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The atomic form factor of the hydrogen atom with arbitrary initial and final states is evaluated in closed 
form using parabolic coordinates. Using this expression the cross section for excitation of the hydrogen atom 
by electron collision in the Born approximation is evaluated. The total cross sections in the energy range of 
interest for transitions between the following principal quantum numbers are tabulated: n = 1 to n' = 2, 3, 4, 
5, 6, 7, 8, 9, 10; « = 2 to »' = 3, 4, 5, 6, 7, 8; n = 3 to »' = 4, 5, 6, 7, 8; w = 4 to n' = 5, 6; n = 5 to w' = 6. In 
conclusion, a curve for the total of inelastic collisions of electrons with the hydrogen atom in its first five 
energy levels is constructed. The expression for the atomic form factor may be used in the evaluation of the 
generalized oscillator strength and in the calculation of the dispersion of x rays in atoms. 

I. INTRODUCTION carried out, and tables of cross sections with initial 

TT „ .̂  . . , , . , , states in the range of principal quantum numbers 1-5 

HE exatation cross section in hydrogen induced a n d final g t a t e s ^ ^ j ^ ^ ^ n u m b e r s 2_1 Q 

by electron collision, calculated m the Born a r g a v a i l a b l 2-10 a l t h £ h f o r ft h e r l e v e l s t h e c a l c u . 
approximation, is proportional to the squared modulus , ,. , , , . , , °, 
JTi • ; c A • i lations are only for certain substates. 

of the atomic form factor given by T , , . J
 u £ , u , .. ,, ,, . 

fe J In this paper, before tabulation, the results in para-

/
bolic coordinates are compared with those in spherical 
coordinates, and their consistency is examined. The 
calculation is then extended to higher levels, for which 

where \f/i and \pf are the initial and final eigenfunctions results in spherical coordinates are not available. All 
of the atomic electron and K is the magnitude of cross sections are listed in tables. I t is hoped that these 
momentum transfer of the incident electron. In this tables will be useful in plasma and astrophysical 
paper a closed form is found for the above expression calculations. 
when \f/{ and 1/7 are hydrogenic functions expressed in II. FORMULATION 
parabolic coordinates. Elwert1 has evaluated this ex­
pression with similar specifications, although his final 

Excitation Amplitude 

result is in differential form. Let the propagation vector of the exciting electron 
The main concern of this paper is the evaluation of before and after collision be designated by k0 and ki, and 

the cross section for electron-impact-induced excitation the states of the atom in parabolic coordinates before 
between two arbitrary levels of hydrogen, calculated and after collision by n\n^m and nin^m'. The excitation 
in the Born approximation. Up to now many such cross section in atomic units for such a collision is then 
calculations in the Born approximation have been given by11 

8TT /•*<**» dK 
Q(nin2fnJnin2/mf) = — / | F(wi«2W,wi'w2W)|2—, (1) 

= 5(fnytn')iNnin2Nni>n2> I exp — (S-v)-$(a+a)(t+rj) 

(ctn)Lnr+m
m(ari) (Z+v)d&V. (2) 

I G. Elwert, Z. Naturforsch. 10a, 361 (1955). 
2 L. Goldstein, Ann. Physik 19, 305 (1933). 
' B . M. Yavorsky, Compt. Rend. Acad. Sci. U.R.S.S. 43, 151 (1944). 
4 R. McCarroll, Proc. Phys. Soc. (London) A70, 460 (1957). Cross section for the transitions nl=ls -> «' = 2, 3, 4, 5, 6. 
6 T . J. M. Boyd, Proc. Phys. Soc. (London) 72, 523 (1958). Cross section for the transitions nl = 2s - • w' = 3, 4, 5, 6, 7, 8, 9, 10. 
6 D . McCrea and T. V. M. McKirgan, Proc. Phys. Soc. (London) 75. 235 (1960). Cross section for the transitions nlm = 2p0, 

± l - * w ' = 3, 4 ,5 , 6, 7, 8,9, 10. 
7 G. C. McCoyd, S. N. Milford, and J. J. Wahl, Phys. Rev. 119, 149 (1960). Cross section for the transitions w = 3 -> »' = 4 and 

