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The first- and second-order electric moments of crystals having the homopolar structures of the diamond, 
zinc blende, and wurtzite types are treated on the basis of formal results obtained previously. This formal 
analysis is first reformulated in terms of localized functions closely related to Wannier functions so that 
(a) the electrons in a crystal may be treated more realistically and (b) the existing theoretical work for un
perturbed lattices may be more readily applied. The magnitude of the second-order moments of one-dimen
sional analogs of germanium and silicon is shown to be smaller than those previously calculated for ionic 
crystals if the same anharmonicity is present. The corresponding moments of diamond itself are comparable 
with those of ionic crystals. The first-order moment calculation for the zinc blende and wurtzite cases demon
strates how the valence electrons tend to follow the anionic nucleus rather than the cation. Because of the 
lack of inversion symmetry present in these compound crystals, the second-order moment coefficients are 
different from those of the diamond-like crystals and are appreciably greater in magnitude than those in 
ionic crystals. From the magnitude of the second-order moments in diamond-like crystals, a crude estimate 
of the perfection necessary for the intrinsic second-order moment to make the dominant contribution to 
infrared absorption is made. This agrees well with existing experimental results. The results for the second-
order moments of the zinc blende and wurtzite structures show that, in contrast with the results for the 
alkali halides, the second-order moment contribution to two-phonon absorption is comparable with the 
direct anharmonic contribution. 

I. INTRODUCTION 

IN an earlier article,1 hereafter referred to as I, it 
was shown, by means of a calculation based on a 

one-dimensional analog, that the second-order dipole 
moment of the alkali-halide type of crystal is relatively 
small and thus that the second-order moment contribu
tion to two-phonon infrared absorption is small com
pared with the direct anharmonic contribution. It is 
the purpose of the present article to report calculations 
of the first- and second-order moments of the other 
important class of simple nonmetallic crystals, those 
with the predominately homopolar diamond, zinc 
blende, and wurtzite structures. 

The magnitude of the second-order moments in these 
crystals is of considerable interest, mainly because it 
determines the relative contributions of second-order 
moment and anharmonicity mechanisms to the broaden
ing of the fundamental lattice absorption line in the 
zinc blende and wurtzite structures2-3 and to two-
phonon absorption, generally. In the case of crystals 
with the diamond structure, the inversion symmetry 
present causes the first-order moment to vanish2 and 
thus it becomes necessary to estimate how perfect such 
a crystal must be before the intrinsic second-order 
moment contribution to absorption dominates that due 
to the extrinsic first-order moment induced by strains, 
impurities, and other defects which remove the inversion 
symmetry locally. In the previous article, I, it was shown 
that the second-order moments of general crystals arise 
from anharmonicity (cubic anharmonicity, in particu
lar). This purely formal result is sufficient to show that 
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arguments regarding the relative contributions to two-
phonon absorption in homopolar compound crystals 
which are based on estimates of the anharmonicity pres
ent3 are invalid. In actual fact, it was tentatively sug
gested on the basis of the alkali halide results in I that 
the anharmonic and second-order moment effects are 
probably comparable in the more covalent solids. This 
suggestion was necessarily tentative since the model 
chosen for the alkali halides involved the shell-model 
approximation to the ions. While this is a fairly reason
able first approximation to the ions in very ionic solids, 
it is likely to be too crude for predominately covalent 
crystals where valence-electrons exchange effects are of 
considerable importance. It is necessary to treat the 
valence electrons of these crystals in a more realistic 
manner from the outset. 

In the next section of this article, we review and re
cast the formal results obtained in I in terms of localized 
one-electron functions so that the electrons may be 
treated in greater detail. The third section is devoted 
to the discussion and calculation of the second-order 
moments of diamond-like crystals, which form a dis
tinctly different class of solid, owing to the inversion 
symmetry present. The fourth section consists of a 
calculations of the first- and second-order moments of 
crystals of the zinc blende and wurtzite type. Although 
the formulation of Sec. II is quite general, the actual 
calculations are based on one-dimensional analogs of the 
real three-dimensional crystals. 

