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Spin-Orbit Interaction in Graphite 
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Using symmetry arguments, the effective-mass Hamiltonian including spin-orbit interaction is derived for 
energy bands with extrema near the vertical edge of the hexagonal prism which represents the Brillouin zone 
of graphite. The energy bands in the plane normal to the vertical edge are described by k p perturbation 
theory, whereas along the edge a Fourier expansion is used for all the matrix elements. It is shown that spin-
orbit interaction lifts all band degeneracies (other than the Kramers degeneracy), and affects the graphite 
Fermi-surface topology at the Brillouin-zone boundary kz = ztTr/cQ, where two de Haas-van Alphen periods 
are predicted. Magnetic energy levels for a static magnetic field H||c are obtained by solution of the ef­
fective-mass Hamiltonian. Selection rules for infrared interband transitions are discussed. An evaluation 
of the spin-orbit band parameters is suggested by analysis of structure in the low-quantum-limit magneto-
reflection data and of the low-frequency de Haas-van Alphen oscillations. 

I. INTRODUCTION 

THE Slonczewski-Weiss (S-W) band model1 has 
been frequently used to interpret experiments re­

lating to the electronic band structure of graphite.2 

In the past this model has been very successful in ex­
plaining many of these experimental results. Recently, 
the magnetoreflection and low-frequency de Haas-van 
Alphen measurements have become so precise, that a 
more refined theory is now needed to explain certain 
small departures from the usual S-W band model. 
Although the spin-orbit interaction is small, it has an 
important effect on the energy bands in the neighbor­
hood of band degeneracies. Since the Fermi surface 
always lies near a band degeneracy, this interaction is 
responsible for measurable deviations from the usual S-W 
band model in the vicinity of certain critical points 
along the vertical edges of the Brillouin zone. In the 
case of the magnetoreflection experiment, a nonzero 
band gap is found for interband transitions associated 
with point K in the Brillouin zone, indicating a spin-
orbit splitting of the doubly degenerate E$ bands. Fur­
thermore, considerable structure is observed in the 
magnetoreflection experiment in the limit of low photon 
energy and high magnetic fields, suggestive of a spin 
splitting of the resonance lines.3 A detailed analysis of 
the low-frequency de Haas-van Alphen oscillation 
associated with the Fermi surface about point H in the 
Brillouin zone gives evidence for a spin-orbit splitting 
of the w bands in the vicinity of the Brillouin-zone 
corner.4,5 

* Operated with support from the U. S. Air Force. 
1 J. C. Slonczewski and P. R. Weiss, Phys. Rev. 109, 272 (1958). 
2 R. R. Haering and S. Mrozowski, Progress in Semiconductors 

(John Wiley & Sons, Inc., New York, 1960), Vol. 5, p. 273. J. W. 
McClure, IBM J. Res. Develop. 8, 255 (1964). The first of these 
review articles contains an extensive bibliography on all work on 
graphite prior to 1960. 

3 M. S. Dresselhaus and J. G. Mavroides, Carbon 1, 263 (1963). 
4 D . E. Soule, IBM J. Res. Develop. 8, 268 (1964). 
6 S. J. Williamson, S. Foner, and M. S. Dresselhaus, Proceedings 

of the Ninth International Conference on Low Temperature 
Physics. Columbus, Ohio, 1964 (to be published); Bull. Am. Phys. 
Soc. 10, 109 (1965). 

The effect of the spin-orbit interaction was previously 
considered by Slonczewski6 in his derivation of the 
effective-mass Hamiltonian. By use of tight-binding 
arguments, he concluded that this effect was small 
compared with other interactions, and therefore no 
detailed calculation of the spin-orbit interaction was 
given at that time.1 More recently, McClure and Yafet7 

used spin-orbit interaction to calculate the small g shift 
observed in the spin-resonance experiments of Wagoner.8 

Since the measured g shift arises from averaging the 
contribution of all electron and hole transitions about 
the Fermi surface, certain simplifications were made in 
order to obtain numerical results. These simplifications 
amounted to introducing a minimum number of spin-
orbit band parameters. Tight-binding arguments were 
employed to show which spin-orbit terms were large 
and these were all set equal to one another, while the 
smaller terms were ignored. Thus, with only one spin-
orbit band parameter, McClure and Yafet were able 
to obtain good agreement with experiment for the tem­
perature dependence of the g shift, although a larger 
value for one of the other band parameters was required 
(A^O.l eV) than is indicated by other experiments.5,9 

Since more refined experiments relevant to the spin-
orbit interaction in graphite are now available, a more 
detailed theory of the effect has been developed. The 
point of view adopted in this paper differs somewhat 
from previous work in that symmetry considerations 
are emphasized more strongly. Tight-binding arguments 
can then be used to obtain a physical interpretation of 
the various spin-orbit band parameters which are re­
quired by symmetry. The numerical evaluation of these 
parameters can, in principle, be made from suitable 
experimental measurements. Since the effective mass 
Hamiltonian is constructed by symmetry arguments 

6 J. C. Slonczewski, thesis, Rutgers University, 1955 (unpub­
lished) . 

7 J. W. McClure and Y. Yafet, Proceedings of the Fifth Confer­
ence on Carbon (Pergamon Press, Inc., Oxford and New York, 
1960), p. 22. 

8 G. Wagoner, Phys. Rev. 118, 647 (1960). 
9 J. G. Mavroides and M. S. Dresselhaus, Bull. Am. Phys. Soc. 

10, 109 (1965). 
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FIG. 1. Projection of the graphite lattice on a layer plane. The 
atoms A and B lie in the plane, while the A' and B' atoms lie in 
another plane displaced along the plane normal by t4/2. The basis 
vectors for the primitive cell containing atomic sites A, A', B, 
and B' are ti, t2, and t4. 

alone, the derivation given here applies equally well to 
all other materials having the same crystal symmetry. 
Similar Hamiltonians could be derived for the analysis 
of the electronic band structure of other semimetals 
with different crystal symmetry. 

In Sec. II, the derivation of the effective-mass 
Hamiltonian is given. Both the k*p perturbation terms 
and the spin-orbit terms are treated on equal footing. 
Symmetry considerations are used to establish the form 
of the Hamiltonian in the vicinity of a symmetry axis 
(in this case the Brillouin-zone edge). The dependence 
of the matrix elements of the Hamiltonian on the wave 
vector k2 along the symmetry axis is found explicitly, 
still using symmetry arguments. 

In Sec. I l l , the effect of the spin-orbit interaction on 
the Fermi surface is discussed. In particular, without 
spin-orbit effects, neither the degenerate Fermi-surface 
cross section nor the effective mass at the Brillouin-zone 
boundary is extremal. By including spin-orbit inter­
action, certain band degeneracies near the zone corner 
are lifted, thus resulting in two extremal Fermi-surface 
cross sections and associated effective masses at the 
Brillouin-zone boundary, k2=zLir/co. These extremal 
areas are related to the low-frequency de Haas-van 
Alphen oscillation. 

The effect of the spin-orbit interaction on the energy 
bands in a magnetic field is considered in Sec. IV. A 
specific application of these magnetic energy levels is 
made to obtain selection rules for interband transitions 
in the magnetoreflection experiment. Finally, the experi­
mental determination of the various band parameters in­
troduced in the effective-mass Hamiltonian is discussed. 