3s -> 5/>, 3p -> Sd, 3d -* 5/. 
8 L . Fisher, S. N. Milford, and F. R. Pomilla, Phys. Rev. 119, 153 (1960). Cross section for the transitions 45 -» Sp, U-*5d, 

4d->5f,4f-+5g,4s->6p,4f->6g. 
flS. N. Milford, J. J. Morrissey, and J. H. Scanlon, Phys. Rev. 120, 1715 (1960). Cross section for the transitions 5s->6/>, 

5/> -> 6d, Sd -> 6/, 5f-+6g, 5g -> 6h. See also J. H. Scanlon and S. N. Milford, Astron. J. 134, 724 (1961). 
10 G. C. McCoyd and S. N. Milford, Phys. Rev. 130, 206 (1963). Cross section for the transitions IO5-> lip and « = 10, 1 = 9 -* 

»' = 11 , / ' = 10. 
II K. Omidvar, Phys. Rev. 140, A26 (1965), Eqs. (II.4). This report precedes the present paper and will be designated from now on as I. 
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Nmn2 is the normalization factor of the £, r? eigenfunctions given in I ; similarly, Nni'n2' is the factor corresponding 
to £', rjf. With this equation and the generating function of the associated Laguerre functions it follows that 

oo oo *> oc Snls'm,tn2t'n2' 

Z Z Z Z V(nin2tn,nin2in) 
nl=o n2=o m'=o nS'=o (ni+m) !(wi'+m) !(w2+w) !(w2'+w)! 

= / exp — ( { - i j ) - J ( a + a ' ) ( * + i ? ) 

r / a5 a 's ' \ (at at' \ "I 
Xexp - ( - + - U - ( + - U X (&)"({+»;)<*«*; 

L \ l - 5 I - 5 ' / \ 1 —/ l-t'/ J 

(3) 
4^* « i n 2 ^ n i ' n 2 ' C)U 

C ( i - i ) ( i - / ) ( i - 5 ' ) ( i - 0 ] m + 1 ty 

where we have introduced 
p = i(c+a'), q=-iK/2, (4) 

= («lWi>+ff+ + -) U-<?+ + ) 
\ 1 -5 1 - s V \ l-t 1 - / 7 

(5) 

By means of a Taylor's expansion we obtain12 

/ as a's' \ 

[p+q+ + ) 
V 1-5 1 - W 

' - ' ' - < » + » O + x r r V ) ! 
= z (hUi'tr^-y^'x-

hh'nvi' ml 

XCivMCMh^W^Xa-^^+^^XsV1^, (6) 
where we have introduced 

a = P+q=i(a+a'-iK). (7) 

The coefficients C(vl) are defined in I. Similarly, 

at a't' \-<*+i> ( w + i / a + ^ O ! 
(#-g+—+—;) = z (hih'O-'i-y^'x-
\ 1 — t 1 — / / hte'nn' ml 

XC(p2h)C(v2
,h/)aV2a'»'a* -Oa+l+ ' i+ ' i ' ) /^ ' # (g) 

When these equations are substituted in Eq. (5) and note is taken of the relation 

—= ( - + — )U, (9) 
dp \da da*/ 

the right-hand side of Eq. (3) becomes, after making a binomial expansion of its denominator, 

1AT v AT ^ ^ /^+ii\ /m+ji\ ftn+ji\ /m+jA 

hh'hh' liWvwx'lili'vivi' \ j x J \ j ^ / \ j 2 / \ j 2
f J 

X (m+vt+vS) \(m+V2+V2') lC{vA)C{vl
,W)C{v2h)C{v2,l2,)av^vW^+V2 

X [ ( w + 1 + ^4-*>1')a*+ (m+l+v2+v2)a^sh+lls'3l'+h'tj*+lH'n'+l*f. 