II. THE DIPOLE MOMENT FORMALISM 
IN TERMS OF LOCALIZED ONE-

ELECTRON FUNCTIONS 

The formalism developed in I is based on the Born-
Oppenheimer approximation and defined in terms of a 
general many-electron function. It involves the use of 
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electron displacement variables, formally defined in I as 

v(i,/) = y*[^(x,r)r(i,/).4>(x,r) 

-<D*(x0,r)r(i,0-<J>(xo,r)]^r, 

where t(j,l) is the position vector of the jth. electron 
in the /th unit cell, the x and r represent the nuclear and 
electronic position vectors, respectively, and <i>(x,r) is 
the many-electron state function for the electrons in 
the distorted crystal. The $(xo,r) is the many-electron-
state function for the crystal in its undistorted, equi
librium condition. Thus v is the displacement of the 
average position of an electron in the distorted crystal 
from its average position when the lattice is in its 
equilibrium state. 

This definition in terms of the many-electron wave 
function is inconvenient if the electrons are to be con
sidered in detail since any use of existing theoretical 
results will inevitably involve functions of the one-
electron approximation. Furthermore, the electron 
labeling system could be improved since it is more con
venient to associate an occupied electron state in non-
metallic crystals with a particular nucleus. We obviously 
wish to redefine the problem in terms of one-electron 
functions. The eigenfunctions^s(k,r) of the one-electron 
Hamiltonian of the equilibrium crystal are periodic 
functions and not really suitable for the present prob
lem, which involves localized perturbations due to atomic 
displacements. A more suitable set of functions belong
ing to the equilibrium lattice are the localized Wannier 
functions centered around the equilibrium nuclear 
positions: 

Q1/2 r 
a s ( r - x i 0 ) = / * , ( k , r ) e r * - * / o ^ 

J zone 

where s is a band index, 12 is the unit cell volume, and 
XJQ is the position vector of the jth. nucleus. The inte
gration is over one Brillouin zone. We note that we now 
have a more convenient labeling of the electrons: The 
nuclei are labeled by j and the electrons by j and s. 
There is one electron per occupied Wannier state. We 
can now define the electronic displacement variables by 

v«>= / [<^*(r-x;o)-r-<^(r-x j 0 ) 

— a,*(r—xi0)*r«a,(r—xy0)]dV, (1) 

where ^>a(r—xyo) is the localized function, derived from 
the Wannier function as(t—xyo), and perturbed by the 
nuclear displacements. The band index J is not a good 
quantum number for the distorted crystal but is retained 
as a label to demonstrate the Wannier function to which 
<p tends as the perturbation vanishes. 

The first-order dipole moment coefficient is thus1 

/dv8ja\ 
ma^(k) = eZk'8a(i-eZ[ ) , (2) 

where a, ($ are Cartesian coordinate labels, Uk=Xk—X*0 

(i.e., the nuclear displacement), Zk is the atomic num
ber of the &th nucleus. The sum over s is a sum over 
occupied states and the derivatives are evaluated at 
"0 , " the lattice equilibrium condition. The labeling 
tends to become inordinately clumsy if the coordinate 
label is retained. We therefore adopt the same conven
tion used in I and include the coordinate label in the 
nuclear label. In this case 

where a/**= (dvsj/dUk)o and the summation over j does 
not include a sum over the corresponding coordinate 
label. I t was shown in I that, using the new notation, 

where pikl~ (dFti/dUk)o if FH is a component of the force 
on the (t,i) electron, defined in terms of the one-electron 
functions by 

?ti=-(W)ti=- <pt*(r-xi0)'VV(r)' <pt(r-xi0)d
zr, 

if V(t) is the total potential energy, including exchange 
terms. The erf1 are most conveniently considered as 
forming a matrix E which is the inverse of a matrix B 
which has components 

-bijts=-(dFti/dvsj)0. 