II. HAMILTONIAN FOR * BANDS 
IN GRAPHITE 

The form of the effective-mass Hamiltonian for the 
T bands in graphite follows directly from the symmetry 
of the lattice,2 which is illustrated in Fig. 1. The primi­
tive unit cell contains four atoms labeled A, Af. B, and 

B'. The A and B atoms are in the same layer plane, 
whereas the atoms A' and B' are on a layer plane dis­
placed by U/2. The origin of the unit cell is taken at an 
A site, so that the position vectors of the atoms in the 
unit cell are given by 

U = 0, tA' = t4/2, 
fe=(ti-t2)/3, tB<=-(ti-ta)/3+U/2, (1) 

in which the ti, t^ and t4 are primitive translation vectors 
for a simple hexagonal Bravais lattice, with 

|t»| =ao=2.46 A, i~-

| t4 |=c0=6.74 A, 

: 1 , 2 , 3 

(2) 

the numerical values for graphite at room temperature.2 

The reciprocal lattice vectors derived from the primitive 
translation vectors are denoted by K», in which 

K» • tj — 2wdij; i, j = 1, 2, 4 (3) 

and the half-vectors K»/2 are indicated in Fig. 2, show­
ing the first Brillouin zone which these vectors define. 
The graphite Fermi surface lies near the six zone edges 
labeled EKE and E'K'E'. The wave vector to one of 
these edges, designated in Fig. 2 by kg, is given by 

ks— 3K1 lK.2+kzez (4) 

in which ez is a unit vector along the K4 axis, and all 
the edges are equivalent. 

The character table for the double group of the wave 
vector ks, denoted by G(S), is given in Table I. The 
symmetry operations on the wave vector include rota­
tions by ±27r/3 and glide reflections in the (tdi) planes. 
In this table, the representations Si, S2, and S3 give the 
transformation properties of the spatial part of the wave 
functions, whereas the spin functions transform as 
-D1/2.10 Thus, the total wave functions (space times spin) 
transform as the direct products, (SiX^i/2), i= 1, 2, 3. 
The decomposition of the direct products (S;X£>i/2) are 
included in Table I. This decomposition immediately 

2TT/C ( 

FIG. 2. First Brillouin zone for graphite. The basis vectors of 
the reciprocal lattice Ki, K2, and K4 are indicated. The vector 
k« to a general point along the zone edge is also shown. 

10 R. J. Elliott, Phys. Rev. 96, 280 (1954). 
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TABLE I. The double group G(S) and its small representations. 
Here a = exp(—*k,-t4/2), 5 4 and 5 5 are degenerate by time re­
versal, D1/2 is the two-dimensional representation for the trans­
formation of the spin-wave functions, and 

5iXZ>i/2 = 56 , 
6*2X^1/2 — 5*6, 

are direct products. 

Operator Definition 

e identity 
63} 53"1 rotations by db27r/3 about z axis 
p\, P2, p3 reflection in (t4d planes, i= 1, 2, 3 
0* symmetry operation 0 followed by rotation of 2-n-

Group elements 

(€|0) 
(«»|0), (h'l\0) 

Miu) 
(e |0)* 

(«i |0)*, (5rM0)* 

(p*!| t4)* 

Si 

1 

1 

a 
1 

1 

a. 

5 2 

1 

1 

—a 

1 

1 

—a 

Representat ions 

5 3 

2 
_ 1 

0 

2 

- 1 

0 

5 4 

— 1 

iot 
- 1 

— /a 

5 5 

1 

- 1 

— ia 
- 1 

1 

ia 

5 6 

2 

1 

0 
- 2 

- 1 

0 

shows that by including the effect of the electron spin 
through the spin-orbit interaction, the 5 3 spatial de­
generacy is lifted. Since the representations 5 4 and Sz 
are degenerate by time-reversal symmetry, all energy 
levels along the zone edge are doubly degenerate. In the 
remainder of this section, the symmetry considerations 
given above are applied to obtain an explicit form for 
the effective-mass Hamiltonian of graphite. 

The one-electron Hamiltonian for a periodic potential 
V(r) including spin-orbit interaction is 

3C^(p2/2tn)+V(t)+(h/4?n2c2)(VVXp)*v, (5) 

in which the spin-orbit interaction is given by the last 
term, 

5C8.0.=L-cr, (6) 

and the operator L defined by 

l=(h/4m2c2)(VVXp) (7) 

transforms as the angular momentum, " k - p " perturba­
tion theory is used to obtain the energy levels at a 
general point in the vicinity of the Brillouin-zone edge, 
k = k s + K . The perturbation obtained from Eq. (5) is 
then 

3C'= ( V W ) K - [ p + ( l / 4 w c 2 > X (V V)~]+hV/2rn. (8) 

Since the Hamiltonian in Eq. (5) is assumed to be solved 
for all points ks, the wave vector K in the perturbation 
can be taken in a K1K2 layer plane. The quadratic term 
(h2K2/2m) is a c number and contributes only to the 
diagonal matrix elements of the Hamiltonian. The term 
in Eq. (8) derived from the spin-orbit interaction could, 
in principle, be treated within the framework of this 
calculation. Since this term is expected to be much 

smaller than the spin-orbit interaction term in Eq. (6) 
and, also, since this term gives rise to no additional band 
splittings, it is neglected in the explicit calculation, 
presented here. 

I t is convenient to write the spin-orbit and "k«p" 
perturbation Hamiltonians in terms of the raising and 
lowering operators: p±~px±ipyj L±=LxdbiLy, 

and 

^3.o. = L2(T2-\-^(L+a_-{-L_(T+), 

3C' = (h/2m)(K+p-+K-p+) . 

(9) 

(10) 

Since both the linear- and angular-momentum opera­
tors are unaffected by translations, their transformation 
properties under the glide operations (pi |14/2) are ob­
tained from those for the wave functions given in 
Table I by setting ks = 0 or a=l. These irreducible 
representations are defined as Ti=Si(k8=0) and pertain 
to a point group derived from G(S). The linear and 
angular momentum components pz and Lz transform 
as the irreducible representation Ti and r2 , respectively, 
while p± and L± transform as T3. 

The matrix elements of the Hamiltonian are taken 
between wave functions which transform as the irre­
ducible representations Si, 52 , and S3 and are denoted 
by iFn, ^21, ^31, and ^3 2 , respectively, following the 
notation of Slonczewski and Weiss.1 These wave func­
tions are constructed by taking appropriate linear com­
binations of the pz wave functions (T functions) on the 
A, A\ B, Bf lattice sites. An explicit matrix representa­
tion of the two dimensional £ 3 representation is 

/ l 0\ /or1 0 \ 
<<|0>-(» .) ' W ° K o J ' 

(*,-i|0) = ( , G>i|itO=a( ) , (11) 
\0 o r 1 / \ 1 0/ 

/ 0 <a-\ / 0 OA 

(P2|*t4) = a( ) , MhU) = al ) , 
\OJ 0 / W 1 0 / 

in which 

and 
oo=exp{2wi/3}, 

a=exp{ — iks'U/2} 

The diagonal matrix elements of the Hamiltonian, 
taken in the representation which transforms as the 
irreducible representations of the group of the wave 
vector ks, are denoted by 

£i(£*) = (*ii |3Co|*ii) , 

£2(A.) = (¥2113C01 ¥21), (12) 

E3(kz) = (¥3 1 J 3C01 *8i) = (*3215Co I ^32), 

in which 

3C0= (p2/2m)+V(r)+(h2K2/2m), (13) 



A404 G. D R E S S E L H A U S A N D M. S. D R E S S E L H A U S 

TABLE II. Decomposition of direct products of 
the type SiXTkXSj. 