Equating the coefficients of equal powers of s, s\ t, t' of this equation and the left-hand side of Eq. (3), sub­
stituting the value 

V n 1 , 2 = ( - a™M , « = - , ( 1 0 ) 

n 

(un F biidhetd)1S ° f 6 X p a n s i ° n s e e K - 0 m i d v a r > External Report X-641-64-193, Goddard Space Flight Center, Greenbelt, Maryland 
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and making use of Eq. (7), we obtain 
N 

V(nithmJnin2m) = AYi G(y)H(y)t 
7=1 

(ID 

where 

^=4(2Z) 2 *^(»» / ) ' " ( w 4 2 ) 

fm+j\\ fm+jA /fn+ji'\ /m+j2
f' 

(12) 
r mUhUiilfh'! -l"* 

X — , 
L ( M I + W ) \{ni+m) l(ni+m) !(w2 '+w) !J 

/m+ji\ /m+j2\ /m+ji\ /m+J2\ 
G(7) = (-2)^+^'i'+'»'f . jf . J( J( ., J(/i!/2!/i,!/2,!)-1(w+i'i+i'i,)!(w+i'2+«'2/)! 

XC(,1/1)C(^/2)C(^71
,)C(v272 /)«^+"2a /^'- f^ /, (13) 

Xl(2m+2+v1+p2+nf+P2)(a+a/) + i(v1+p1
f-P2-P2)K']. (14) 

7 stands for the set of 12 variable integers, 

7 = {jijiji jzhnhvilivitiv*), (15) 
subject to the restrictions 

/ i=0 , 1, 2, • • •, « i ; ji=ni—li; ^ i=0 , 1, 2, • • •, / ^ 

/ 2 =0 , 1, 2, • • •, ri2\ J2=n2—k'y ^2=0, 1, 2, • • •, /2; 

/ / = 0, 1,2, . . . , m ' ; i i ' - W i ' - Z i ' ; *i' = 0, 1, 2, • • - , / / ; 

V = 0, 1,2, ••• ,w 2
/ ; 3t=nt'-h'\ v2' = 0, 1,2, • • • , / / ; 

(16) 

and iV is the total number of combinations of the 12 
integers for a given n\n%n\n<l. 

Substitution of Eq. (11) in Eq. (1) and a numerical 
integration with respect to K allows the cross section 
between two arbitrary states to be determined. When 
N is not very large, i t is advantageous to carry out the 
integration with respect to K analyticaUy. Through 
Eqs. (1), (11) we can write 

ST A2
 N x 

Q(nin2*n,nin2in) = —— £ Y, G(71)6(72) 

k()2 71=1 72=1 

^/v2 

The cross section for an initial state n\U2m and a 
final state n'm is obtained by summing the above 
equation over wiW- We obtain in this way 

Q (n2nim>nfm) = Q (nifi2fn,nfm). (20) 

X 
/•*•* dK 
/ H(-H)H*(yt)— 

J K\ K* 
(17) 

With the form of # ( 7 ) given in Eq. (14), the integration 
with respect to K is straightforward. 

Symmetry Considerations 

I t is evident from Eq. (2) that 

V (uifiztn, nifi2m \ — K) = V*(nintfn,ni'n2tn | K), 

V{u2n\my n4n\m\—K)—V(nimntitii'n^ni|K). 

I t follows that 

I V(nitiztn, ni'njfn| — K)|2 = | V(ntfiimjm'nim\K)\2 

= I V{nln2m)nifn2fm\K)\2) (18) 
and, by Eq. (1) 

Qininitnsh'nitn) = Q {nimm^iin^m). (19) 

Similarly by averaging the initial states over wi«2 we 
obtain 

Q{nm^n2fiim) = Q(ntn,nin2tn). (21) 

For a given nm, the state %2n\ is the reflection of the 
n\ri2 state with respect to the z = 0 plane. For ni>fi2 
most of the electronic charge lies on the positive z axis, 
and for tii<ti2 it lies on the negative z axis. Equations 
(20) and (21) indicate that the initial or the final states 
that are the mirror images of each other with respect 
to the z = 0 plane have equal excitation cross sections.13 

Equations (18), (19) are used to test the accuracy 
of the numerical results. 

Multiplicity of States and the Total Cross Section 

Since the direction of the z axis is taken along the 
momentum transfer vector K, the magnetic quantum 
number does not change in any transition. As ^1+^2 
= n—m— lytii can take the values 0 , 1 , 2, • • •, n—m— 1; 
or n—m values. The same is true of w2. Then the total 
number of combinations of nx and n2 for a given n and 

13 The asymmetry in the cross sections which apparently is the 
cause of the weakening of some components of Stark lines in a 
canal ray tube is due to higher order corrections in the cross 
sections. See E. U. Condon and G. H. Shortley, The Theory of 
Atomic Spectra (Cambridge University Press, New York, 1963), 
Chap. 17, Sec. 1. ' 
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m is n—m. Similarly, the total number of combinations 
of n\ and n% for a given ri and mf is n'—mf. 