The formal expression [Eq. (7) of I ] for mi^(k,l), the 
second-order coefficient, is now 

9fn<2> (&,/) = - e £ (dhsj/dukdui)0 

= -e £ t]ist' lqikil-{-rikm
tvamiv 

i,i,m,n\ s,t,vrw 

ilm U"mk V+Cimntvwamk
vani^, (3) 

where, again, the sum over j does not include the sum 
over the corresponding coordinate label; the coefficients 
are defined 

qikit== (d2Fti/dukdui)o, 

rikmtv= {d2Fti/dukdvvm)<s, 
Cimntvw=(d2Fti/dvvmdvwn)0. 

The s, ty v, w are band labels and i, j , m, n are nuclear 
labels. 

I t is convenient to simplify Eq. (3) slightly: 

3ft (2)(£,0= £ (Qki+Rkm
vamlv+Rlm

vamk
v 

m,n; v,w 

+Cmn
vwamk

vani"), (4) 
where 

Qki=-e £ eji'tqiki1, Rkm
v=-e £ ^ W p , 

C VW p V * p . 8 t r . tVW 

i,j; s,t 
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and the coordinate label is excluded from the sum over j . 
We note that the q, r, c coefficients are not all 

independent, even if no symmetry is present. The re
quirement that the force on an electron be invariant 
under an arbitrary displacement of the whole lattice 
[i.e., F,»(u,v) = F , t (u+d , v + d ) ] gives rise to the 
conditions 

Z(cijk*tv+rijk«
v) = Oy 

Furthermore, the ##** and cijk
atv are coefficients of a 

quadratic form and are thus symmetrical: 

&ijk = Cikj j Qijk = Qihj • 

These requirements give rise to the conditions 

j ' , t k,v 

and 
C V ' = C * / ' ; QJk=Qkj. (5) 

We also note that the requirement that the electron 
displacements also change by d if all the nuclei are 
shifted by this vector, gives rise to the useful sum rule 

XL <**•=!. (6) 

III. SECOND-ORDER MOMENTS OF CRYSTALS 
OF THE DIAMOND TYPE 

The most important difference, from the point of 
view of the dipole moment, between diamond-like 
crystals and the alkali halides, and zinc blende and 
wurtzite crystals is the inversion symmetry present. 
The zinc blende and wurtzite crystal type has no in
version symmetry (see Fig. 1), of course, and that ex
hibited by the diamond structure is quite different from 
that present in the rock-salt type. In the latter case, an 
inversion operation couples atoms on the same sublattice 
(Fig. 1), but, in the diamond structure, atoms on the 
two different sublattices are coupled by inversion (Figs. 
1 and 2). This difference gives rise to quite different 

O o O o O o 
(o) ROCKSALT STRUCTURE 

o o o o o o 
2n I 2 3 4 

(b) DIAMOND STRUCTURE 

O o O o O o 
2n I 2 3 4 

(c) ZINC BLENDE 8 WURTZITE STRUCTURES 

FIG. 1. One-dimensional analogs of the three types of simple non-
metallic crystal, demonstrating their inversion symmetry. 

[HI] 

(a) 

oo oo oo <« 
2n I 2 3 4 5 

FIG. 2. Three- and one-dimensional models of the diamond type 
of crystal (a) view (approximately along (112) direction) of part 
of the three-dimensional model, (b) the corresponding one-dimen
sional analog. 

conditions on the dipole moment coefficients, as Lax 
and Burstein have shown.2 For example, in the dia
mond structure, the first-order coefficients vanish and 
9fR<2>(l,2) = 0, 9fr2)(l,l)=-9TC<2)(2,2) where 1, 2 refer 
to atoms on the two different sublattices of a one-
dimensional analog of the real crystal.2 The remainder 
of the present work is also based on essentially one-
dimensional models. The one-dimensional model of the 
diamond lattice on which the present calculations are 
based is shown in Fig. 2 together with a view of part of 
the three-dimensional model so that the relationship 
between them is apparent. We note that the points in 
the one-dimensional lattice correspond to planes in the 
three-dimensional system and that atoms labeled 1 and 
3 are nonequivalent nearest neighbors of atom 2. The 
inversion symmetry present in the three-dimensional 
structure is plainly visible in the one-dimensional 
model. 