TABLE III . Matrix elements of the "k*p" Hamiltonian. By 
time-reversal symmetry (see Appendix A), 7n,3, 7r2,3, and 7 ,̂3 
are real. 

Si 

s, r3 

s2 

r3 

r3 

Fi-fr-i+Fa 

S3 Si 
S-2 

S* 

Fs 
F3 

F i + r , + r 3 

Si 

Si 

Si 

F3 

r3 

Fi+r 2 +r 3 

F3 

F3 

Fi+r 2 +r 3 

Fi+r2H-r3 
r i + r 2 + r 3 
ri+r2-f3r3 

and K is a wave vector in the K1K2 plane measured from 
the zone edge. The kz dependence of the diagonal matrix 
elements is given explicitly at the end of this section. 

Symmetry considerations can be used to show that 
certain matrix elements of the Hamiltonian must vanish, 
while other matrix elements are related one to another. 
Let 0(Tk) be an operator which transforms according to 
the point group representation Tk> and ty(Si) be a wave 
function which transforms according to the group repre­
sentation Si. Then for matrix elements of the form 
(ty(Si) I 0(Tk) I ^(Sj)) to be nonvanishing, it is necessary 
for the direct product (SiXTkXSj) to contain a Ti in 
its decomposition, where Ti is the identity representa­
tion for the point group derived from G(S). Further­
more, the number of times that the representation Ti is 
contained in such a decomposition is equal to the 
number of independent matrix elements of the form 
(¥(£*) 10(1^) |¥(S,-)). Although the diagonal matrix 
elements are real, the off-diagonal terms are, in general, 
complex. But if the operator 6 is Hermitian, the off-
diagonal matrix elements are related by complex con­
jugation. The direct products which enter into the 
evaluation of the matrix elements of Eqs. (9) and (10) 
are summarized in Table I I . In this table, the repre­
sentations Tk are listed in the upper left-hand corner 
of each block, the representations Si in the left-hand 
column and the representations Sj in the top row. The 
results for the direct products are then tabulated as a 
matrix. Since the direct products (SiXTkXSj) for the 
operators ®(Tk) = p±, L±} LZ contain Ti either once or 
not at all, there are at most three independent matrix 
elements for the "k -p" Hamiltonian and five for the 
spin-orbit Hamiltonian. The relations between these 
matrix elements are found by performing the symmetry 
operations of the group and using the matrix repre­
sentation given in Eq. (11) for the S3 states. The matrix 
elements for the "k -p" perturbation Hamiltonian taken 
between the spatial part of the wave functions are listed 
in Table I I I . The spin integration gives unity between 
states of like spin and zero otherwise. The kz dependence 

3C' 

^ 1 1 

^ 2 1 

* 3 1 

^ 3 2 

^ 1 1 

0 
0 

K-7T1, 3* 

K+7T1, 3 * 

^ 2 1 

0 
0 

—-K-7T2, 

K+7T2, 

* 
3 

3* 

* 3 t 

K+7T1.3 

— K+TT2, 3 

0 
K-TTZ, 3 

^ 3 2 

K-7T1,3 

K-TT2, 3 

K+7T3, 3 

0 

of the independent matrix elements 

Titz(k,)=(h/2m)(*n\p-.\*n) 
= ( f t /2m)(¥n |#+ |¥ M ) , (14a) 

7T2|3(*s) = ~ (h/2rn)(*2i | p- | ¥ 8 i ) 

= (ft/2m)(¥ai|#+ |¥82), (14b) 

*z,z(ka) = (h/2m)(*n\ P-\ *n) 
= (h/2m)(*z2\p+\*n) = wZiZ*(k2), (14c) 

is discussed at the end of this section. By using time-
reversal symmetry (see Appendix A), the matrix ele­
ments 7Ti)3 and 7T2.3 are also shown to be real. This 
"k«p" Hamiltonian was derived by Slonczewski and 
Weiss1 and discussed extensively by McClure.11'12 

Whereas the "k*p" Hamiltonian connects only the 
same spin states, the spin-orbit Hamiltonian terms Lzvz 

couple the same spin states, while the £-k<rT terms couple 
opposite spin states. From the direct product decom­
position given in Table I I , it is seen that (SiXT2XSj) 
contain Ti three times; thus, there are two independent 
matrix elements of Lz, one of which is diagonal and the 
other off diagonal. Similarly, there are three other inde­
pendent matrix elements involving L±. The matrix 
elements for the spin-orbit Hamiltonian between states 
labeled by a spatial times a spin wave function are 
listed in Table IV, and are denned by 

A i y ( * , ) = ( * n | £ , | * 2 i ) , (15a) 

\*Akz) = (*811 U I *8l) = ~ (*32 I Lz I * 3 2 ) , (15b) 

Ai,3(/U = (*u I Z,_ I ¥8 i) = (¥111L+ i ^32), (15c) 

Xs.sC ŝ) = — (*2iI i - 1 *«i) = (*2i12-+1 * 8 a ) , (lSd) 

A8.a(*.)=(¥8i|£-|¥*2) 
= (*ii | lH-|¥siHX8 t8*(*.). (15e) 

The spatial symmetry of the graphite lattice gives the 
above relations for the matrix elements. In Appendix A 
it is shown by time-reversal symmetry that Ai,2* is real, 
that Ai,3 and A2,3 are pure imaginary, and that A3j3 

vanishes identically. In Table IV, it is seen that the 
coupling between states of like spin only involves Lzaz 

and that the matrix elements for 3CS.0. between two 
spin-up states and two spin-down states are of opposite 
sign, which can be verified by carrying out the spin 
integration explicitly. 

11 J. W. McClure, Phys. Rev. 108, 612 (1957). 
12 J. W. McClure, Phys. Rev. 119, 606 (1960). 
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TABLE IV. Matrix elements of spin-orbit Hamiltonian. By time-reversal (see Appendix A) Xi, %z \%, %z are real 
and Xi.s X2,s are imaginary. 

3Ca.o 

^ l l l 
^ 2 1 ' 

^ S l ' 

¥*«' 
* l l , 
#21 . 
# 3 1 , 
# 8 2 , 

* n ! 

