used elsewhere,2 it is 
seen that independent variations of 3>+ and <£__* yield, 
respectively, the two conjugate forms of the Boltzmann 
equation 

(L-M-Q)$J*=X; (L+M+Q)$+=X. (2.9) 

If <I> is expanded in some set of functions <pr, 

* + W = £ Crcpr, $_*<*>= £ dr<pry (2.10) 

then the variational equations, obtained by varying 
E($) with respect to the coefficients dr, are 

E U = I r , (2.11) 

where Rr8 = {(pr,R<ps), Xr={<pr,X). When M = 0 = 0 , one 
has a definite minimum principle for £(<£>)• In the steady 
state — £(<£>) is precisely the current, so that the 
variational calculation maximizes the conductivity. 
Therefore, successive approximations approach mono-
tonically the exact conductivity from below. 

There is no difficulty in formally establishing varia­
tional principles in alternative forms, and many have 
been published in numerous references (usually for 
0 = 0 ) . The real questions concern, on the one hand, 
the physical meaning of the principle, and, on the 
other hand, its practical use as a method of calculation 
for solving transport problems. Ziman's book1 reviews 
the relevant developments (for 0 = 0 ) up to 1960 and 
demonstrates the intimate relationship with irreversible 
thermodynamics. The meaning of the variational 
principle has also been discussed, for 0?^0, by Robinson 
and Bernstein5 for transport phenomena in a plasma, 
and by Blount.6 The latter has shown that the func­
tional £ ( $ ) of Eq. (2.8) has in the steady state a 
minimum with respect to variations of ($++$-*) , 
which is the part of <£ even in both frequency and 
magnetic field, and a maximum with respect to varia­
tions of (<£>+—$_*), the part of # odd in both. Thus £(<£>) 
has a saddle point rather than an extremum. 

Therefore for M or 0 ^ 0 the variational equations 
(2.11) do not set a limit to the conductivity. However, 
the variational approximation to the conductivity 
does share an interesting property with the exact result. 
Consider the case I f = 0 , OT^O. Then the real part of the 
exact conductivity Reo-(cu) satisfies the sum rule8-9 

r irne1 

I Rea(oo)dco = , (2.12) 
Jo 2m* 

where tn* is the conductivity effective mass of the 
carriers and n is their concentration. This equation 
follows from the solution of the problem of the initial 
acceleration of the carriers when an electric field is 
applied suddenly. The scattering mechanisms do not 
enter this problem, so it would be expected that the 
iVth-order variational approximation am would also 
satisfy (2.10) provided reasonable trial functions are 
chosen. This expectation is confirmed by an argument 
given in the Appendix. Hence 

/ ReaW (u)da>= / Re(j(co)Jco = . (2.13) 
Jo Jo 2m* 

I t should be noted that this relation is incompatible 
with monotonic convergence of Reo-(iS0(a>) to the exact 
result from below. 

This sum rule is easily generalized to the case where a 
magnetic field is also present, if the system is isotropic, 
or if it is a crystal and H is parallel to a threefold, 
fourfold, or sixfold symmetry axis. I t is then convenient9 

to consider a circularly polarized electric field S± 
rotating in the (x,y) plane normal to H : 

fi±=|«|^(l/V2)(l,=F*,0). (2.14) 

The corresponding components of the conductivity 
8D. Pines, Elementary Excitations in Solids (W. A. Benjamin, 

Inc., New York, 1963), p. 136. 
9 N. K. Hindley, Phys. Status Solidi 7, 67 (1964). 
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tensor are written cr±. The problem is now symmetric in 
o) and the cyclotron frequency a)c, and cr± depends only 
on (codbojc). This implies sum rules like (2.12) in coc. 

Bailyn7 has remarked that (when 0 = 0 ) the even 
part of <£ is the solution of the equation 

£#<«>= (£-ML-W)$<«> = X , (2.15) 

for which there is an extremal principle, as £ is positive 
definite and Hermitian. Using this principle, one arrives 
at Bailyn's formula (3.4a), which yields approximations 
which tend monotonically (from below) to the true 
value of the even part of the conductivity. Specifically, 
with H = (0,0,£T), one has a calculation which maximizes 
axx. However, the definition of <£ involves Lrl, which 
may be evaluated by using the ordinary variational 
principle. If these "internal" variational calculations 
are carried out to the same order of approximation as 
the "external" calculation, the same results are obtained 
as with the variational principle (2.8), if the same 
expansion functions are used throughout. To make this 
point more explicitly, consider an earlier publication,3 

(hereafter referred to as I) in which Eq. (2.8) was used 
to perform a calculation of galvanomagnetic effects for 
a semiconductor with polar-optical-mode scattering. 
Equations (36) and (37) of I are exactly equivalent to 
Bailyn's formulas (3.4a) and (3.4b), the matrices A 
and B of I being the representation of Bailyn's operators 
£ and —£ML~l in terms of the chosen expansion 
functions. 