Lax and Burstein have shown2 that a combination of 
inversion symmetry requirements and the condition 
that the dipole moment is invariant under displace
ments of the whole lattice gives rise to the approximate 
relationship 

arc <« ( i , i ) =—29ii;<2> (1,3) 

if the coefficients 9TZ(2)(1,5), etc., are small. This result 
will be useful in computing the coefficient 9Tl(2)(l,l) 
since the direct calculation involves an appreciable 
number of canceling terms. However, we must first 
examine the validity of this approximation. The an-
harmonic coefficients C12, C W , CU will be comparable 
while Cn etc., will be very much smaller since changes 
in the second-nearest-neighbor interactions are largely 
dipolar in nature and thus much less anharmonic than 
the nearest-neighbor interactions, which involve large 
exchange and orthogonality effects. The largest term 
in 9E(2)(1,5) will thus be of order C3403i#45 (i-e-> of order 
Ci2#3i#23) since a;,t-+r decreases as r increases. Similarly, 

k.v 
0=0. 
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the largest term in 3Tl(2)(l,3) is of order Cyidwam and 
thus the Lax and Burstein approximation rests on the 
inequality a 3 i « « n . Now a3i is the electronic displace
ment induced on atom 3 by a displacement of nucleus 1. 
We can define harmonic coefficients kst, k'st

y k\s for the 
force constants between electrons on 1 and 2, between 
electrons on 2 and 3, and between an electron and its 
nucleus, respectively. Using similar reasoning to that 
used in I, we find that a n ~ l and azi~kkf/ki2 if 
&i»&, k'. The Lax and Burstein approximation is obvi
ously valid when ky &'«&i. Now k\ can be related to the 
electronic polarizability, ae, and k, k' to the elastic con
stants en and ci2. In the case of the alkali halides, it was 
shown in I that the cu and ae values were such that the 
approximation k<Kki was a very good one. In the case 
of silicon and germanium, the refractive indices and 
cu, cu values are such that the approximation &, 
kf<£ki is not unreasonble, although not as good as in 
the case of the ionic crystals in I. In diamond, however, 
the elastic constants are so large that k, kf, k\ are all 
comparable. Thus the Lax and Burstein approximation 
is valid for silicon and germanium but probably invalid 
for diamond itself. We shall therefore postpone consider
ation of the case of diamond until later. I t is of interest to 
note in passing that these considerations show why the 
Born relation4 between the elastic constants fails for 
diamond although it is very good for germanium and 
silicon. The Born relation is based on nearest-neighbor 
interactions only and obviously requires a3 i«L 

The inversion symmetry present in this type of crystal 
also imposes conditions on other coefficients. For 
example, 

cmrst= -c222rst and cn2rst= -c2ii
r8t, 

which leads to the condition 

Similarly, 

cti2r8t=ci2irt8= -c22irst so that Ci28t= ~C2i
st. 

Because of Eqs. (5), we have 

Cust=-C2ist=-C2l
ts. 

In the same way, we can show that 

#i i*= -R228 and Ru8= - i ? 2 i s , etc. 

We can now proceed with the calculation of 9TT(2)(1,3), 
which is 

3TZ<2>(1,3)= E (Qn+Rim
aamzs+Rsm

8aml* 
rn,n;8,t 

+Cmn
8tami8anZ

t). 