0 
X,,2** 

h 0 
0 

I 0 
0 

Xi , ,* 

L 0 

*21t 

Xl,2 f 

0 
0 
0 
0 
0 

- X 2 p 3 * 
0 

*3iT 

0 
0 

X3 ,3* 
0 
0 
0 
0 
0 

*82t 

0 
0 
0 

- X M * 
Xl,3 
X2.3 

0 
0 

#111 

0 
0 
0 

AM* 
0 

- X l , 2 * * 
0 
0 

# 2 l l 

0 
0 
0 

X2 ,3* 
- X i , 2 * 

0 
0 
0 

# 3 l i 

Xl,3 
— X2.S 

0 
0 
0 
0 

- X 3 l 3 * 
0 

# 3 2 ! 

0 
0 
0 
0 
0 
0 
0 

X3,s* 

The ks dependence of the matrix elements in Eqs. (12), 
(14), and (15) can be expressed as a Fourier cosine series 
in kzc0/2} where c0/2 is the separation of adjacent atomic 
layers. Since the basal plane at kz—0 is a reflection 
plane, all of the matrix elements are even functions of 
kz and all terms in the Fourier sine series must vanish. 
In Appendix B it is shown that the wave functions 
which transform as the irreducible representations of 
the wave vector k« have the following symmetry 
properties: 

¥ii(k.±Ifc) = ¥2i(k.), (16a) 

¥«(k.±K4) = ¥ii(k.), (16b) 

*3i(k*±K4)= - ¥ « ( k . ) , (16c) 

*32 (k*± K 4 ) = *32(k a ) , ( I6d) 

in which K4= (2w/c0)(0,0,1), and k8 denned by Eq. (4), 
is a function of kz. Thus, the diagonal matrix elements 
defined by Eqs. (12) and (13) are written as 

£,<*,) = (*V/2m)+£AW; f = l , 2 , 3 , (17a) 

in which the terms Ei°(kz) have the Fourier expansions 

Ei°(kz)= £ An cos(mr£) , (17b) 

E2«(kz) = E An{- \Y cos(mr£), (17c) 

EJ>(k,) = E Bn cos(2mr£), (17d) 

and the dimensionless wave vector £ is denned by 
£=&*co/2?r. To obtain Eqs. (17), the relations of Eq. 
(16) have been used to relate the Fourier coefficients in 
the expansions for Ei° and £2° and to cancel the odd 
terms in the expansion for £3°. The terms in K2 given in 
Eq. (17a) are generally neglected, but are of about the 
same magnitude as the spin-orbit terms that have been 
included. 

Similarly, the Eqs. (14) can be expanded to give 

*r*.i(A.)= E C„(-l)» cos(wf), (18b) 

*•«.•(*.) = £ Dn cos([2»+l>£), (18c) 
n==0 

and Eqs. (15) can be expanded to give 

Xi,**(*,) = E Fn COS(2»T{) , (19a) 

X8y(A.)= E Gn cos(2mr£), (19b) 

00 

Xi>3(W = i E Hn cos(»ir£), (19c) 

Kz(kz) = i E Hn{~ \Y cos(»ir£). (19d) 

In these equations the Fourier coefficients An, Bn, C«, 
Hn are shown in Appendix A to be real. The 

relation between the An, Bn, C», and Dn coefficients and 
the band parameters denned by McClure11 are sum­
marized in Table V. In constructing this table, the 
Fourier expansions in Eqs. (17) and (19) were cut off in 
a manner consistent with the number of terms retained 
by McClure. 

McClure has shown how these band parameters can 
be related to overlap integrals involving tight binding 
functions.11 Furthermore, McClure and Yafet7 have 
discussed a tight binding calculation of the \ l f2 ' and 
\z,3

z matrix elements. They point out that with the 

TABLE V. Relation between Fourier coefficients and McClure's 
band parameters. 

iri ,3(#«)= E Cn COS(/MT(;) , (18a) 

McClure band 

To 
7 1 
72 
73 
74 
76 

A 
where j * = 2 

parameters 

(6)«*/3ao 

Fourier coefficients 

A0 

—juCo 
A i/2 

Bx 
y.D<tfLI\ 

fxCi/2 

A2 
~A2-B0+Bi 
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tight binding functions given in Eqs. (Al) and (A2), 
which depend only on 2pz orbitals, the expressions for the 
larger magnitude spin-orbit matrix elements (i.e., Xi,2* 
and X3)3*) depend on two-center integrals, whereas the 
terms of smaller magnitude (i.e., Xi)3 and X2,3) depend 
on three-center integrals. The tight-binding estimates 
of McClure and Yafet show that the admixture of 
d functions into the wave functions with Si, S2, and S3 

symmetry produces a larger contribution to the spin-
orbit matrix elements than the overlaps of the 2pz 

functions. The tight binding arguments of McClure and 
Yafet could be used to calculate the magnitude of all 
the spin-orbit matrix elements required by symmetry. 
In this paper, no such tight binding calculation has been 
made and the evaluation of the spin-orbit matrix ele­
ments is left to experiment. The tight binding arguments 
indicate that for graphite only the leading terms F0, 
Go, and # 0 need be considered. Thus, there are three 
spin-orbit band parameters to be evaluated by experi­
ment. 

The generality of the graphite effective-mass Hamil-
tonian was appreciated by McClure and others, and 

used explicitly in the experimental determination of the 
graphite band parameters.7-11-13 Since this derivation 
only employs the symmetry of a hexagonal lattice, the 
effective-mass Hamiltonian for any hexagonal material 
near the edge of the Brillouin zone can be related to this 
graphite Hamiltonian. 

in . GRAPHITE FERMI SURFACE 

In this section the energy eigenvalues for the graphite 
effective-mass Hamiltonian are found and the results 
are applied to calculate the areas and effective masses 
for Fermi-surface cross sections normal to the c axis. 
It is seen that even though the spin-orbit band param­
eters might be small, they are nevertheless important 
in lifting energy band degeneracies (1) at the Brillouin-
zone vertical edges, (2) at the Brillouin-zone boundaries 
kz= doir/co, and (3) at the intersection of the edges with 
the planes, i.e., points # and # ' . 

The energy eigenvalues are found by solution of the 
secular equation derived from the graphite effective-
mass Hamiltonian discussed in the previous section: 

ei 

Xi ) 2
z 

# 1 3 * 

# i 3 

0 
0 

— Xl,3 

0 

Xl,2* 

e2 

# 2 3 * 

— # 2 3 
0 
0 

X2,3 

0 

# 1 3 

# 2 3 

£3+X3,3* 
# 3 3 * 

0 
0 
0 
0 

# 1 3 * 

- # 2 3 * 

# 3 3 

ez~ X3,3
2 

Xl,3 

X2,3 

0 
0 

0 
0 
0 

— Xi,3 

ei 

- X l , 2 * 

# 1 3 * 

# 1 3 

0 
0 
0 

— X2.3 
- X l , 2 * 

e2 

# 2 3 * 

— # 2 3 

Xl,3 

~ X 2 , 3 

0 
0 

# 1 3 

# 2 3 

e%—X3,3Z 

TJ * 
" 3 3 

0 
0 
0 
o 1 

# 1 3 * 

- # 2 3 * 

# 3 3 

£3+X3,3* 

= 0 (20) 

in which a is related to the energy eigenvalue e by 

and the notation 
# 1 3 = K + 7 r i , 3 , 

# 2 3 = — K+7T2.3, 

# 3 3 = /e+7T3,3> 

(21) 

(22a) 

(22b) 

(22c) 

is used. The matrix elements 7ri)3,7T2,3, and 7r3)3, Xi.221, X3)3
Z are real while the matrix elements Xi)3 and X2,3 are imagi­

nary. The determinantal secular equation can be multiplied out—for example, by using the method of Laplace 
on the 4X4 blocks for like and unlike spins. The result is 

[Iff^..1.2.8,41 11,2,3,4 |X 1 , 3 | 2 {^3+X3 1 3 2 ) - |#23 | 2 } - lX2 ,3 i 2 {^3+X 3 ) 3
2 ) - |#13 | 2 } 

-2|Xi,8 | |X2,3|{X1y(e3+X3,32)-#i3#23*}]2=0, (23) 

in which the 4X4 block coupling like spins is 

^ i W ' 2 ' 3 ' 4 ! ^ ! * ^ 
- { e1(#232#33+#23*2#33*) ~ e2(#l3

2#33+ #13*2#33*) } + 4 | #13 | 2 | # 2 3 | 2 + (Xl,2*)2 | # 3 3 | 2 ~ 4X3 ,3*X1 > 2*#13#23* . ( 2 4 ) 

The factorization of this 8th-order equation in e into 
two identical quartic equations implies a double de­
generacy of all the energies, which is consistent with the 
time reversal requirements of group theory. In the 
presence of a magnetic field, this time reversal de­

generacy is lifted and no such factorization of the 
Hamiltonian is possible. 