Designating the cross section for the transition 
nn\n<im---*nrn\n<£m by Q(nnin2fn,nfnin2/m), the cross 
section for the transition nnimm —»n'm is obtained 
by summing the former cross section over all the final 
states with a fixed tn, 

u'-m-l 

Q(nnin2inyn'm)= £ Q{nn\n<im,yi'n\ n<{m). (22) 
m'«=0 

The cross section for the transition nm —> w'w is ob­
tained by averaging Q(nnin2tn,nfin) over all the initial 
states with a fixed my 

n—m—l 

Q(nm,n'm)=(n — m)~l £ Q(nnln2myn
fm). (23) 

ni=0 

The cross section for the transition n—*nf is obtained 
by averaging Q(nm,nrm) with respect to the magnitude 
of the magnetic quantum number m, 

Q(n,n')=(2n~l)-~l E [ 2 - 5 ( W , ( ) ) ] < 3 ( M / W ) . (24) 

Since the total number of the initial states is 

/ ? — i 

£ [ 2 - 5 ( W , 0 ) ] ( « - W ) = K2, (25) 

Eq. (24) can be written alternatively as 

n— 1 n—m— 1 

()(H,n') = « - 2 E E [ 2 - J (*,())] 

XQinnintfn^rim). (26) 

It is interesting to note that the total number of 
independent transitions between the levels n and n' is 
given by 

n - l 

X=^2 [_2 — d(m,0)'](n — m)(n/—m). 

When the right-hand side is evaluated we obtain 

N=*n*[n'- (»/3)]+ (»/3). (27) 

The excitation cross sections of the hydrogen atom by 
electron collision have been calculated for the transitions 
#=1 to n' = 2, 3, 4, 5, 6, 7, 8, 9, 10; w=2 to » '=3, 4, 
5, 6, 7, 8; w = 3 to w' = 4, 5, 6, 7, 8; # = 4 to w' = 5, 6; 
and n = S to w' = 6 in Born approximation and parabolic 
coordinates. Similar calculations in the Born approxi­
mation using sperhical coordinates have previously 
been made by McCarroll4; Boyd5; McCrea and 
McKirgan6; and McCoyd, Milford, and Wahl.7"10 There 
are a few other calculations for certain optically allowed 
transitions between sublevels of higher levels, but they 

E L E C T R O N C O L L I S I O N ' A 4 1 

°0 10 20 30 40 50 60 70 80 90 100 MO 120 

INCIDENT ELECTRON ENERGY WV) 

FIG. 1. Excitation of the ground state of the hydrogen atom to 
the w = 2 states by electron collision. The theoretical curves— 
Born, close coupling, and classical—are compared with the 
experimental curve. 

do not give the total transition cross section between 
two levels. 

The excitation cross sections obtained in parabolic 
coordinates were compared to those previously obtained 
in spherical coordinates and their agreements were 
verified.14 Since the set of wave functions due to a 
principal quantum number n in one coordinate system 
is given as linear combinations of the set of wave 
functions in the other coordinate system, the sum of 

20 30 4 0 50 60 70 80 90 100 110 

INCIOENT ELECTRON ENERGY («V) 

FIG. 2. Excitation of the ground state of the hydrogen to the 
w = 2, 3, 4, 5, 6, 7 states. Q(l,i) is the cross section of the ground 
state for ionization by electron collision. 

14 See Ref. 12. 

III. RESULTS A N D DISCUSSION 
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TABLE I. Excitation cross sections of n= 1 level in units of ira^. 