We note that Qn involves second-nearest-neighbor 
anharmonicity which will be small, even in diamond, 
as we discussed previously. For the same reasons, coef-
ficients such as ^13 will also be negligible. Furthermore, 

4 See, for example, H. B. Huntington, Solid State Physics 
(Academic Press Inc., 1958), Vol. 7, p. 299. 

Cu and C12 are likely to be comparable while an is 
appreciably smaller than an for silicon and germanium. 
Thus, to a fairly good approximation, 

s,t 

= L (Ri2sai2Ns+Ri2Nsans 

+C2Ni8tai2sa1i
t+Ci2stai1

sanNt), 

where we have used the translational invariance proper
ties of the lattice and the fact that ai28=a2is because of 
inversion symmetry. 

Now, for germanium and silicon, an8<^ans<^l so 
that, using the sum rule (6), we have a n * ~ l . Thus, we 
have the approximate results 

9 » l ( 2 ) ( M ) ^ E L(Ri2N8-Ci2N8t)ans 

s,t 

+ (tfi28-CV)ai2.v8] (7) 
and 

3tt<2) (1,1) = 2 E [ ( C W - i W ) < * i 2 8 

s,t 

+ (Cn8t-Ri28)a12N
8~]. (8) 

IV. FIRST- AND SECOND-ORDER MOMENTS 
OF CRYSTALS OF THE ZINC BLENDE 

AND WURTZITE TYPES 

The lack of inversion symmetry in this type of struc
ture, which is partly ionic, means that there are no 
conditions which cause any of the moment coefficients 
to vanish. There are, however, a number of conditions 
imposed by general invariance requirements such as 
those given in Sec. II . The condition of the first-order 
moment coefficients 

2fTr(i)(l)== _3rTr<i)(2) 

is another general condition due to the invariance of the 
dipole moment under lattice displacements2 (i.e., be
cause of neutrality). 

We shall assume that the core electrons are suf
ficiently well bound to their nucleus that their contribu
tion to the dipole moment is just that due to their 
moving fully with the nucleus. We take " 1 " as referring 
to the cation sublattice and " 2 " to the anions. Thus, 

OT<»(l) = e [ l - L 0 ; i ' ] , 

where s = l , 2, 3, 4, ranging over the valence electrons. 
If we utilize the sum rule (6) and, initially, ignore 
terms of higher order than #21* and an8, 

mi^ ( l ) - e [ - 1 + Z (al2
s-a2is)+(al2N

s-ci2Nis)l. 
s 

But the effective charge on the cation in these crystals 
is positive and thus we see that aus>\. In other words, 
the electrons in the valence Wannier states centered 
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about the cations respond strongly to movements of 
the neighboring anion. This effect, quite different from 
the case of silicon and germanium, reflects the fact 
that the valence charge density is concentrated near 
the anion nuclei. Thus we see that the (harmonic) 
interaction between the cation nucleus and its Wannier 
valence electrons is roughly comparable with that be
tween the Wannier states belonging to the neighboring 
nuclei; in other words, k~k\. I t is reasonable to assume 
that the interaction between the valence electrons of 
the anion and the anion nucleus is much larger. I t is, 
indeed, necessary to make this assumption since other
wise the electronic polarizability and refractive index 
would be much larger than the experimental values. 
Thus we have k, k'~&i<3C&2 and thus we expect a2i*<^l. 
Because ana is relatively large, it is necessary to examine 
the magnitude of an*; however, it is obvious that the 
condition k£>>k, kr ensures that this term will be small. 
Thus, to a reasonable first approximation, 

grew(1) = e[_~l+£(ai2*+<W)]= -97l<1>(2), (9) 
8 

where the summation term is greater than unity. 
We now proceed to the calculation of the second-order 

moments. The dominant coefficient 9TT(2)(1,1) is given 
by 

gn<2 ' ( l , l)= £ ZQn+2Rim>aml°+Cmn*<aml>anl>l 
m,n; s,t 

^L(Qn+2Rn'+Cuat), (10) 
s,t 

since a%\% etc., are small compared with unity. The 
other dominant coefficient is 

91X(2)(2,2)= £ ZQ22+2R2m«am2°+Cmn*
iam2*an2q.(n) 

m,n', s,t 

In this case, there are some off-diagonal contributions 
since a i 2

a > | . The other coefficients can be calculated 
in the same way from Eq. (4). 

