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The scattering of electromagnetic radiation from an electron-phonon system not in thermal equilibrium 
has been studied. In particular, an enhancement of the cross section at the phonon line is found when the 
electrons are forced to drift relative to the ions. For some semiconductors for which the phonon frequency is 
approximately equal to the plasma frequency, such a scattering experiment would provide information on 
the phonon line and the plasma line simultaneously. 

I. INTRODUCTION 

RECENTLY there has been an increased interest in 
incoherent scattering of light from solids. Such 

experiments can provide at the same time information 
about the plasma line as well as the phonon line. An 
interesting case would be when the phonon frequency 
and the plasma frequency are very close to one another, 
as in some semiconductors. 

The scattered radiation is determined by the spec­
trum of the electron-density fluctuation. In a solid, 
when the incident wavelength is much greater than the 
lattice spacing, the scattering arises predominantly 
from the conduction electrons. The density fluctuations 
of these conduction electrons are coupled by the electron-
phonon interaction to the motion of the ions. In general, 
the scattering cross section would show two resonance 
lines, one due to the collective oscillation of the elec­
trons at the plasma frequency, the other due to the 
collective oscillation of the ions at the phonon frequency. 
In materials with an average electron density greater 
than 1018/cc, as in metals, these two lines lie far apart.1 

However, in semiconductors it is possible to have the 
two frequencies approximately the same. In such cases 
the two resonance lines affect one another strongly. 
In an experiment, one can vary the electron plasma fre­
quency almost continuously and can therefore study 
the coupling between the two lines. The cross section is 
typically of the order of the Thomson cross section 
(10~25 cm2) which is very small. An enhancement of the 
cross section at the phonon line can be obtained either 
by exciting phonons mechanically or by forcing the 
electrons to drift relative to the ions to induce large 
phonon fluctuations. 

We start with the expression for the scattering cross 
section given in terms of the Fourier transform of the 
density-density correlation function. This correlation 
function is calculated using the test-particle method.2 

It is assumed that the incident wave frequency is above 
the plasma frequency and that the sample is optically 
thin enough to be transparent. 

1 K. L. Bowles, Phys. Rev. Letters 1, 454 (1958); J. P. 
Dougherty and D. T. Farley, Proc. Roy. Soc. (London) A259, 
79 (1960); M. N. Rosenbluth and N. Rostoker, Phys. Fluids 5, 
776 (1962). 

2 N. Rostoker and M. N. Rosenbluth, Phys. Fluids 8, 1 (1960). 
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II. EVALUATION OF THE CROSS SECTION 

The incoherent scattering cross section can be easily 
obtained in the Born approximation and is given by 

da 1 

where 

and 

= ( — ) ~S(k,co), 
doodSl \d£L/ Th 2ir 

S(k,«) -L dte-iai{nk{t)n^{Q)) 

(1) 

(2) 

(rf(r/(ffl)Th = ro2Ml + cos 2e) . (3) 

Here n* is the electron-density operator, (da/dtyfh. is 
the Thomson cross section, r0=(e2/wc2) is the classical 
electron radius, and co represents the difference in fre­
quency between the outgoing and incoming light beams. 

The spectral function 5(k,w) in thermal equilibrium 
is related to the response to an external field by3 

5(M = -
•1 

-1ml *e-^<l>k«,»-k(0)]>, 
1 Jo 

(4) 

which is the Nyquist theorem. However, in nonthermal-
equilibrium conditions, the Nyquist theorem as given 
by Eq. (4) no longer applies. Therefore, for systems not 
in thermal equilibrium one has to solve for the density-
density correlation function directly. The easiest method 
is the "test-particle approach"2 which we shall use here. 
Our system is described by the Hamiltonian, 

p q p p' 

+1 E [/VPk+Qk W&U+E **& E aP
tap_k, (5) 

k k p 

where ap
+, ap are, respectively, the creation and de­

struction operators for the electron, Qk and Pk repre­
sent, respectively, the phonon coordinate and its conju­
gate momentum. In Eq. (5), ep= (p2/2m) is the kinetic 
energy of the electron of momentum py and Qk is the 
bare phonon frequency of wavenumber k. <pk and z>k 
represent, respectively, the Coulomb and the electron-
phonon interactions. 