Impact 
energy 

Ry 

1.00 
1.44 
1.96 
2.56 
3.24 
4.00 
6.25 
9.00 

12.25 
16.00 
20.25 
25.00 
36.00 
49.00 
72.25 

eV 

13.60 
19.58 
26.66 
33.43 
44.06 
54.40 
85.00 

122.40 
166.60 
217.60 
275.40 
340.00 
489.60 
666.40 
989.40 

0(1,2) 

1.2868 
1.5354 
1.4993 
1.3886 
1.2630 
1.1424 
0.8919 
0.7101 
0.5780 
0.4797 
0.4050 
0.3468 
0.2634 
0.2075 
0.1526 

0(1,3) 

0.1787 
0.2782 
0.2798 
0.2600 
0.2358 
0.2123 
0.1637 
0.1290 
0.1041 
0.0858 
0.0721 
0.0614 
0.0463 
0.0363 
0.0265 

0d,4) 

0.0509 
0.1000 
0.1021 
0.0951 
0.0862 
0.0775 
0.0595 
0.0468 
0.0377 
0.0310 
0.0260 
0.0221 
0.0166 
0.0130 
0.0095 

0d,5) 

0.0199 
0.0476 
0.0490 
0.0457 
0.0413 
0.0372 
0.0285 
0.0224 
0.0180 
0.0148 
0.0124 
0.0105 
0.0079 
0.0062 
0.0045 

0(1,6) 

0.0092 
0.0265 
0.0274 
0.0256 
0.0232 
0.0208 
0.0160 
0.0125 
0.0100 
0.0083 
0.0069 
0.0059 
0.0044 
0.0034 
0.0025 

0d,7) 

0.0050 
0.0163 
0.0169 
0.0158 
0.0143 
0.0128 
0.0098 
0.0077 

0(1,8) 

0.0032 
0.0104 
0.0112 
0.0104 
0.0096 
0.0088 
0.0064 
0.0048 

0d,9) 

0.0018 
0.0075 
0.0078 
0.0073 
0.0066 
0.0059 
0.0045 
0.0035 

Od,io) 

0.0012 
0.0054 
0.0056 
0.0053 
0.0048 
0.0043 
0.0033 
0.0026 

S Q(l,m) 
m—n+l 

0.0016 
0.0242 
0.0250 
0.0234 
0.0208 
0.0189 
0.0148 
0.0117 
0.0243 
0.0201 
0.0167 
0.0142 
0.0107 
0.0084 
0.0062 

Q(T) 

1.5583 
2.0515 
2.0241 
1.8772 
1.7056 
1.5409 
1.1984 
0.9511 
0.7721 
0.6397 
0.5391 
0.4609 
0.3493 
0.2748 
0.2018 

TABLE II. Excitation cross sections oin — 2 level to n' — 2>, 4, 5, 6, 7, 8 levels in units of ira^. 

Impact energy 
Ry 

0.2025 
0.25 
0.36 
0.64 
1.00 
1.44 
1.96 
2.56 
3.24 
4.00 
4.84 
5.76 
6.76 
7.84 
9.00 

eV 

2.75 
3.40 
4.90 
8.70 

13.60 
19.58 
26.66 
33.43 
44.06 
54.40 
65.82 
78.34 
91.94 

106.62 
122.40 

0(2,3) 

70.796 
57.213 
45.062 
36.042 
29.415 
24.462 
20.679 
17.726 
15.386 
13.493 
11.927 
10.633 
9.547 

0(2,4) 

7.385 
12.016 
13.227 
10.794 
8.334 
6.538 
5.250 
4.309 
3.602 
3.059 
2.632 
2.293 
2.016 
1.792 
1.596 

0(2,5) 

3.933 
4.941 
4.104 
3.151 
2.456 
1.960 
1.601 
1.332 
1.127 
0.968 
0.840 
0.737 
0.652 
0.582 

0(2,6) 

1.706 
2.435 
2.049 
1.570 
1.220 
0.971 
0.791 
0.657 
0.555 
0.475 
0.412 
0.361 
0.319 
0.284 

0(2,7) 

0.868 
1.395 
1.186 
0.907 
0.704 
0.559 
0.455 
0.378 
0.319 
0.272 
0.236 
0.207 
0.183 
0.163 

0(2,8) 

0.491 
0.880 
0.753 
0.576 
0.446 
0.354 
0.288 
0.239 
0.201 
0.173 
0.149 
0.131 
0.116 
0.103 

S Q(2,m) 
m=9 

0.570 
1.566 
1.351 
1.033 
0.800 

0.427 

QiX) 

92.037 
95.240 
77.433 
60.633 
48.206 

27.314 

TABLE III. Excitation cross sections for the transition n = 3 to w' = 4, 5, 6, 7, 8, in units of wao2. 