For a general point in the Brillouin zone, where there 
13 M. S. Dresselhaus and J. G. Mavroides, IBM J. Res. Develop. 

8, 262 (1964). 
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are no band degeneracies, the spin-orbit terms can be 
neglected and the quartic equation can be solved for the 
energy eigenvalues. However, at the three Brillouin-
zone locations having band degeneracies, the solution 
of Eq. (23) must be carried out in more detail. 

At the zone edge, Eq. (23) reduces to 

[ ^ + X 3 , 3 Z ] [ { W 2 - ( X l , 2 3 ) 2 } { ^ - X 3 , 3 Z } 

- | X M | 2 e 2 - | X 2 , 3 | 2 ^ i - 2 | X 1 , 3 | | X 2 l 3 | X 1 > 2 3 ] = 0 . (25) 

Thus, the degeneracy of the E% bands is lifted at the 
zone edge. Neglecting |Xi)3| and [ X2.31, as suggested by 
the tight binding arguments of McClure and Yafet,7 the 
band splitting shown in Fig. 3 is obtained for a general 
point along the zone edges EKE and EfKfE\ but not 
in the vicinity of the zone corners E and E\ The E\ 
and E2 levels are only shifted slightly, i.e., of order 
(\x,2z)2/(Ei—E2), while the Ez bands are split by 
2X3,3*. 

In the absence of spin-orbit interaction, the planes 
£==b§ exhibit two sets of doubly degenerate bands, 
with energies K £ i ± { £ i 2 + 8 | # i 3 | 2 } 1 / 2 ) , since EX=E2. 
These degeneracies are again lifted by the spin-orbit 

The twofold degeneracy in this plane is lifted by the 
spin-orbit interaction. These band splittings are indi­
cated in Fig. 4, using the approximations suggested by 
McClure and Yafet,7 X3,3*«Xi,2* and | \ M | = 0 . The 
effect of the off-diagonal matrix element |Xi(3| is to 
make the band splittings unequal. The K dependence of 
the energy bands in this plane is obtained explicitly by 
the substitution E i = A + (hV/2m) and | En \ 2=hoW*2. 

At the zone corners, E and E\ both the degeneracies 
of the zone edges and zone boundaries are present in the 
absence of spin-orbit interaction. These degeneracies are 
lifted according to Eqs. (27) as \EU\—>0. Since at the 
zone corner in graphite Ei=A<0, the energy of the 
band derived from f ( £ i + { £ i 2 + 8 | # i 3 | 2 } 1 / 2 ) is lower 
than that from i(Ei-{E1

2+S\Elz\
2}1'2). The splitting 

pattern at the zone corner is shown in Fig. 5, using the 
same approximations as in constructing Fig. 4. The 
effect of the matrix element |Xii3| is to produce equal 
and opposite shifts in two of the levels. 

Thus, it is seen that all band degeneracies at these 
three locations in the Brillouin zone are lifted by the 
spin-orbit interaction terms connecting states of like 
spins. The matrix elements connecting unlike spins are 
relatively less important and effectively contribute only 
to the asymmetry of the splittings. These results are 
consistent with the McClure-Yafet approximation of 
neglecting matrix elements connecting unlike spins in 
their calculation of the g shift in graphite.7 

y 
S 4 + S 5 

% 

FIG. 3. The effect of spin-orbit interaction on the energy bands 
at the zone edge. In the absence of spin-orbit interaction the bands 
are labeled using the conventional notation and the irreducible 
representations corresponding to these bands are indicated. With 
spin-orbit interaction, the resulting bands are labeled by the 
double group representation. 

interaction and at £= ± J, Eq. (23) reduces to 

{ (« i+Xiy) (e 8 +AiV)-2 | t f i s | 2 } = 0 , (26a) 

{(ei-X 1 , 2
z)(e 3-X 3 >3 2)-2 |F 1 3 | 2-2 |X 1 ,3 | 2} = 0 , (26b) 

in which the equality |Xi>3| = |X2,3| at £ = J has been 
used. Equation (26) has the roots 

Although the off-diagonal matrix elements Xi>3 and 
X2,3 are relatively unimportant in determining the 
energy levels at critical points in the Brillouin zone, 
these matrix elements are quite important in deter­
mining the properties of the Fermi surface at the zone 
boundary. The Fermi surface cross-sectional area can 
be found from solution of Eq. (23) for |K| 2=/q./c_, which 
is rewritten as 

B^\K\^BZQO^B\K\Z+B2\K\2+B^0, (28) 

in which K±=\K\e±id and the coefficients are 

£4=47ri,327r2)3
2, (29a) 

Bz=2TZtz{e2TritZ
2—enr2,z

2}, (29b) 

B 2 = - 7 r 3 , 3
2 { ^ 2 - ( X i , 2 3 ) 2 } 

— 7Tl,32{2e2^3— | X2.3 I 2} — 7r2,32{2eie3--|Xl,3|2} 

+27ri,37r2)3{2X3,3*Xi,2*- | X M | |X2>3 |} , (29c) 

^0={^3+X3 ,3Z}{CW2-(Xl,23)2 ]Ce3-X3,33 ] 

- e 2 | X M | 2 - e i I X 2 , 3 | 2 - 2 | X 1 , 3 | |X2,3|Xlf2*}. (29d) 

For simplicity, the small terms hV/lm in the energies 
ei have been neglected. Provided that the Fermi surface 
is simply connected, the Fermi surface cross section 
normal to the c axis is found by performing the integral 

/•W3 

S=3 \KF\2d$, (30) 
J o 

e=KEi+K2z+KzzM(Ei+K2z~Kzz)2+^\Sn\
2y^, (27a) 

^ [ ^ x - X x y - X ^ i K ^ i - ^ ^ ^ ^ (27b) 



A 408 G. D R E S S E L H A U S A N D M . S. D R E S S E L H A U S 

ilv^^/H rK 2X 
3,3 
i 

l [ E r < + 8 | H / ) - ] . /"TV 
\_fLl: 

FIG. 4. The effect of spin-orbit interaction on the energy bands 
at the zone boundary, denned by the planes £= dbj. 

in which the wave vector \KF\ is evaluated from solution 
of Eq. (28) at the Fermi energy e=EF. For a general 
value of kz no band degeneracies are involved, and 
spin-orbit interaction is relatively unimportant. In that 
case, most of the Fermi surface can be constructed from 
Eq. (30) using measured values of the band parameters, 
as is done, for example, in Ref. 13. 