3 See, for example, A. I. Larkin, Zh. Eksperim. i Teor. Fiz. 37, 
264 (1959) [English transl.: Soviet Phys.—JETP 10, 186 (I960)]. 
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In the test-particle approach one follows a particular where 0 = €po— €Po+k and Gil)(kyt) = (Q(k,t)), k being the 
electron or phonon in a definite state and asks for the momentum transfer from the test electron to the system. 
charge-density fluctuation induced by this particle Similarly, the equation of motion for G(1)(k,/) reads 
(the "test particle"). 

For the test electron in the p0 state one adds to the (d2/dt2)Gw(k t)+2 2G(1)(k t) 
Hamiltonian of the system given by Eq. (5) another 7 , * , 
term Hf representing the interaction of the test elec­
tron with the rest of the system. = -»k*(E F™(p'+k, p', t)+a^an+^1). (11) 

p' 

H' = J^ <pqL aptap+qap0
+apo-q 

q p The solution to the coupled Eqs. (10) and (11) is 
+ L fk'&'apoW-k' exp[i(e p o- en-k>)0, (6) given by 

k' 

where aPo
+, apo are, respectively, the creation and de- <5wei(k,0 = ]C ^ ( 1 ) (p '+k , p', 0 

struction operators for the test electron. p 

We now define the "distribution function" 
F ( p + k , p, /) in the Heisenberg representation to be (<Pk+ \vk\

 2Dk(Q))Qe(k,Q) 
= aJakQ+kemt, (12) 

F ( p + k , p, /) = Tr{papt(/)ap+k(/)}, <S(k,Q) 
HVCOWfl), (?) where 

f ? 
where p is the density matrix determined by H+Hf. The Qe(k,u) = £ , (13) 
response of the system to the test electron is assumed P ep+k— €p+co—id 
to be a small perturbation F(1)(p+k, p, /) on the 
zeroth-order solution F ( 0 ) (p+k , p, t) given by <vi \ 1 n n \ i i ^ n \ n / \ t< *\ 

o(k,co) = 1 -(pkQe(k,oo)-\vk\
2Qe(k,a>)Dk(cc), (14) 

F<0)(p+k,p,/) = W p , (8) 
w h e r e i and X>k(«) = C ( « - « ) 8 - Q * 8 J - 1 is the "bare phonon" 

/p = (9) propagator. In Eq. (12), 5nei(k>t) represents the charge 
exp/3[(p—PD)2/2^—-MD+1 cloud surrounding the test electron. Thus the test elec-

. _ . ,. .. . . . , tron becomes "dressed." Correspondingly, its density 
is the shifted Fermi-Dirac distribution function, and » o p e r a to r is renormalized to be 
is the chemical potential. Here pD=wvjr>, where Vp is 
the drift velocity of the electrons relative to the lattice. 
In Eq. (9), / , reduces to the usual Fermi-Dirac dis- nel{k,t)=ap<?an+ke* +«»ei(k,/) 
tribution function when \D = 0. The equation of motion = ( V &{k£l))avJan+ke

iQt. (15) 
for F ( 1 ) (p+k, p, t) in the random-phase approximation 
reads This befits our labeling of <£(k,oj), since Eq. (15) says 
, M / o N E , m / . , ,v ( wm/ i i A t b a t t h e t o t a l c n a r g e density is related to the test-
i(d/dt)F^(f>+k, p, *) = (€p+k-€p)F^ >(p+k, p, 0 c h a r g e d e n g i t y b y g ( f c ^ t h e d i e l e c t r i c f u n c t i o n of t h e 

+ ^ k ( / P - / P + k ) L ^ ( 1 ) (p '+k , p', 0 medium. 
P' When one substitutes Eq. (15) into Eq. (2) and evalu-

+v G(1)(k t)(f — f ) a t e s t^ie e n s e m ^ e average by considering that the elec-
' P P+k trons in the system are uncorrected fully dressed test 
+ <Pk(fp—fP+k)ocpo

fap^ke
m, (10) particles, one obtains i r 

50ioo(k,w)= E — / {apo^po+kapo'^po'-*)^^0""^* 
PO.PO' <£(&, €p o—€P 0 +k)<S(—k, epo^ —€ P 0 _ k ) J-oo 