More complicated extremal principles have been 
given by Robinson and Bernstein,5 and by Blount.6 

Blount's method consists in premultiplying the Boltz-
mann equation (2.2) by RfT, where R* is the Hermitian 
ad jugate of R, and T is any positive-definite Hermitian 
operator. The operator RfTR is then Hermitian and 
positive definite, and an extremal principle applies. 
If T is chosen equal to Lrl the method is equivalent to 
Bailyn's. Blount10 has pointed out that the Eqs. (2.11) 
can also be obtained from his variational principle, and 
this sheds more light on the nature of the earlier 
principle, Eq. (2.8). The appropriate variational func­
tional for the Blount principle is 

F(cE>)=<<i>,^ tr i?$)-(^trx)-(x,r^) . (2.16) 

Expanding <£ in terms of the <pry as in Eq. (2.10), the 
Nth-order functional is 

VN= L c*Rj*TjkRkiCi-i: cfR^TjkXu 
ijk I ijk 

N 

~~LL Xi*TijRjkCk 
ijk 

.V AT 

— —z2 Xi TijXj-\~iLAj TjkAk, 
ij jk 

where 
Ai=ZiRiiCj-Xi. (2.17) 

10 We wish to thank Dr. E. I. Blount for this suggestion and 
for several other very helpful comments. 

Thus since T is positive definite VN has a minimum 
value of —Y,ijNXi*TijXj when all the Ai are zero. But 
the equations ^ 1 = 0 are precisely the variational 
equations (2.11). 

In the above argument the matrix T is arbitrary, but 
if r = J ( ^ ~ 1 + ^ t ~ 1 ) , then (X,TX) is the part of the 
conductivity even in both cu and H. The equations (2.11) 
minimize VN, and therefore maximize the conductivity, 
for a given value of N. However, since it is not neces­
sarily true that 

L . iV-fi Y *T. Y ."s. V . AT Y * T Y. 

monotonic convergence to the exact result does not 
follow. All we can conclude is that for a given set of N 
trial functions, equations (2.11) maximize the expression 
for the conductivity. In view of Eq. (2.13), perhaps 
this is the most that can be expected. Equations (2.11) 
will form the basis for the rest of this paper. 

As has been mentioned, there is a symmetry between 
the frequency dependence of the conductivity and the 
magnetic-field dependence, with real and imaginary 
parts corresponding to parts even and odd in H. Thus 
the same set of numerical results obtained in a given 
calculation can be interpreted to yield, for a suitably 
arranged geometry, either galvanomagnetic coefficients 
as a function of H or optical coefficients as a function of 
coy or indeed magneto-optical coefficients as a function 
of (w±coc). This is obvious from the standard formulas 
when a relaxation time exists. Consider, however, the 
problem of polar-optical-mode scattering at arbitrary 
temperatures. The variational calculation reported in I, 
which ignored the field-theoretic complications of the 
polaron problem, yielded two functions of temperature 
and magnetic field Fc and FH which are related to the 
conductivity mobility /ic and the Hall mobility /*#: 

Mc<=fi(z)Fc(z,Y); ixH=a(z)FH(zJ). (2.18) 

Here z= ho)OTi/kTy and a)op is the frequency of the optical 
phonons; Y=fiH/c, and fr is a known function of z of 
dimensions of mobility. 

The real and imaginary parts of <7±(a>,a>c) may be 
expressed in terms of the same functions if Y is re­
interpreted as F ± : 

F ± = W M ( « ± « e ) / | e | , (2.19) 
then 

<r±{uVc) = n\e\jl{Fc{zJY±) 

-iY*Fc(z,Y±)FH(z,Y±)}. (2.20) 

The derivation of this equation is considered in Sec. 4. 
The frequency- and magnetic-field-dependent dielectric 
function ety(co,coc) is related to the conductivity tensor 
o-ij(<ti,u)e) b y 

6ij(a>,Q)c) = e^ij— (4W/co)o-ij(o>,wc), (2.21) 

where 5̂ - is the unit tensor and e0 the dielectric constant 
of the lattice. The free-carrier magneto-optical prop­
erties of a polar semiconductor can therefore be cal-
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culated from the data given in the tables of I. Un­
fortunately, for most values of z, the range of Y± 

covered by these tables is inadequate for practical 
ranges of variables in magneto-optical calculations. 

3. THE VARIATIONAL EQUATIONS 

After the above considerations the routine is straight­
forward. The variational equations (2.11) may be 
written 

X) (Lr8+Mr9+tor»)cs=Xr. 
8=0 

(3.1) 

From now on it will be assumed that the solid is 
isotropic, or has cubic symmetry with the magnetic 
field H along a threefold or fourfold axis. The direction 
of H will be taken as the z axis of a right-handed 
Cartesian coordinate system with the x axis in the 
direction of £(£_!_ H). Unit vectors along the coordinate 
axes (x,y,z) will be denoted by (u,u',h), as in I. Let 
{\f/r(E)} be a set of functions of the carrier energy, 
which may be, for example, simple powers of E or 
polynomials in E. Expanding to Nth order, 

<^Y) = E Crtrk.U+ E cVlM-U ' , (3.2) 
r=0 r'=0 

the operator R has the following matrix representation: 

-L+O M 

-M L-HL 

pL+Q M "I 

L-M L-H2J " 
(3.3) 

As in I, here L, M, and U are submatrices of the matrix R, 
and they have (N+l) rows and columns each. Hence 
one easily obtains 

(N). 