However, at kz=w/co, spin-orbit interaction is im­
portant in lifting the degeneracy of the Fermi-surface 
cross section at the zone boundary. It is this area which 
has recently been investigated by Soule4 and Williamson 
et al} in studies of the low-frequency de Haas-van 
Alphen oscillations in single-crystal and pyrolytic 
graphite. In this special case the coefficients in Eq. (29) 
become 

£ 4 = 4 7 T 1 , 3 4 , 

£3 = 0, 

_B2= — 4xi,320ie3—X3,3zXi,22), 

•Bo=03+x3 ,3')(ei+Xiy) 

X{(ei-X1y)(e3-X3 ,32)-2|X1 ,3 |2} 

(31a) 

(31b) 

(31c) 

. (31d) 

Since the term in |K|3 vanishes, Eq. (28) becomes 
quadratic in | K |2 and has solutions at the Fermi surface 
denoted by \KF\2. Thus, the cross-sectional area 
S=T\KF\2 &t the plane £=§ can be written as 

>=sh- X3,3
zXl,2* W 

~±-
EF(EF-A) EF(EF-A). 

(32) 

in which the Fermi-surface cross section without spin-
orbit interaction in terms of the McClure graphite 
energy-band parameters is 

SQ=^WEF(EF~ A)/3y0
2a0

2 (M) 

V Eg- 2 \ 
1,2 

FIG. 5. The effect of spin-orbit interaction on the energy 
bands at the zone corners, H and H'. 

and the spin-orbit term Q, which has the dimensions 
of energy, is defined by 

02=[(«iAsy-*8Xiy)2 

+ 2|Xi)3|
2(e3+X3>32)(ei+Xi,2z)]1/2. (34) 

If the approximation IXi,3|=0 is made, Eq. (32) 
simplifies to 

/ Xi,2
z \ / X3,3

2\ 
S^Sol 1=F ( 1 ± . (35) 

\ EF-AJ\ EFJ 

The lifting of the degeneracy of the Fermi-surface cross 
section at the zone boundary implies that two nearly 
equal low-frequency de Haas-van Alphen oscillations 
should be observed, and, in fact, preliminary results by 
Soule4 indicate the existence of two such oscillations in 
single-crystal graphite. Since in pyrolytic graphite3 

2EF(EF—A)^>>A2, it is expected that the off-diagonal 
matrix elements Xii3 and X2,3 are of some importance in 
determined the splittings of the degenerate Fermi-sur­
face cross section and the complete expression given by 
Eq. (32) is applicable. 

The cyclotron effective masses corresponding to these 
Fermi surface cross sections are found by performing 
the integral 

3h2 rlz 

- / M l — ) M, (36a) 
7T Jo \d\K\/ 

in which the angular dependence of | K \ and dE/d | K \ at 
the Fermi surface are found by appropriate solution of 
Eq. (28). At the zone boundary, £=§, there is no 
angular dependence for \K\ and dE/d\K\, SO that an 
explicit expression for m* can be written 

(eiX3i3
z-e3Xlt2^(X3i3

2-Xi,22)+|Xii3|
2(ei+e3+X3(3^+Xi,2

2) 

(2EF-A)tt2 
(36b) 

in which the effective mass in the absence of spin-orbit 
interaction w0* is 

mo* = 2h2(2EF- A)/37o W . (37) 

Since X3(3
2—Xii2

z, the terms in the off-diagonal matrix 

element | Xi,31 are important in lifting the degeneracy in 
the effective mass, with the larger m* being associated 
with the larger cross-sectional area. Numerical values of 
the spin-orbit band parameters could, in principle, be 
found by detailed analysis of the two nearly degenerate 

file:///_fLl
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de Haas-van Alphen oscillations, of their temperature 
dependence, and of their anisotropy. 

IV. EFFECTIVE-MASS HAMILTONIAN IN 
A MAGNETIC FIELD 

In this section the effective-mass Hamiltonian in the 
presence of a magnetic field is derived and is applied 
to study the effect of spin-orbit interaction on the 
magnetoreflection experiment. The magnetic Hamil­
tonian is generated from the zero-field Hamiltonian by 
the transcription K—> K—eA/ch and the gauge for the 

static magnetic field H is selected as A = (0, Hx, 0). This 
treatment is a generalization of the McClure-Inoue 
equation,12'14 which has been useful in the analysis of the 
diamagnetic susceptibility12 and magnetoreflection ex­
periments.13 The (8X8) Hamiltonian can be written in 
the form H = H 0 + H ' in which 

H o = ( + ) , (38) 

where the (4X4) matrices 2)± and <£ are defined by 

and 

£ = 
0 
0 
0 
Xl,3 

£>±= 

0 
0 
0 

— ^2,3 

[Ei±pH 

±Xl,2 2 

# 1 3 * 

. # 1 3 

Xl.3 0" 
-X«l8 0 

0 0 
0 0 

±Xl,2* 

E2±pH 

# 2 3 * 

— # 2 3 

( 

# 1 3 

# 2 3 

£ 3 ± X 3 , 3
2 ± M # 

0 

# 1 3 * 

~ # 2 3 * 

0 

E3'=F\3tz
t±fjLH 

(39) 

(40) 

7TII3 and 7T2.3 are real, and the raising operator K+ and 
the lowering operator /c_ acting on the harmonic-oscilla­
tor wave functions yield 

K^n=t(n+l)sjiyn+u (42a) 

The Hamiltonian H 0 is exactly diagonalized by the 
eight-component effective-mass wave function ^nj 
which can be written in the form 

in which 
s=2\e\H/ch. 

(42b) 

(42c) 

¥», /= (l/27r)eiK*zeiKw$nj, (41a) 

in which <$„,,- can be represented by a vector with 8 
components which for n ^ 1 can be written as 

$n ,y=(Ci+
w-^n ,C2 +"'% i ,C3 1 +

n '^_l,C324-n '¥«+l ) 

Ci-»^n+i,C2-.w 'V»+i,C3i--w^«,C32~n^«+2). (41b) 

Here the \pn are normalized harmonic-oscillator func­
tions centered at [#— (chKy/eH)~\. For a given "oscillator 
state" n there are eight eigenstates and eigenvalues, 
labeled by j . The terms # i 3 and # 2 3 , defined by Eqs. 
(22a) and (22b), are now operators. The matrix elements 

The effective-mass wave functions ^rnj for the special 
cases n—0, — 1 , - 2 are found from Eq. (41) by setting 
the coefficient C t

n y = 0 whenever the associated-har­
monic-oscillator quantum number is negative, e.g., 
C8i+n ' ' '=0, for » = 0 , - 1 , - 2 . 