1 
= 27T - Z 5 ( c ~ 6 p + 6 p + k ) / p ( l - / p + k ) . (16) 

o(k,a>;o(—k, —as) P 

After some algebra one finds the contribution of the dressed electrons to the spectral function to be 

2 1 
50iee(k,«) = Im<2e(k,a>). (17) 
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In order to express our result in terms of the equilibrium 
Fermi-Dirac distribution function we notice from Eqs. 
(9) and (13) that 

where 
0.(k,«) = e-(k,«+k.vi>), 

/p+k— / p 

Q.M = T. 
P €p+k— €p+C0 — i8 

(18) 

(19) 

On substituting Eq. (18) into Eq. (17), Seiec now 

2 Im<2e(M+k-VD) 
5ei«(k,co) = , (20) 

where we have rewritten <§(k,co) as Si)(k,co) to exhibit 
the explicit dependence of the dielectric function on the 
drift velocity: 

8D(k,C»)= 1 - CpkQeiK W+k-Vp) 
- |^k |2ee(k,C0+k.V l))Pk(cu). (21) 

The physical interpretation is made clear by this 
method of superposition of test particles. Seiec(k,to) 
as given by Eq. (20) is simply the scattering from the 
screening cloud and the core of the test electrons, i.e., 
the fully dressed electrons. 

The contribution of the dressed phonons to the spec­
tral function can be obtained in a similar way. The inter­
action of the test phonon in the k state with the system 
is given by 

ff" = *kx(k,0E <V«<V-k+(0, (22) 

where x(k,0 is the test-phonon coordinate. In the 
language of second quantization, 

x (k ,0 = (2Qk)-W{b*e-^+b-.Je^). (23) 

Corresponding to Eq. (12), one obtains, on perturbing 
the system by H", an analogous expression for the 
density of the charge cloud surrounding the test 
phonon, 

vk [&(k, - 0 * ) 

(212*) 1/2 «(k, —12*) 

<2e(-k, 

+ 
•Of t ) 

« ( - k , - 0 f t ) 
- i -kV 1*' (24) 

where 5k
+ and bk are, respectively, the creation and de­

struction operators for the phonon. By considering the 
phonons in the system as uncorrelated but dressed by the 
charge cloud 5«Ph(k,/) in Eq. (24) we obtain the con­
tribution of the dressed phonons to the spectral function 

Sph(k,co) = -
•1 

vkQe(kya)+k-yD) 

<§£>(M) 
Im£>k(co). (25) 

This 5Ph(k,oj) represents the scattering from the elec­
tron cloud associated with the dressed phonons. The 

total spectral function is obtained by combining Eqs. 
(20) and (25), 

5(k,oj) = 5eiec(k,aj)+5ph(k,w), (26) 

and the scattering cross section is gotten by substituting 
Eq. (26) into Eq. (1). 

m. DISCUSSION 

In thermal equilibrium, i.e., when the drift velocity 
YD = 0, the spectral function is reduced to the following 
form: 

S(M = [2/(^-1)] Im£Q.M/8Ml- (27) 
This can be easily obtained by using the Green's-
function technique which is valid for thermal equilib­
rium.4 The same result can also be obtained by consider­
ing test electrons and renormalized test phonons inducing 
charge-density fluctuation in the electron plasma, as in 
Ref. 4, instead of in the electron-phonon system. How­
ever, this way of applying the test-particle method 
can not be directly generalized to systems not in thermal 
equilibrium. 

We next look at our result given by Eq. (25). Physi­
cally one does not anticipate that 5,

Ph(k,co) would con­
tribute to the scattering except possibly in the vicinity 
of the bare phonon frequency. Furthermore, since the 
bare phonon frequency is no longer a resonance fre­
quency of the coupled electron-phonon system, one does 
not expect 5Ph(k,o>) to show any singularity at Qk- These 
points are born out by inspection of Eq. (25). In the 
limit of very long phonon lifetime, ImD^co) is non-
vanishing only around co= ± 0 * , where it has an ampli­
tude proportional to the phonon lifetime. However, at 
12*, the screening described by | <§z>(k,oj) | 2 becomes 
large, proportional to the square of the phonon lifetime, 
so that it completely nullifies the resonance effect of 
ImZ> k (oj) . 