(N). 

: ^ 2 £ XrKL+fy+MiL+QyMlrs-'Xs, 
r,s=0 

(3.4) 

•-$-* E Xr[M+(L+Q)M'1(L+n)2rr1Xa 

I t is convenient to express the results in terms of the 
conductivity components <r± corresponding to the 
circularly polarized electric fields of Eq. (2.14); these 
are given by 

CT±—0'xz:-Fi<Txy (3-5) 

Using the identity 

(A + iB)~l== {A+BA-lB)-l-i(B+AB~lA)-\ (3.6) 

one obtains 

<r±<*>= S-* E Xr{L+QFFili)rr
lXa. (3.7) 

r,s=0 

Also, for <Tzz one obtains 

_ W = £-2 = <§-2E XriL + fy^Xt 
r,s=0 

(3.8) 

These then are the explicit formulas to calculate 
magnetic-field and frequency-dependent free-carrier 
properties, as the experimental coefficients can all be 
expressed in terms of the <nj. To evaluate the formulas 
explicitly one has to specify the model under study 
(scattering and band structure) and the functions 
ypr{E). For example, for nondegenerate statistics and a 
standard parabolic band structure, the matrices Mrs 

and Ors, and the vector X r , take a particularly simple 
form if the \pr{E) are taken to be Sonine polynomials.11 

The polynomials Sm
r(y) are defined by 

(l-t)-^e-y^^ = ZrSm
r(y)tr

 y (3.9) 

and satisfy the orthogonality condition 

/ ; 

T(m+p+l) 
e-xSm

p(x)Sm
q(x)xmdx= dp 

r(M-i) 
(3.10) 

where 8pq is the Kronecker delta symbol. 
The trial functions \pr(E) will be taken to be 

ME) = Sm
r(y), y=E/kT. (3.11) 

The matrix element 12rs then becomes, using Eqs. (2.5), 
(2.6), and (3.10), 

& rs= — (ico/4irz) I (k-u 

io)tn*n r ( r + f ) 

h2 

Defining 

r(r+i)r(f) 

)2sm
r(y)sm*(y) 

X(df/dE)dkidkifIk3, 

drs-

one has 

and similarly 

r(r+f) 
7r~r(H-i)r(f)' 

Slrs=iw{m*n/hi)yrBra, 

Mrs= —uc{m*nltir)7£ra, 

Xr= (en/h)S8r0. 

(3.12) 

(3.13) 

(3.14) 

Thus M and Q become diagonal matrices and all the 
Xr are zero except X0. In general, however, L is not 
simplified, so the numerical work involved, principally 
the inversion of the matrix {L-\-QPFiM)y is not much 
reduced. However, there is one case in which L is 
diagonal too. This is the case in which scattering can 
be represented by a constant relaxation time r. Then 

and 

I d / 0 

dE ' 

Lrs= (tn*n/h2T)yr&r 

(3.15) 

(3.16) 
11 S. Chapman and T. G. Cowling, The Mathematical Theory of 

Non-Uniform Gases (Cambridge University Press, London, 
England, 1939). Sonine polynomials have been used in a study of 
solid-state transport properties in a magnetic field by S. Devlin, 
thesis, Case Institute of Technology, Cleveland, Ohio, 1964 
(unpublished). 
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Equation (3.7) now becomes 

( 7 ± = ( ^ 2 / w * ) £ « r o [ ( l / r ) + f « = f c f « J - 1 ( l / 7 r ) W . O , 
r ,8=0 

ne2 r 

= — — 7 r - (3-17) 

m* l+i(co±coc)r 
This is of course the result obtained by solving the 
Boltzmann equation by elementary methods, and it is 
valid for all orders N of the variational calculation. 

For energy-dependent relaxation times, the lowest 
variational approximation may be inaccurate. Then 

m*n tn*n 1 r001 
L00= < l / r > s / -yV*e-vdy, (3.18) 

*8 & r(f)J0 / 
and the dc conductivity in the absence of a magnetic 
field (To is given to zero order by 

o-o co) = (»g2/m*)(l / r)- i , (3.19) 

whereas the correct result has (r) for (1/ r ) - 1 . For 
example, if T=T0y

312, which is approximately the case 
for ionized impurity scattering, the ratio of the exact 
result to the zero-order result is 

<ro/o-o<0) = <r)<l/r> = 32/3TT=3.40. (3.20) 

However, a first-order calculation already gives a much 
better result: 

_ ! L = {yVr){\/r)-{y/rY 

a0^
 T (25/i){l/r)S(y/r)+(y2/r) 

128 
= =1.045. (3.21) 

39TT 

I t is interesting to note that when T<xy*12, the exact 
solution for the distribution function is 

$ = (*ftS/w*)k-ur«y»/2(k.u), (3.22) 

which cannot be expanded in the form (3.2) if the \pr are 
taken to be polynomials in y. Yet the variational 
expression for the conductivity <TO still converges very 
quickly. 