Impact energy 

Ry eV 

0.07 0.95 
0.08 1.1 
0.111 1.5 
0.16 2.2 
0.36 4.9 
0.64 8.7 
1.00 13.6 
1.44 19.6 
1.96 26.7 
2.56 33.4 
3.24 44.1 
4.00 54.4 
6.25 85.0 
9.00 122.4 

0(3,4) 

657.1 
709.2 
735.3 
676.9 
460.9 
322.3 
237.4 
182.5 
145.1 
118.4 
98.5 
83.5 
58.5 
43.6 

0(3,5) 

83.37 
126.98 
125.33 
83.69 
56.35 
40.33 
30.34 
23.69 
19.07 
15.71 
13.19 
9.12 
6.71 

0(3,6) 

42.92 
47.26 
31.86 
21.16 
14.98 
11.19 
8.69 
6.94 
5.70 
4.75 
3.25 
2.38 

0(3,7) 

19.16 
23.56 
16.08 
10.62 
7.47 
5.55 
4.29 
3.45 
2.81 
2.34 
1.61 
1.19 

0(3,8) 

9.94 
13.67 
9.44 
6.21 
4.35 
3.23 
2.49 
1.99 
1.62 
1.38 
0.97 
0.66 

S 0(3,m) 
m=9 

12.04 
22.86 
16.02 
10.52 
7.36 

2.30 

Q{T) 

946.3 
909.6 
618.0 
427.2 
311.9 

107.2 
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FIG. 3. Excitation of the n = 2 
states to the w = 3, 4, 5, 6, 7, 8 
states. Q(2,i) is the averaged 
ionization cross section of the 
n = 2 states. 

40 50 60 70 80 

INCIDENT ELECTRON ENERGY (*V) 

100 

the cross sections between sublevels in one system is 
equal to the same sum in the other system. This was 
verified. The excitation cross sections, averaged over 
the initial substates and summed over the final sub-
states, for the initial states n=l to 5 are listed in 
Tables I-V. For a given initial state ni the cross section 
due to all higher states which are not listed explicitly 
is obtained by an interpolation method between ex­
citation and ionization.15 This is designated by 

OC 

£ Q(tii,m), 
m=n 

where n is the upper state of the highest transition 

TABLE IV. Excitation cross sections for the transition 
» = 4 to n' = 5, 6. 

whose cross section is listed in the table. Q(T) is the 
total excitation cross section for the transition between 
an initial state and all the higher states, excluding the 
continuum. The Q(T) values are not given for some 
impact energies because of the unavailability of ioni­
zation values for these energies. 

To test the accuracy of the Born approximation, it 
is necessary to compare the result of the Born calcu­
lation with experiment. This is done in Fig. 1; the more 
elaborate theoretical calculation of close coupling,16 and 
the classical theory of excitation given by Gryzinski,17 

are also displayed. 
When compared to experiment, the values given by 

the Born approximation are too high, those of the 
classical theory are too low, and those of the close-
coupling approximation are in the best agreement. It 

Impact energy Q(4,5) 0(4,6) 2 G(4,m) Q(T) 
TO=7 

Ry 

0.03 
0.04 
0.0625 
0.111 
0.16 
0.36 
0.64 
1.00 
1.44 
1.96 
2.56 
3.24 
4.00 
6.25 
9.00 

eV 

0.41 
0.54 
0.85 
1.51 
2.18 
4.90 
8.70 

13.6 
19.6 
26.7 
33.4 
44.1 
54.4 
85.0 

122.4 

7T0o 

3081 
3778 
3795 
3137 
2584 
1567 
1050 
759 
581 
450 
367 
306 
262 
190 
151 

432.4 
660.1 
570.5 
462.1 
264.3 
169.7 
118.6 
88.1 
68.5 
54.3 
44.6 
37.4 
25.9 
19.4 

7r#o 

549 

475 
269 
171 
119 

7Tflo 

5004 

3521 
2100 
1391 
997 

TABLE V. Excitation cross sections for the transition 
n = 5 to «' = 6 in units of irao2. 