The secular equation which determines the magnetic 
energy levels for n> 1 is given by 

= 0, 
B_(«+l)l 

in which the 4X4 matrix ($>±(n) is defined by 

(43) 

«±(«) = 

ei±(n) 

±X l i 2
2 

ts)lf**i,* 

dbXi.2* 

e2±(n) 

- M 1 / 2 7 r 2 ( 3 

[ ( ( n + l ^ y / V a ((n+l)sy'***,< 

M1/27rli3 ((n+i)syi*ri,t' 
- M 1 / 2 7 r 2 > 3 {(n+\)syi*TT2tz 

en±(n) 0 
0 e32±M 

and 

ei±(n) = Ei
0±»H+(h2s/2m)(n+§)-e; i= 1, 2 , (45a) 

e31±(n) = E^±fxH±\z,z
z+(hh/2m)(n~i)-eJ (45b) 

eZ2±(n) = Ez
Q±fiH^X3y+(h2s/2m)(n+i)-e. (45c) 

The matrix H ' is given by 

H'=( J, (46) 

in which 

£>'= 
0 0 0 0 
0 0 0 0 
0 0 0 #3J 

0 0 #3 3* 0 

(44) 

(47) 

and 0 is the 4 X 4 zero matrix. The matrix H ' is not 
diagonal in ^fnj, but couples the states n to w=fc3. The 

14 M. Inoue, J. Phys. Soc. Japan 17, 808 (1962). 
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nonvanishing matrix elements of H ' in the representation which diagonalizes H0 are 

(^^H'l^)^1/2^ 
(48a) 

(48b) 

The magnetic energy levels £ n , i ( i = l , - * -8) are calcu­
lated by solution of the secular equation defined by 
Eq. (43). The corrections to these levels associated with 
the trigonal warping band parameter 73 are found by 
treating H ' in second-order perturbation theory. The 
effect of the magnetic field is to lift the Kramers de­
generacy and to produce nondegenerate Landau levels. 
For a general value of k2, there are eight Landau ladders, 
four of which are essentially spin up, and four spin down. 
Because of the complexity of the (8X8) Hamiltonian, 
explicit solutions for these energy levels must be found, 
in general, by machine calculation using band param­
eters determined from experiment. 

However at £=J , a relatively simple solution can be 
found and the effect of spin-orbit interaction is to lift 
all the degeneracies implicit in the McClure-Inoue solu­
tion12'14 at the zone corner 

€»= (A/2)±[ (A/2) 2 +(« , » + l ) | ^ 7 o W ] 1 / 2 . (49) 

When spin-orbit interaction is included, the magnetic 
secular determinant given by Eq. (43) factors to give 
two quartic equations given by 

{2lh{n)J~en+{fi)le1+{n)-\lj']} 

X{2[h{n+l)J~en-(n+l)teUn+l)+\i,,z~l} 

= - 2 | X M | W » ) [ « i - ( » + l ) + X i y ] (50a) 

and 

{2[A(n+l)]2-e,* f(»)[«i+(»)+X l | 2»]} 

X{2[^(^+2) ] 2 -e32- (^+l )C^i - (^+l ) -Xi ,2 2 ]} 

- - 2 i X l i 3 | 2 e 3 2 - ( ^ + l ) C ^ + W + X i , 2 2 ] J (50b) 

in which 
A(w) = M 1 / V i i 8 . (50c) 

If the electron-spin terms and the free-electron term 
hV/2m are ignored, these equations at £ = | (point 
H in the Brillouin zone) reduce to the simple result 
given by McClure,12 Eq. (49). The effect of spin-orbit 

interaction is to lift all the degeneracies at point H-
The results for the eight energy levels, neglecting the 
small correction arising from terms in |Xi>3|2, are 
€,±(1,1,1), € n + 1 ± ( - 1 , - 1 , 1 ) , € n + 1 ± ( i , - i , - i ) , and 
€n+2±(—1, 1, —1), in which the function 6^(0^ ,7) is 
denned by 

enHa^,y)^A/2+a^H+fi(Xz^--\1,2
2)/2+(hh/2m)n 

±| [{A+( 7 ^V2m)- /3(X 3 l 3
2 +Xi f 2

2 )} 2 

+ 3 ^ 7 o W ] 1 / 2 . (51) 

These energy levels at £ = \ are of particular interest in 
the analysis of the low-frequency de Haas-van Alphen 
oscillations and the oscillatory magnetoreflection 
experiments. 

In these magnetoreflection experiments, electronic 
transitions between magnetic energy levels are induced 
by application of optical electromagnetic fields. The 
Hamiltonian describing the optical perturbation is 

H o p ' = ( . (52) 

The matrix £>op depends on A ±
) the vector potential for 

right and left circularly polarized light, through 

£>oP= - (e/hc)ZA+£>op-+A-£>OI+'], (53) 

in which the 4X4 matrices T>op
± are given by 

<*-)op = = 

~(h2/2nt)K„ 0 7T1.3 0 ] 

0 (k2/2m)K„ -7T2.3 0 

0 0 (h2/2tn)K„ 7TZ,Z 

7T1.3 7T2,3 0 ( & 2 / 2 W ) K _ J 

(54) 

and £>oP
+ is the Hermitian transpose of 2D0p~. The 

selection rules for optical transitions are found by 
looking for the nonvanishing matrix elements of the 
form ($„'.,-'| H0p', | $„,,•), 

+T,.,[-C»f*-1.'v*C,n.».'+C,n."-1.^C*+»^-C»_-1^*C,i_»-'+CM_»-1^*Ci_»'G 
+ (ftV2«)5l"Cn1'»(Cn.-1-''*Ci+"^+C«."-1^'*C»4."^+C,t.-

1.''*C,i_»-0 
+ («+l)1/2(C32+"-1^"*C32+

n'y+Ci_"-1^"*C1_»^-+C2-n-1^"*C2_"^') 

+ (»-l)1/2C,i+«-1^'*C,i+»^+(»+2)I'*C,^«-1-''*CM_«.0 (55) 
and 

( $ n + 2 , , - ' | a > o p - | $ n , i ) = 7r3,3CC31+"+2'J"*C32+n'J'+C3l_*'+2^'*C32-n'G- (56) 
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The nonvanishing matrix elements for the other sense 
of circular polarization can be found from Eqs. (55) and 
(56) by making use of the relation 

($n,i| 3V~| $«'.;') = 0*W I £>oP
+| $»,;) • (57) 

Thus, the selection rule for allowed optical transitions 
is An=zkl on the effective-mass wave functions tynj, 
whether or not spin-orbit interaction is included. The 
interpretation of this selection rule is somewhat different 
than that for simple parabolic uncoupled bands where 
An=0. As an example, for a given quantum number 
n^l which labels the wave function ^nj, there are 
eight energy levels j which couple to eight other energy 
levels jf, associated with the wavefunction tyn±ij>. The 
magnitude of the coupling between energy levels Enj 
and En±i1j* is calculated from the (j,f) matrix element 
of Eqs. (55) and (57). Thus, all energy bands are, in 
principle, coupled, although the magnitude of the 
coupling varies greatly from one case to another. In 
particular, there is a weak coupling between bands of 
opposite spin, and the magnitude of these matrix ele­
ments depends explicitly on the off-diagonal spin-orbit 
matrix elements Aif3 and X2.3- In fact, one method of 
evaluating the band parameters X1>3 and X2,3 is a high-
resolution magnetoreflection experiment in the limit of 
low photon energy and of high magnetic fields. 