Since the Sonine polynomial Sz/2r(y) is of degree r, 
an Nth-order calculation using these polynomials as 
trial functions, up to Sz/2N(y)> must give the same results 
as a calculation using powers of y up to yN. This may 
also be checked directly. Therefore, Sonine polynomials 
do not improve the convergence of the method and give 
little or no advantage in numerical calculations. 

4. SCOPE OF THE PRESENT CALCULATION: 
MIXED IMPURITY AND POLAR-

OPTICAL-MODE SCATTERING 

As a practical application of the variational method, 
a calculation has been made of the free-carrier magneto-

optical properties of a semiconductor in which scattering 
by polar optical phonons is important. Since a relaxation 
time cannot be defined for this scattering mechanism 
except at very high and very low temperatures, a 
variational method is needed. The calculation was 
programmed in FORTRAN 11 for a digital computer, and 
the program was based on that used in I in a calculation 
of the magnetoresistance of a polar semiconductor: 
Practical use was thus made of the formal relation 
between the operators M and &. The trial functions 
\pr(E) of (3.2) were taken to be 

ME)=yr, y=E/kT, (4.1) 

because these were the functions used in I, and because 
a power-series expansion yields the same results as an 
expansion in Sonine polynomials if carried to the same 
order. 

As far as possible, results will be presented in a general 
dimensionless form to make them more convenient to 
use in the analysis of particular situations. However, 
the ranges of variables and parameters chosen are those 
appropriate to «-InSb under typical experimental 
conditions. Nonparabolicity of the conduction band, 
partial degeneracy, and other complications encoun­
tered in this semiconductor are outside the scope of 
the present calculation, which assumes a band of 
standard form and classical statistics. However, in 
order to be fairly realistic, ionized impurity scattering 
has been included as well as polar optical scattering. 
Many of the calculations have been made for a value of 
z=hwQp/kT corresponding to a temperature of 77°K, 
which is a convenient temperature experimentally, and 
at which impurity scattering is important but the other 
complications mentioned above are not. The calcula­
tions have also been pushed to higher temperatures for 
pure polar scattering to study the dispersive properties 
of this scattering mechanism at different temperatures. 

The matrix elements of the polar scattering operator 
with the basic functions (4.1) are3,12 

Lr8^=(n\e\/h2ii)dr8(z), (4.2) 

where the dr8(z) are dimensionless integrals identical 
with the 8r8(z) of Howarth and Sondheimer,12 and /x is 
a quantity of dimensions of mobility 

3y(kT)v2 ez-l 
M= . (4.3) 

27/V/2Mm*3/2 e^2 

Here y~\ which is proportional to the dimensionless 
coupling constant for the electron-polar-phonon inter­
action, is defined so that it is independent of the 
effective mass: 

l /7=(coO P
2 /47r)( l /e0 0- lA,) , 

where €«,, e8 are the dielectric constants of the lattice at 
frequencies a£>>0)Op and <$CwoP, respectively. 

12 D. J. Howarth and E. M. Sondheimer, Proc. Roy. Soc. 
(London) A219, 53 (1953). 
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The Brooks-Herring formula13 for the relaxation time 
for ionized-impurity scattering can be written 

where 
r 1==T0~

1g(ay)y~zl2, 

*({) = ln ( l+£) -£ / ( l+*) J 

(4.4) 

(4.5) 

and where TO and the screening constant a are independ­
ent of y. Using Eq. (3.15) the matrix elements of the 
impurity-scattering operator are found to be 

where 
Lrs

(i)=(m*n/h2To)\r+s, (4.6) 

Xn = 1 vng(ay)e~Uy. (4.7) 
i r 

\»= / yng 

r(f)A 
The integral X„ can be evaluated in terms of tabulated 
functions by integrating the term involving ln(l+ay) 
by parts. The following recurrence relation is obtained: 

X n /n!=X n- . i / (n- l ) !+[(»+l) / r ( f)] 
X [ i n ( l / a ) - i n + i ( l / a ) ] , (4.8) 

where 
1 f °° yne~Uy 

An(x) = — / . (4.9) 
nl Jo x+y 

The integral X0 can be evaluated in the same way: 

Ao=( l+ l /a ) i4 0 ( l / a ) - l . (4.10) 

The integrals An(x) have been studied and tabulated 
by Dingle et alu The screening constant a is usually 
large, and in the present application an expansion of 
the An(l/a) to order or2 was used. The expansions are 
collected here for reference: 

r(f)Xo= ( l+2/a+3/2a 2)( lna~C)~l 

+ l/a+3/4a2 , 

r ( f )X 1 =(l-3/2a 2 ) ( lna-C)+2/a-5/4a 2
J 

( l /2!)r(f)X 2=(ln(z-C)+|+l /a-7/4a 2 , 

constant relaxation time 
z= 1.5 
z-- 3.0 

FIG. 1. The conductivity <r±/<ro in the 3rd-order variational 
approximation as a function of v±— (w±wc)ref{ for pure polar 
scattering and two values of z=-ftwop/&r. The curve for a constant 
relaxation time is also shown. 

where 

and 
Dr8=dr9-\-R\r+s, 

R=pLtn*/\e\rQ. 