I t is interesting to see how the terms in expression 
(10) vanish when the inversion symmetry of the dia
mond structure is present. The dominant terms vanish 
because the general invariance requirements [Eqs. (5)] 
when coupled with the symmetry conditions, require 

e i i = L C i i " = - 2 : * i i ' , e i 2 = o . 
S,t 8 

We are then left with the next largest terms such as 
CnduauN which occur in Eq. (8). No such cancellation 
occurs for the compounds, of course. 

V. DISCUSSION 

The very different results obtained in Sees. I l l and IV 
demonstrate the importance of the presence of inversion 
symmetry as far as the first- and second-order dipole 
moments are concerned. I t is proposed to discuss these 

results in more detail at this point; this discussion is 
most conveniently carried out in separate subsections. 

1. Discussion of the Results for 
Diamond-Like Crystals 

I t can be seen from expressions (7) and (8) that the 
second-order moments are again linearly dependent on 
the anharmonic nearest-neighbor coupling coefficients 
as in the ionic crystal case reported in I. I t is instructive 
to compare the magnitudes of the second-order moment 
coefficients calculated here for diamond-like crystals 
and those determined in I for ionic crystals. In the rock-
salt case the largest coefficient was found1 to be of order 
eA/ki where A is an anharmonic coupling constant 
for the nearest-neighbor electron-electron interaction 
(other anharmonic interactions were neglected). If, for 
comparison pureposes, we include only the electron-elec
tron terms, we note1 that Cu is of order eA/(ki+k-\-kf) 
and thus the largest coefficient in germanium and silicon 
is of order eAk/ki2, which is somewhat smaller than the 
dominant term in the alkali halides for the same degree 
of anharmonicity. The case of diamond itself can be 
discussed semiquantitatively by analogy with the 
germanium and silicon results. We conclude that the 
second-order moment of diamond will be comparable 
with that calculated for ionic crystals since the ki 
values are again not very different and k^k\. 

Because of the present lack of a reliable estimate of 
the magnitude of the dipole moment induced by imper
fections, it is difficult to estimate the relative contribu
tions of the intrinsic second-order moment and the 
extrinsic moment. We can, however, obtain a crude esti
mate by assuming that the relation of the extrinsic 
moment in the diamond-like crystal to the first-order 
moment of an ionic crystal is in proportion to the rela
tive imperfection concentration. In other words, we 
get an order of magnitude estimate by taking the ex
trinsic moment as c. 9fHion, where c is the imperfection 
concentration and 3TCi0n is the first-order moment of an 
alkali halide. As in I, we use Szigeti *s treatment5 '6 of 
the different contributions to one- and two-phonon 
processes. For the intrinsic second-order moment con
tribution to two-phonon absorption to be comparable 
with the extrinsic first-order contribution to one-phonon 
absorption, we require, using Szigeti's notation, 

where co is the optical phonon frequency, ao'^91I(1)ion/M1/2j 
0^9T!(2)//z, and fi is the reduced mass of the ion pair. 

Thus, we require 

ce/nl'2~ {h/o))l^eAk/ixkx
2), 

i.e., 
c^4(h/na>a<?y/*(k/ki)2, 

if we take, as a crude estimate of the anharmonicity, 
6 B. Szigeti, Proc. Roy. Soc. (London) 252, A217 (1959). 
6B. Szigeti, Proc. Roy, Soc, (London) 258, A377 (1960). 
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A^k/ao where ao is the nearest-neighbor distance. 
Taking kz^QASki for silicon and germanium, as sug
gested by the elastic constant and refractive index 
data, we obtain a "critical" imperfection concentration 
in the order of 3.10~3, corresponding to a density of 
around 1018 cm -3 . 