With or without spin-orbit interaction, harmonics 
connecting states ^rnt)- and ^n±2,y are expected, and the 
intensity of these weaker transitions is proportional to 
fl"3,32oc Y32. Thus, a study of the relative intensity of the 
allowed transitions and harmonics in the magnetoreflec-
tion experiment could provide numerical values for the 
trigonal warping band parameter 73. 

The general effective-mass Hamiltonian developed in 
this paper provides a framework for the detailed inter­
pretation of the magnetoreflection and de Haas-van 
Alphen experiments, thereby yielding numerical values 
for the spin-orbit band parameters. Such an analysis is 
to be the subject of forthcoming publications.3-15 
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APPENDIX A. TIME-REVERSAL SYMMETRY 

In addition to the spatial symmetry operations for the 
group of the wave vector given in Table I, there are two 
other symmetry operations which leave the graphite 
effective-mass Hamiltonian invariant. These operations 
are time-reversal and spatial-inversion-translation, de­
noted, respectively, by K and g=(J\U/2). Here g 
represents the compound operation of spatial inversion 
J followed by a U/2 translation. The need for invoking 

15 S. J. Williamson, S. Foner, and M. S. Dresselhaus (to be 
published). 

time-reversal symmetry when spin is included is implied 
by the additional degeneracy of the irreducible repre­
sentations SA and S5 for the double group. In fact, time-
reversal symmetry requires a double degeneracy in the 
energy levels not only along the zone edge, but also at a 
general point in the Brillouin zone. 

The effect of these operations on wave functions which 
transform as the irreducible representations of the group 
of the wave vector G(S) can be studied by using as basis 
functions appropriate linear combinations of tight-
binding functions. Following the notation of Slonczewski 
and Weiss,1 these basis functions are written as 

¥n=(l/v2)(<H-a'), (Ala) 

* 2 1 =( l /v2) (a -a ' ) , (Alb) 

* 8 i = i ' , (Ale) 

*32=&, (Aid) 

in which the tight binding functions associated with the 
A, A', B, and Br atomic sites are constructed from 
atomic 2pz orbitals ypz{t~ d) centered at d on a Bravais 
lattice having N lattice sites, 

1 
a(ks) = E ***-V.(r-d), (A2a) 

\/N d 

1 
a'(k.) = L ^ - ^ ' ^ ( r - d - t i O , (A2b) 

\/N d 

1 
ft(k.) = E ^ - ^ ^ ( r - d - t i O , (A2c) 

y/N d 

1 
6'(k.) = L efk«'(d+t*'ty*(r-d-t£0, (A2d) 

\/N d 

in which the vectors ks and t i , t^', fe, t*' are defined in 
Eqs. (4) and (1), respectively. By direct calculation, the 
effect of the spatial-inversion-translation operation on 
the basis functions is found to be 

f*n(k,)-
*21(ks) 

'*n(k.) 

-*n(k.X 

= g*.-ti/2 

' - * u ( - k . ) ' 
+ * 2 i ( - k s ) 
- * 3 2 ( - k , ) 

.-*«(-k.X 
and it is readily seen that g is unitary, i.e., gfg=l. 
Whereas the spatial-inversion-translation operator acts 
only on the spatial wave functions, the time-reversal 
operator acts on both the spatial and spin wave 
functions16 

K = iayKo, (A4) 

in which <ry is the Pauli spin matrix and K0 is the com­
plex conjugation operator. The effect of K0 on the basis 

16 C. Kittel, Quantum Theory of Solids Qohn Wiley & Sons, 
Inc., New York, 1963), p. 182. 
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functions is merely to replace ks by — kg, since the 
atomic 2pz functions \f/z(r—d) can always be made real 
by taking appropriate linear combinations in the 
azimuthal quantum number. Using the definitions 

t \ n ) ^or t^ ie sP*n UP s t a t e > a n d i = ( i ) *or t n e s P m 

down state, the effect of the operator 

/° ~{\ i(ry=[ (A5) 
\ 1 0/ 

on the spin wave functions is 

Using the commutation relations for the $ and K 
operators with linear and angular momenta,16 these 
results for the time-reversal and spatial-inversion-trans­
lation operators can be applied to obtain additional 
restrictions on the matrix elements of the "k«p" and 
spin-orbit Hamiltonians. For example, the "k*p" matrix 
elements 7rij3 and 7r2,3 can be shown to be real by the 
following argument: 

7Tl,3= ( ^ l l ( k s ) , ^ _ ^ 3 l ( k s ) ) 

= (K0p^n(ks),KQ^n(ks)) 

= -(p+^»«(k.),S^u(k.)) 

= (^2(k.),#-^n(k.))=iri l8* (A7) 

in which the unitarity of $ has been utilized. The reality 
of 7T2.3 can be established by a similar argument. 

Restrictions on the spin-orbit matrix elements can 
also be obtained. For example, the matrix element Xi>2

3 

is necessarily real, since 

X i , 2 ' = ( ^ i i ( k , ) U ^ ^ 2 i ( k , ) T ) 

- (KL2az*2l(ks) T,A:*ii(k.) T) 

= - ( ^ 2 i ( k s ) l , L 2 ( r 2 ^ u ( k s ) i ) 

= -(*2i(ks)ULzazyn(ks)l) = \li2*. (A8) 

The matrix element X3i3
z is necessarily real, since it is the 

diagonal matrix element of a Hermitian matrix. Thus, 
the two spin-orbit matrix elements which couple like 
spins are real. On the other hand, the spin-orbit matrix 
elements coupling unlike spins are purely imaginary. 
This result follows from the argument given in Eq. (A8) 
when applied to the matrix elements Xi>3 and X2)3; i.e., 

Xi , 8 =(^i i (k t )T^-^+^si (k . ) i ) 

= -(^32(k.)T,^-o-+^n(k.) l)= -Xi,8* / A 9 ) 
X2,3= ™(^2i(k s)r , i : -cr+^3i(k 8) i ) 

= -(^»,(k.)T,JUr+^2i(k.)i)= -X2 t 3* . 

The matrix element X3,3 couples unlike spin states be­
tween the two degenerate basis functions ^31 and ^32. 
The time-reversal argument of Eq. (A8) yields 

X3,8=(^3l(k,)T^-O'+^82(k.)0 

= -(^8i(k.)T,L-o-+^82(k.)l)= -X 3 ,3 , (A10) 

which requires that X3)3 vanish identically. 

APPENDIX B. WAVE FUNCTIONS IN THE 
EXTENDED ZONE 

The symmetry properties of the wave functions under 
translation in wave-vector space by K4 are established. 
Because of the necessary twofold degeneracy of the 
energy levels at point H, it is sometimes useful to con­
sider a double zone, which is constructed from the first 
Brillouin zone by a K4 translation. An explicit deriva­
tion is given for the tight binding basis functions of 
Appendix A, but similar considerations apply to sym­
metrized plane wave basis functions. Since "K4*d=2wn 
for n=0, ± 1 , ± 2 , • • •, a translation of the wave vector 
by K4 in the functions denned by Eq. (A2) yields 

a(k s±K4)==a(k s) , (Bla) 

a / ( k s ± K 4 ) = - a , ( k s ) , (Bib) 

ft(k.±K4) = J(k . ) , (Blc) 

i / ( k t ± K 4 ) = - J ' ( k . ) , (Bid) 

and the results of Eq. (16) follow immediately. 