(4.13) 

(4.14) 

The parameter R is a measure of the ratio of polar to 
impurity mobility. The matrix elements of M, 0, and 
X are given by 

where 

MrS=-~o>c(m*n/h2)rrs, 

Qrs=uo(m*n/h2)rr8, 

Xr= (en/h) ST r0, 

Tr.= T(r+s+i)/r(i). 

(4.15) 

Xn Xn—1 1 r i 
(4.11) 

nl ( » - l ) ! r(f) 

3 

a2n(n~ \){n— 2) 

n a(n—\)n 

(n>2). 

In the above, C is Euler's constant, 0.577216. 
The total scattering matrix element Lr8 is given by 

adding Eqs. (4.2) and (4.6): 

LrS = Lrs^+Lrs^= (ne/h2fl)Drs, (4.12) 

(4.16) 

The formulas (4.12) and (4.15) for the matrix elements 
are to be substituted in the general expression (3.7). 
The result may be expressed in the form 

*±w = n\e\pF™(z,Y£, (4.17) 

FW(zyY±) = Y,rs r0r(D+iY±T)rr
lT80> (4.18) 

Y±=tn*H(<a±(ac)/\e\. (4.19) 

The result may be written in a neater form if the 
matrix v is introduced : 

where 

and 

v=T-lD+Y±*D-lr. (4.20) 

13 H. Brooks, Advan. Electron. Electron Phys. 7, 156 (1955) 

144 f l957) D i n g l e ' D* A m d t ' a n d S ' K" R ° y ' A p p L S c L R e s ' ^ 6 ' 

Then by splitting Eq. (4.18) into real and imaginary 
parts, using Eq. (3.6), one finds 

F^(zyY±) = [Tp~^oo+iY±lTp^D-^T2oo. (4.21) 

If this result is compared with the formulas for Fc{z,Y) 



H I G H - F R E Q U E N C Y T R A N S P O R T P R O B L E M S IN S O L I D S A 349 

and FH(z,Y) given in Eq. (41) of I, Eq. (2.20) follows 
immediately. 

The frequency- and magnetic-field-dependent dielec­
tric function is defined by Eq. (2.21), which for cir­
cularly polarized radiation may be written 

Hence 

where 

€jtz= €o— (4?ri/a>)o~±. 

e ± W = € 0 [ l - * i j F ^ ( » , F ± ) ] , 

rj = 4:7m\e\ii/e(p>. 

(4.22) 

(4.23) 

The refractive and absorption indices N± and K± are 
then defined by 

(N±-iK±y=<±. (4.24) 

Thus knowledge of the function FiN) is all that is 
needed to evaluate the free-carrier magneto-optical 
properties of a polar semiconductor. 

5. RESULTS 

The function F(N)(z,Y), and the optical constants 
N± and K±t were calculated for z— 3.77 (77°K assuming 
an Einstein temperature for the optical phonons of 
290°K, which is appropriate for InSb), and for a few 
typical values of R and rj. In addition, Fm(z,Y) was 
computed for pure polar scattering (i?=0) for various 
temperatures. The calculations were carried to 3rd 
order (using 4X4 matrices). 

Figures 1 and 2 show the real and imaginary parts of 
<r±w/<r0

i3) = FW(z,Y)/FW(z,Q) as functions of v±, where 

P±=Y±F<n(3S,O)=(<a±(0e)TM (3) (5.1) 

mixed scattering , 
R*I.OO, a*34.4 t i *5 .77. 

relaxation time, T* const. 
relaxation time , r«cE* 

FIG. 2. The conductivity <T±/<TQ in the 3rd-order variational 
approximation as a function of v±=(w±wc)reff for mixed polar-
phonon and ionized-impurity scattering with parameters (corre­
sponding to w-InSb at 77 °K) as shown. Curves for constant relaxa­
tion time and for impurity scattering alone (?<*&**) are also 
shown. 

0.9L 

O.a-

0 7 

} 
0 

~ ?\ " 

1 

1 
1 

2 

p*0 j 

Brti J 

0 

polar phonon 

ps+f" 

2 1 
i 4 

Z**c^AT 

FIG. 3. The half-width J>I/2, the value of p± at which Re<r±=icro, 
as a function of z for pure polar scattering. Values for various 
energy-dependent relaxation times are also shown (broken lines), 
and the single point at z=3.77 is the value for mixed polar optical 
and impurity scattering for 2? = 1.00, a = 34.4. 