The density will be somewhat higher in the case of 
diamond itself, of course. In view of the crude nature of 
this estimate, the agreement with the experimental 
results of Collins and Fan7 is good. 

I t is of interest to note that the shell model fails in a 
very obvious way in the calculation of the second-order 
moments of diamond-like crystals. Using the shell 
model, the second-order moment is very much smaller 
than the results of Eqs. (7) and (8) because there is 
further cancellation. The coefficient CnS8=0 by virtue of 
the inversion symmetry present and thus Ci2=Ci2A=0 
for the shell approximation. Furthermore, the general 
invariance requirements (5), with the inversion sym
metry, then cause the jRi2 and i?i2.v to vanish and the 
calculated second-order moment is very much smaller. 

2. Discussion of Results for Homopolar 
Compound Crystals 

The calculation of the first-order moment is of pri
mary interest because of the light it sheds on the nature 
of the harmonic interactions in these solids. The im
provement of the Wannier function model of the elec
tronic structure over the shell model is particularly 
striking in this case. For example, if we were to use the 
shell model we should have to assume an anionic charge 
of + 3 electronic units and then that the deformability 
of the anion was much more extensive than that of the 
cation, to bring the effective charge to about + | . This 
is to be constrasted with the more realistic result that 
the valence electrons actually follow the anion to a larger 
extent than the cation. We note that, for most of the 
III-V and II-VI compounds having the zinc blende and 
wurtzite structures, we can expect a i 3 « l and thus the 
Born relation between the elastic constants to hold. 
However, in view of the behavior of diamond, we can 
expect that, for some of the large band-gap III-V 
compounds such as BN, the Born relations may again 
fail because k is no longer small compared with k%. 

The second-order moment of Eq. (10) is seen to be 
quite large. We expect Cust to be in the order of 
eA/(ki+k+k') and thus 9TC<2)(1,1) is roughly the same 
(formally) as the largest second-order moment of the 
ionic crystals. Furthermore, the first-order moment is 

7 R. J. Collins and H. Y. Fan, Phys. Rev. 93, 674 (1954). 

very similar to that in the alkali halides, as we can see 
by comparing values3 of the Szigeti effective charge, 
which is closely related to the first-order coefficient. We 
follow the same arguments, based on Szigeti's work,5,6 

which were used in I to estimate the relative contribu
tions to two-phonon absorption from second-order 
moment and anharmonicity mechanisms. The ratio of 
the two Hamiltonian terms is1 

| HA/HM I - (Zeii/m (h+k + k') , 

where eZeu is the Szigeti charge and the factor 4 arises 
from the number of valence electrons. Now Zeff^4 f° r 

most of the III-V's, for example, and k,k'c^ki. Thus, 
the direct anharmonic contribution is comparable with 
the contribution from the second-order mechanism. 
The conclusions of Geick,8 based on experimental 
absorption data, are in agreement with this. This result 
is quite different from that obtained in I for very ionic 
crystals, the difference being due to the much increased 
deformability of the valence electron charge density. I t 
is instructive to consider this difference further from a 
physical viewpoint. 

The valence electrons in ionic crystals can sensibly 
be considered as belonging to the anion and are strongly 
coupled to the anionic nucelus; their interaction with 
electrons on the neighboring cations is small. Thus the 
deformability of the valence electrons is relatively small. 
In predominately covalent crystals, however, the 
charge density is not associated with any one ion (al
though it is concentrated around the anion) and 
Wannier valence states associated with neighboring 
sites interact relatively strongly via exchange. This 
electron-electron coupling is comparable with the 
coupling between the cationic Wannier states and the 
cation nucleus and thus the electronic deformability is 
appreciably greater than in the case of the very ionic 
solids. 

Burstein's qualitative arguments3 on this point agree 
with this part of the discussion and we note that the 
difference between his qualitative conclusion and the 
present quantitative result is due to the invalid argu
ment concerning the magnitude of the anharmonicity 
present. 
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