The scattering cross section is therefore obtained by 
substituting Eq. (20) into Eq. (1) to give 

da 

r( 
da\ 1 

dccdQ \doo/Th 7T (e*<«+k-*i»-1) 

lmQe(k,cjo+k-yD) 
X , (28) 

I « D ( W I 2 

where <§z>(k,co) is defined by Eq. (21). 
We note that for systems with electrons drifting rela­

tive to the lattice one has only to modify the corre­
sponding thermal-equilibrium scattering cross section by 
replacing co by oo+k-vD in all the electronic functions 

For the purpose of discussion, we rewrite Eq. (28) in 
the classical limit, assuming that the bare phonon fre­
quency is no longer a resonance frequency of the coupled 

4 A. Ron, Phys. Rev. 132, 978 (1963). 
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system: 

doodSl \d$l/ Th 

1 exp[~(w+k-V2>) 2 /2£ 2 ^] 1 
X X-

T l / 2 

where 

and 

Y=Im8D(k,o>) 

^/2kvth X2+Y2 

X=Re5i>(k,«) f 

(29) 

rl/2 1- w • ReZ\(a>) 
f̂c 

kD
2 (w+k-Vjo) 

C < 
k2 ^2kvth 

r (co+k-vx))2-! 

L 2£V J' 
In Eq. (29), n is the average electron density; 
kD=(4:wne2(3y}2 is the Debye wavenumber and vth 
= (J3m)~112 is the electron thermal velocity. The reso­
nances are determined by the zeros of X. To exhibit 
the plasma line and the phonon line, we can convert 
Eq. (29) into a more transparent form: 

\ g-(+«D«)2 

dQd(b' \dSl/ Th V?1" I €e(k, OJ+CUD) I 2 

x-
«2 -0*8 )* 

where 

and 

|u 2 -Q* 2 +aQ* 2 [ l - l / e« (k , a>+a>2>)]| 

€e(k,o0= 1—<pfcQe(k,a>), 

(30) 

k-Vz) 0, 
Q)D~- Vk 

\2*»th V2"i»th' V2^ t h 

a = W 2 / ( ^ A A P ) > 

l]p being the ion plasma frequency. We have specifically 
chosen the optical branch of the phonon spectrum. In 
the right-hand side of Eq. (30), the first factor corre­
sponds to the plasma resonance line, with the exponen­
tial factor arising from the Landau damping. The second 
factor corresponds to the phonon resonance line. When 
the electron-phonon coupling strength a approaches 
zero, the second factor becomes unity and only the 
plasma line remains as expected. 

For the purpose of illustration, let us assume that the 
plasma frequency is much higher than the phonon fre­
quency. In this case, the position of the phonon line de­
pends only weakly on the drift velocity vD. However, 
one can enhance the cross section by choosing vr> to be 
such that k«VD+Wph = 0, where o)ph is the root of X = 0 
corresponding to the dressed phonon frequency. By 
examining the phonon-line factor in Eq. (30), one can 
immediately show that this occurs when coPh — —OOD 

2 3 4 
ELECTRON DENSITY N/10 1 6—-

FIG. 1. Locations and intensities of resonance lines as a 
function of electron density when VD — 0. 

= Q * [ l - (akD
2)/(k2+kD

2)J12, at which the denominator 
actually vanishes for long-lived bare phonons. Thus, at 
this critical value of the drift velocity, we obtain a 
phonon instability in which case the analytic expression 
for the cross section is no longer applicable. The physical 
reason for this enhancement is clear. When the electrons 
are drifting with a velocity vD approximately equal to 
the phonon phase velocity, a large phonon excitation is 
expected due to the "coherent" interaction between the 
electrons and the phonons. This in turn excites large 
electron-density fluctuations at the phonon frequency 
wPh which strongly scatter the electromagnetic wave. 
The corresponding phonon frequency shift, wPh—12*, 
caused by this static screening of the electrons, is then 
rather insensitive to changes in electron density as long 
as the electron-density-fluctuation wavelength is large 
compared to the Debye length. Therefore, in this case, 
the phonon instability peak stays almost constant as the 
electron density is varied. 