Here reff
(JV) is an effective relaxation time chosen to 

give the TVth-order dc conductivity CT0
(N) : 

«<*>=(^/w*)r.ff<*>. aV (5.2) 

Figure 1 shows the results for pure polar scattering, 
together with the standard Lorentzian curve obtained 
for a constant relaxation time. The curves show the 
kind of deviation from the Lorentzian shape which 
occurs, but for clarity results are plotted for only two 
values of 2. 

The departures from the Lorentzian curve are due 
to the dispersive nature of the scattering mechanism. 
A measure of this effect is given by PI/2, the value of v± 

at which (x±=^a0; for a constant relaxation time vyi 
is 1, but for any other scattering mechanism it is less 
than 1. It is clear from Fig. 1 that for polar scattering 
i>i/2 is a function of temperature, and it is plotted on 
Fig. 3 as a function of z. The form of this curve between 
2 = | and 2=1 is suggested by the fact that, at small 
values of 2, polar scattering behaves like a positive dis­
persive mechanism (in the limit z —> 0 it can be repre­
sented by a relaxation time T<*E112), while for z>\ it 
behaves like a negative dispersive mechanism. This 
change of behavior is most clearly revealed by warm-
carrier effects.15 There should therefore be an intermediate 
temperature at which the mechanism shows no dispersion, 
though since a relaxation time does not exist, the precise 
temperature at which this happens may depend on the 
phenomenon considered. The form of the curve on 
Fig. 3 is very similar to the variation of the ratio MH/MC 
with 2, studied in I, where /x#, i*c are the Hall and 
conductivity mobilities, respectively. This ratio is 
another measure of dispersive effects. Figure 3 also 

15 D. Matz and F. Garcia-Moliner, Phys. Status Solidi 7, 205 
(1964). 
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H (gauss) 

FIG. 4. Faraday rotation as a function of magnetic field H for 
mixed polar and impurity scattering (3rd-order variational 
approximation) at z = 3.77 with parameters as shown. The broken 
lines are high-field asymptotes, Ho is the cyclotron resonance 
field mcoo/\e\. 

shows the values of PI/2 for various relaxation times 
r oc Ep; in these cases PI/2 is independent of temperature. 

Figure 2 shows the variations of cr±/ao with v± for 
mixed polar optical and impurity scattering at s = 3.77. 
The value of R is 1.00 and the screening constant 
a=34.4. A calculation with i?=0.18, a=600 gave an 
almost identical curve. The value of vm for this curve 
is also shown on Fig. 3. The curves for a constant 
relaxation time and for roc£3/2, which represents 
impurity scattering alone, are also plotted on Fig. 2. 
The mixed scattering curve shows less dispersion than 
either pure polar scattering or impurity scattering; this 
is clearly the result of combining a positive and a 
negative dispersive mechanism. 

Note that the real part of <r±/ao, plotted on Figs. 1 
and 2, gives the absorption in a cyclotron resonance 
experiment with a circularly polarized electric field; 
in this case VHI/TQH is the half-width of the resonance 
line. The very small values of reff encountered at the 
temperatures considered here would, of course, make 
this very difficult to observe. Note also that the sum 
rule (2.13) leads to an interesting relation, if Eqs. (5.1) 
and (5.2) are used: 

Jo 2 
(5.3) 

jR = 0.18, a = 600, 77 = 6.71. These values correspond 
to w-InSb with w=1.23Xl01 5 and 6X1013 carriers 
cm-"3, respectively, at a frequency of 35 Gc/sec. The 
corresponding values of a>reff are 0.306 and 0.690, 
respectively. 

At high fields such that cocreff is very much greater 
than either coreff, 1, or the loss parameter /=47rcro/w€o, 
the Faraday rotation approaches the limiting value 

Thus the area under all the curves of Re(<r±/<ro) shown 
on Figs. 1 and 2 is the same. 

Figures 4 and 5 show the Faraday rotation 0 and the 
ellipticity d as a function of magnetic field, calculated 
from the formulas 

0=(N--N+)at/2c, 

5= tanh[(i^+- i^_)^/2c], 
(5.4) 

lim//_>oo(0/O = 27rne/H\/eo. (5.5) 

This limit, which is independent of scattering mechan­
isms, is also shown on Fig. 4. The values of l=r}F{z) (2,0) 
are 110 and 11.9 for the two samples, so both are very 
lossy and the high-field limit is not reached until the 
field is much greater than that at which the rotation is 
a maximum. The ellipticity also shows the typical 
behavior of lossy samples with small a>reff. Figure 5 
may be compared with curves given by Furdyna and 
B rod win16 for various scattering mechanisms rep­
resented by a relaxation time r^Ev. Their curves are 
for co(r)=0.55 and /=3 .9 , and have the qualitative 
features of the purer sample of Fig. 5. 