Impac t R y 
energy eV 
0(5 ,6 ) Trao2 

Impac t R y 
energy eV 
0(5 ,6) Trao3 

I m p a c t 
energy 
0(5,6) 

R y 
eV 
Trao2 

0.0169 
0.23 

11308 

0.36 
4.90 

3980 

2.56 
33.4 

1048 

0.0225 
0.31 

13792 

0.64 
8.70 

2628 

3.24 
44.1 

929 

0.04 
0.54 

13588 

1.00 
13.6 

1907 

0.111 
1.51 

8698 

1.44 
19.6 

1485 

0.16 
2.18 

6889 

1.96 
26.7 

1221 

4.00 6.25 9.00 
54.4 85.0 122.4 

845 719 654 

15 For a description of this method see Ref. 4. 

16 K. Omidvar, Phys. Rev. 133, A970 (1964). For numerical 
results of the Born approximation see K. Omidvar, NASA 
TN D-2145, Goddard Space Flight Center, Greenbelt, Maryland 
(unpublished). Also see P. G. Burke and K. Smith, Rev. Mod. 
Phys. 34, 458 (1962). 

17 M. Gryzinski, Phys. Rev. 115, 374 (1958). An improved 
calculation of Gryzinski has been performed by R. Stabler, Phys. 
Rev. 133, A1264 (1964); see also V. I. Ochkur and A. M. 
Petrunkin, Opt. Spectry. 14, 245 (1963). 
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FIG. 4. Excitation of the n = 3 
states to the w = 4, 5, 6, 7, 8 
states. Q(3,i) is the averaged 
ionization cross section of the 
n — 3 states. 

30 40 

INCIDENT ELECTRON ENERGY (eV) 

should be emphasized that the classical description of 
the excitation is open to question, as transitions to 
discrete levels cannot be described classically. Further­
more, according to this theory all the degenerate levels 
have the same cross sections. 

The disagreement between Born calculations and 
experiment may get worse for excitation of the higher 
states. This is due to the form of the wave function of 
the bound electron. Since a hydrogenic wave function 
is used to evaluate the matrix elements of the Born 
approximation, it is implicitly assumed that the inter­
action potential between the two electrons is small 
compared with the interaction of the nucleus and the 

atomic electron. This, however, may not be the case 
for the excited states where the average distance of the 
electron from the nucleus is large. 

Figure 2 compares different excitation and ionization 
cross sections for the n= 1 level. Figures 3 and 4 make 
the same comparison for the n=2 and the n—3 levels. 
Figures 5 and 6 correspond to excitation of w=4 and 5. 
It is interesting to note that the ionization cross section 
of the level n, compared to its excitation cross section, 
becomes progressively smaller as n increases. 

A remark should be made about the relative mag­
nitudes of cross sections for optically allowed and non-
optically-allowed transitions. For low-lying levels, the 

FIG. 5. Excitation of the n = 4 
states to the n = 5, 6 states. 
Q(4t,i) is the averaged ioniza­
tion cross section of the « = 4 
states. 
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FIG. 6. Excitation of the # = 5 states to the n = 6 states. The cross section due to optically allowed transitions is given for comparison. 

optically allowed transitions have cross sections larger 
by an order of magnitude than the non-optically-
allowed, as is evidenced by comparison of the Is —» 2s 
and Is —•> 2p cross sections.16 For highly excited states 
the cross sections due to non-optically-allowed tran­
sitions become appreciable for two reasons: (I) the 
contribution of higher terms of expansion of exppiTs] 
compared to Kz in the integrand of the excitation ampli­
tude becomes larger as the radius of the atom increases 
in excited states, and (II) the statistical weight of 
non-optically-allowed transitions compared with opti­
cally allowed ones becomes larger for excited states. 
The total number of transitions between n and n1 is 
given by (27), compared with n2 for the number of 
optically allowed transitions. For high n the optically 
allowed transitions contribute a fraction of 
[V— (n/3)l[~l to the total number of transitions. In 
Fig. 6 comparison is made of the two types of 
transitions. The sharp peak of the total-transitions curve 
is the result of the inclusion of the optically forbidden 
transitions. 