IV. NUMERICAL RESULTS 

The scattering cross section has been computed for 
different values of the electron density and drift velocity. 
The electron-phonon coupling-strength parameter a is 
taken to be 0.1, which is a typical value for semicon­
ductors which are ionic to a small degree such as InSb, 
InP, GaP. The wavenumbers difference k is taken to be 
105 cm - 1 . This is less than the Debye wavenumber which 
is in the neighborhood of 106 cm - 1 for room tempera­
ture and an electron density of 3Xl01 6 /cc. The phonon 
frequency is assumed to be 1013 cps which is equivalent 
to a normalized 0* of 11.4. For simplicity, the bare-
electron mass and charge, instead of the effective mass 
and charge of an electron embedded in a lattice, are 
used. Figure 1 shows the location of the resonances 
when we vary the electron density A7 in the absence of 
drift velocity. The numbers alongside the curves repre­
sent the integrated cross section at the resonance when 
normalized with respect to the Thomson cross section. 
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ELECTRON DENSITY N/10 — -

FIG. 2. Locations and intensities of resonance lines as a 
function of electron density when VD is finite. 

The thickness of these curves are roughly proportional 
to these numbers to aid visualization. Starting from the 
right, the top curve depicts the plasma resonance which 
weakens gradually in intensity and decreases in slope 
as it approaches lower densities. I t filially becomes flat 
and behaves like a phonon resonance. Starting from the 
left, the lower curve represents the plasma resonance 
which gradually weakens and behaves like a phonon 
resonance toward the right side (high densities) of the 
plot. At intermediate densities or in the central part of 
the plot, these two resonances strongly interefere with 
and repel each other due to the electron-phonon inter­
action. Since VD=0, the plot is symmetric with respect 
to positive and negative frequencies. Figure 2 shows the 
same resonances in the presence of finite drift velocity. 
We note that the central curve is becoming flattened 
and correspondingly the top curve is repelled by it, 
becoming straightened. When the drift velocity is close 
to the critical value (the dressed phonon phase velocity), 
static screening rather than dynamic screening governs 
the phonon resonance as discussed in the last section. 
This is why in Fig. 3 the central curve which represents 

2 3 4 
ELECTRON DENSITY N / t 0 , 6 - ~ 

FIG. 3. Locations and intensities of resonance lines as a func­
tion of electron density when VD is close to the phonon phase 
velocity. 
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FIG. 4. The scattering cross section for different drift velocities. 

the phonon resonance becomes so flat. The upper curve 
which depicts the plasma resonance is further repelled 
and begins to arch up. In Fig. 4, the scattering cross 
section is plotted against the normalized frequency co 
for different values of the drift velocity but for a fixed 
electron density. The two resonance peaks for each 
value of the drift velocity are clearly shown here. The 
area under each peak is also indicated. We observe that 
while nothing drastic happens to the plasma peak, the 
phonon peak gets sharper and higher as the drift velocity 
is increased. At VD~~9.49X107 cm/sec, the phonon 
resonance shoots up, with the corresponding area in­
creased almost by two orders of magnitude, indicating 
the onset of an instability. 

V. CONCLUSION 

In an electron-phonon system it is known that there 
exist two types of collective oscillations, the plasmon 
and the phonon. These two oscillations are coupled to 
one another by electron-phonon interaction. We have 
demonstrated in this calculation that by shining elec­
tromagnetic waves on such a system one can observe 
from the scattered radiation how the two collective 
oscillations exhibit themselves as two resonance lines, 
how they interfere with each other as the electron 
density is varied and how the cross section at the phonon 
line can be enhanced by imparting a drift velocity to 
the electrons so as to induce a phonon instability. With 
present-day lasers, it is therefore possible to use electro­
magnetic scattering as a tool for the study of the optical 
properties of solids. 
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