Since the Faraday ellipticity is particularly sensitive 
to the nature of the scattering mechanism,16 experi­
mental measurement of this quantity as a function of 
magnetic field in the microwave region can, in principle, 
give useful information. Unfortunately, the theoretical 
expressions are quite complicated, and the only way 
information can be obtained from the results is to 
make a detailed comparison between theory and 
experiment. The three theoretical parameters Ry r?, and a 

where t is the thickness of the sample. The values of 
the parameters are 2?= 1.00, a =34.4, 77= 139; and 

H (gauss) 

FIG. 5. Faraday ellipticity as a function of magnetic field H for 
mixed polar and impurity scattering (3rd-order variational 
approximation) at z = 3.77 with parameters as shown. HQ is the 
cyclotron resonance field mcoj/\e\. 

16 J. K. Furdyna and M. E. Brodwin, Phys. Rev. 124, 740 
(1961). 
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are functions of carrier or impurity concentration, as 
well as the effective mass of the carriers and the 
dielectric constants es and e^. Thus it seems little 
information can be obtained by this method unless 
quite a lot is already known about the material. 

The calculations presented here were made for values 
of the parameters corresponding to two particular 
samples of w-InSb. However, if computing facilities 
are available, it is not difficult to repeat them for other 
values of R, 17, and a. The experiment can provide a 
valuable check on hypotheses as to the nature of the 
scattering mechanisms in a material, especially if the 
relevant parameters are known or can be estimated, for 
then detailed calculations can be made and compared 
with the experimental results. Good agreement would 
be a positive confirmation of the hypothesis. It would 
also be possible to determine the values of the param­
eters by calculating a family of curves, and choosing 
the one which gives the best agreement. If the hypo­
thetical scattering mechanisms are polar optical and 
impurity scattering, the theory presented in Sec. 4 is 
directly applicable. The most suitable materials at the 
present time seem to be the III-V compounds, such as 
w-InSb or w-GaAs, for in many of these materials 
these two scattering mechanisms are thought to 
dominate between 77°K and room temperature. 

6. CONCLUSIONS 

It is well known that the variational principle has an 
appealing physical meaning for M=Q=0, in that it 
maximizes the entropy production, and also that it has 
the practical advantage of maximizing the conductivity. 
Variational principles for the cases when M or 12 are 
present have been devised by several authors, and 
some of these methods are, in principle, extremal. 
However, Bailyn's method7 in the end gives the same 
results as the simpler principle, Eq. (2.8), unless care 
is taken that the various stages of the calculation 
converge independently. This requirement of independ­
ent convergence of the "internal" calculations may 
amount to a considerable complication in practice. 
Blount's method6 includes Bailyn's as a special case, and 
it is also possible to derive the equations (2.11), used 
in this paper, from Blount's variational principle. This 
argument shows that for a given set of X trial functions, 
Eqs. (2.11) maximize the expression for the conductivity, 
but it does not guarantee monotonic convergence to 
the exact value as X is increased. Since a principle 
which maximizes the conductivity at all frequencies and 
magnetic fields is inconsistent with the sum rule Eq. 
(2.13) this is probably the best one can do. 

More difficult and important in practice is the 
choice of suitable trial functions. In the present calcula­
tion, a power-series expansion in the carrier energy 
gives good convergence at low and high temperatures, 
but the convergence is slower at intermediate tempera­
tures,3 say 1<2<5. The use of Sonine polynomials 

makes the matrices M and 0 diagonal, but it gives the 
same results as simple powers. In the theory of metals an 
expansion in powers of (E— f), where f is the Fermi 
energy, seems to give good convergence, and in an­
isotropic materials expansions in spherical harmonics 
suggest themselves. But the general problem of choosing 
the "best" trial functions would be well worth further 
study. 

Measurements of the microwave Faraday ellipticity 
as a function of magnetic field can give useful informa­
tion on the scattering mechanisms in the material, if 
supported by theoretical calculations. The theory 
presented in this paper is directly applicable to materials 
in which the dominant mechanisms are polar optical 
and impurity scattering, and it is suggested that 
measurements on the III-V compounds would be 
interesting. 
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APPENDIX 

It was asserted in Sec. 2 that the sum rule Eq. (2.13) 
satisfied by the exact conductivity components is also 
satisfied by the i\7th-order variational approximation. 
This will now be proved starting from the expression 
(3.8) for *<*>(«): 

. ^ ^ - ^ A M L + O ) , - 1 ! , (Al) 
ra=0 

This expression was obtained using the trial functions 
(3.2) and assuming either isotropy or cubic symmetry 
with H along a threefold or fourfold axis. In Eq. (3.2) 
it is convenient here to replace (k*u) by (v»u), but the 
\f/r(E) will be left unspecified. We then find 

(l/iw)Qr,=Kr,, (A2) 
where 

Krs= - I(vu)hl,r(E)4,s(E)(dfo/dE)dk. (A3) 