Knowing the cross sections for excitation to all levels 
and for ionization, curves can be constructed which 
show total inelastic cross sections (excluding de-

excitations) for different levels. This is shown in Fig. 7 
for » = 1 , 2, 3, 4, and 5. 

The de-excitation process Q(f,i) is related to the 
excitation process Q(i,f) by 

Q(fA=(!n/ktYQ{i,f), (28) 
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FIG. 7. Total inelastic cross section, including excitation to all 
states and ionization, of the hydrogen atom for electron collision. 
Different curves correspond to the atom initially in the states 
» = 1, 2, 3, 4, and 5. 
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with ki and kf the initial and final wave numbers in 
the excitation process. 

In a calculation which will be reported later the 
present calculation will be extended to higher excited 
states and to higher energy ranges, and exchange of 
the electrons will be included. 

1. INTRODUCTION 

RECOMBINATION-generation processes involving 
a series of levels (e.g., excited atomic states) lead 

automatically to cascade problems. In these, electrons 
can move up and down the energy scale and the transi­
tion probabilities between any two levels, together with 
the assumption of a steady state, leads to a steady non-
equilibrium probability distribution for the occupation 
of the quantum states involved. This will in general 
differ from the cruder "quasi-Fermi" distribution often 
hypothesized in solid-state work. 

The simplest cascades are those involving a con­
duction band (a continuum in astrophysics) and the 
states, labeled by the principal quantum number ny of 
hydrogen-like ions. In such cases the results of the cal­
culation may be given in terms of the probabilities IIn 

that an electron will reach the ground state from level 
n without leaving the atom. This has been called the 
"sticking probability" in solid-state work, and has 
proved difficult to calculate. If states lying above n = N 
are neglected an approximate probability Un,N is ob­
tained. Many results of this paper are presented in terms 
of "reduced" sticking probabilities Pn,N- As far as we 

*Now at the Tidal Institute and Observatory, Birkenhead, 
Cheshire, England. 
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are aware, this is the first time this probability has been 
investigated systematically for a solid-state problem by 
a quantum-mechanical method. 

The assumptions made in this paper are: the electrons 
in the band having a Maxwell distribution in the steady 
state; hydrogen-like wave functions for the discrete and 
continuum states, modified by an effective mass and a 
dielectric constant; black-body radiation in the solid; 
Saha dissociation formula for equilibrium even for the 
large principal quantum numbers n; neglect of term struc­
ture for given n. If the steady state is maintained by 
pumping electrons back into the continuum a general 
theory is readily set up [Eq. 4.2(a)]. If it is also assumed 
that all transitions are radiative, the matrix elements 
which occur are standard. For the purposes of numerical 
calculations the problem can be further simplified by 
supposing that because the lowest level n= 1 is the most 
highly populated of the discrete levels, the pumping 
action may be neglected for the levels n^2. This leads 
to the final set of Eqs. (5.17) whose solutions are readily 
computed. 

The cascade model set up in this way is informative in 
spite of the limitations implied by the above assumptions. 
I t provides guiding lines for a more complete cascade 
theory which incorporates also the effect of phonons and of 
electron collisions, but such a theory is not attempted here. 
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A steady-state cascade theory has been set up for radiative electron transitions. These are assumed to 
occur between a continuum and various excited states, as well as between any two excited states, of hydrogen­
like atoms. The work contains two features which have not previously been fully taken into account: 
(1) Both spontaneous and induced transition probabilities have been included exactly. (2) In addition to 
the radiative transitions, the reverse transitions due to absorption of background radiation have also been 
included. The following graphical results are given: (a) The steady-state occupation probabilities of the 
excited states as a function of excess electron density, (b) A "sticking probability" Pn (for an electron from 
a level n to reach the ground state without leaving the atom) as a function of the principal quantum num­
ber n. (c) The effect of the cascade on the transition rate into the ground state. The calculation is valid for 
semiconductors and for the analogous astrophysical problem. Temperature dependences have also been 
studied. The graphs shown bear out quantitatively the expectation that Pn decreases as either the tem­
perature or the principal quantum number increases. 