If the trial functions are chosen so that \f/o(E) = 1, then 

Xr=e6Kro. (A4) 

Substituting in (Al), one finds 

aW^fZKlL+iuK^Klw. (AS) 

Both L and K are Hermitian and positive definite. 
This property of K follows because we know that its 
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eigenvalues are all real and positive; for an isotropic t 
parabolic band the eigenfunctions of K are Sonine c 
polynomials and the eigenvalues are nyr/m*, with yr 

given by Eq. (3.13). c 
In the limit w —»°°, ! 

i 
( r W - > - i ( ^ / c o ) ^ o o . (A6) 

The meaning of K0o can be found by considering the dc 
conductivity under a scattering mechanism represented 
by a constant relaxation time. Under these conditions, ] 

from Eq. (3.22), ] 
ao=e2rKoo. (A7) ' 

Hence * 
Kw=n/m*9 (A8) j 

where m* is the effective mass determining the conduc-

I. INTRODUCTION 

RECOMBINATION radiation of quantum energy 
close to the indirect energy gap, Eg = 5.S eV, of 

natural semiconducting diamond (type l i b ) 1 has al­
ready been discussed.2 Comparisons of results obtained 
from the latest edge-emission spectra with the lattice-
vibrational dispersion curves recently measured by the 
inelastic scattering of slow neutrons3 shows that the 

1 C. D. Clark, R. W. Ditchburn, and H. B. Dyer, Proc. Roy. 
Soc. (London) A234, 363 (1956). The classification of natural 
diamonds by absorption spectra is discussed in this reference. 

2 P. J. Dean and I. H. Jones, Phys. Rev. 133, A1698 (1964). 
3 J. L. Warren, R. G. Wenzel, and J. L. Yarnell, Phys. Rev. 

(to be published). 
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tivity. A general expression for m* is obtained by 
comparing Eqs. (A8) and (A3). 

The poles of a(N\ regarded as a function of the 
complex variable co, are the zeros of the determinant 
| L-\- iuK |, as all the matrix elements of L and K are 
finite. Consider the equation 

\L-\K\=Q. (A9) 

Because L and K are Hermitian and positive definite 
it follows that all the roots X are real and positive. The 
poles of Eq. (A5) are then given by Eq. (A9) with 
X= — io>. Hence a(N} is analytic in the lower half of the 
a? plane, like the exact solution a. By integration round 
an infinite semicircular contour closed round the lower 
half plane, using Eqs. (A6) and (A8), the sum rule 
(2.13) is obtained. 

previous interpretation must be revised. The present 
paper shows that a very satisfactory description of the 
indirect gap transitions is obtained using the new 
lattice-dispersion data. The diamond spectra prove to 
be remarkably similar to the well-known recombination-
radiation spectra of silicon,4 the main differences arising 
from the very small spin-orbit valence-band splitting 
and the more compact wave functions for the elec­
tronic complexes in diamond. 

In the previous work, edge emission from insulating 
General Electric synthetic diamonds was looked for 

4 J. R. Haynes, M. Lax, and W. F. Flood, J. Phys. Chem. 
Solids 8, 392 (1959). 
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Intrinsic and Extrinsic Recombination Radiation from Natural and 
Synthetic Aluminum-Doped Diamond 

P. J. DEAN, E. C. LIGHTOWLERS, AND D. R. WIGHT 

Wheatstone Laboratory, King's College, London, England 
(Received 3 May 1965) 

The edge-recombination-radiation spectrum from natural semiconducting diamond has been re-examined 
and compared with spectra obtained for the first time from aluminum and nominally boron-doped General 
Electric synthetic diamond. The intrinsic components are due to the phonon-assisted decay of free indirect 
excitons of internal binding energy ^0.08 eV. Comparison of the phonon energies with recently obtained 
dispersion curves for the fundamental lattice vibrations shows that the conduction-band minima are located 
at points f of the way from the center to the (100) boundaries of the reduced zone. Substructure has been 
observed in the intrinsic components due to the ~7-meV spin-orbit splitting in the valence-band energy 
states at the zone center. The major extrinsic components are due to the zero-phonon and phonon-assisted 
decay of excitons bound to a characteristic acceptor center of semiconducting diamond (£^ = 0.36 eV). The 
bound excitons have a thermal and optical ionization energy of ~ 5 0 meV. These extrinsic components 
exhibit enhanced spin-orbit splitting (^12 meV). Radiation due to the zero-phonon and phonon-assisted 
recombination of free electrons at the neutral acceptor center has been detected. Infrared absorption meas­
urements, neutron-activation analysis, and electrical-transport (Hall-eflect) measurements have also been 
made. Intercomparison of these results and the edge-emission data shows that the acceptor center is due to 
isolated substitutional aluminum impurities. These acceptor centers are considerably more abundant in the 
synthetic diamonds, but the degree of compensation is generally much higher than in the available natural 
semiconducting specimens. Nitrogen donors with very deep energy levels apparently play a major role in the 
compensation. 


