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In this paper we calculate the electron-helium atom pseudopotential, and from that pseudopotential the 
cross section for low-energy elastic scattering of electrons from helium atoms. The agreement between ex­
periment and theory is good. In addition, the scattering of low-energy positrons from helium atoms is con­
sidered. The case of electron-helium atom scattering is chosen only as an example of the use of the pseudo-
potential as a natural tool for the study of scattering problems. The numerical calculations demonstrate that 
the results obtained in this way are of comparable accuracy with the results of more tedious and less instruc­
tive approaches. In particular, the use of pseudopotential arguments leads to an easily understood physical 
description. Moreover, because the pseudopotential approach permits the use of variational procedures, 
even in the presence of bound (i.e., core) states, the necessary calculations are not difficult to carry through. 

I. INTRODUCTION 

THE calculation of the cross section for low-energy 
electron-atom elastic scattering is a subject of 

continuing interest, both theoretically and experi­
mentally. Now, even the scattering of an electron from 
a helium atom requires solution of a three-electron 
problem. The analysis may be simplified on physical 
grounds by noting that the scattered electron is, to a 
large extent, independent of the two tightly bound elec­
trons. But in contrast with electron-ion scattering, it 
does not seem possible to invent a simple potential 
which accurately describes the scattering. There are 
primarily three sources of difficulty: These arise from 
the Pauli exclusion principle and the indistinguisha-
bility of electrons, the requirement that the wave func­
tion of the scattered electron be orthogonal to the 
orbitals of the atom, and the necessity to account for 
distortion of the atom (represented primarily by polar­
ization effects). Of course, it is always possible to solve 
the atom-plus-electron problem completely, without 
making the atom-scattered electron separation, by 
using a large computer. However, exact solutions of the 
type cited are not known even for small atoms and 
molecules. In addition to the difficult computational 
problems which arise in such an approach, there are 
other reasons for searching for simple methods. I t is 
easier to understand a scattering process when the 
interaction can be expressed in terms of a potential. This 
feeling leads to the search for some sort of quasi-
potentials (possibly energy-dependent) with which to 
describe the scattering. I t is obviously desirable for these 
quasipotentials to have simple forms and to correspond 
to well-defined model systems. This last point is of con­
siderable importance since, for electron-atom or elec­
tron-molecule scattering in larger systems, the present 
prospects for obtaining "exact" solutions are very small. 
In this paper we show how the pseudopotentials first 

introduced in solid-state physics1 may be used to de­
scribe electron-atom scattering, and make a specific 
calculation for the case of low-energy electron scattering 
from helium atoms. 

II. PREVIOUS WORK ON ELECTRON-ATOM 
SCATTERING 

Early studies of electron-atom scattering, typified 
by MacDougalPs paper2 on electron-helium atom scat­
tering, attempted to solve the virtual orbital problem 
for the atom in the Hartree approximation. Later work, 
such as that of Morse and Allis,3 emphasized the im­
portance of the Pauli exclusion principle and the anti­
symmetry of the total wave function, while the most 
recent work4-6 has involved attempts to solve the full 
atom-plus-electron problem. In attempting to solve the 
full problem, all many-electron effects (distortion 
polarization, correlation of the electrons in the atom, 
and distortion of the wave function of the scattered 
electron) are included in some sense. The electron-
hydrogen (e-H) atom and the electron-helium (e-He) 
atom systems have been studied in most detail, and 
excellent reviews are available (for e-H see Refs. 4-6 
for e-He see Ref. 6). 

In the case of electron-helium atom scattering, most 
attention has been focused on the exchange and dis­
tortion effects. Moreover, because of the agreement 
between calculation and experiment (±15%),Moisei-
witsch7 has concluded that all other (neglected) effects 
lead to small corrections. The calculations cited8 have 
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involved both numerical integration of the proper 
integrodiflerential equation and the use of variational 
procedures. The latest result leads to a scattering 
length of 1.442 atomic units (a.u.), to be compared with 
O'Malley's9 extrapolated scattering length of 1.19 a.u., 
or the mean of the scattered experimental results, which 
is 1.32 a.u.9 The difference between experiment and 
theory may reasonably be assigned to the neglected 
polarization effects. Hurst,10 Hashino and Matsuda,11 

and Kolos and Pecul12 have considered correlation 
effects within the atom and conclude that these are not 
very important. At high energies (> 100 eV) it seems 
likely that correlation may become more important 
since in this energy range the electron does not "see" a 
spherically averaged two-electron atom, i.e., there is a 
breakdown of the adiabatic approximation. 

To examine the influence of atomic polarization it is 
interesting to compare electron and positron scattering, 
since no exclusion principle operates in the latter case. 
While few low-energy positron scattering data are 
available, the theoretical results show that polarization 
effects are very important at low energies (the inclusion 
of polarization may even lead to a change of the sign of 
the scattering length). Accurate calculations for this 
system are difficult because to obtain significant results 
trial wave function must include the possibility of 
virtual positronium formation. 

The increased importance of atomic polarization in 
electron-rare-gas atom scattering may be observed by 
examining the sequence He, Ne, Ar, Kr, Xe. For, He 
has a large positive scattering length, Ne has a small 
slightly positive scattering length, but the heavier rare 
gases have large negative scattering lengths9 and also 
exhibit the Ramsauer effect. The only attempts to 
include polarization in the description of the scattering 
have used the very elementary potential13"15 

-[P/CSH-r ' ) 2] , (1) 

where P is a constant, and S is a cutoff distance. This 
form for the potential is somewhat superior to that first 
used by Holtzmark16 in his classic papers (5=0). 
Klein and Brueckner17 used Eq. (1) for electron-oxygen 
atom scattering, fitting P and 5 so as to obtain the 
correct atom electronegativity, while Mittleman and 
Watson18 have used variational techniques together 

9 T. F. O'Malley, Phys. Rev. 130, 1020 (1963). 
10 R. P. Hurst, Acta Cryst. 13, 634 (1960). 
11 T. Hashino and H. Matsuda, Progr. Theoret. Phys. (Japan) 

29, 370 (1963). 
12 W. Kolos and K. Pecul, Ann. Phys. 16, 201 (1961). 
13 R. A. Buckingham, Proc. Roy. Soc. (London) A160, 94 (1937). 
14 D. R. Bates and H. S. W. Massey, Trans. Roy. Soc. (London) 

A239 269 (1943). 
15 B. Kivel, Phys. Rev. 116, 926 (1959). 
16 J. Holtsmark, Z. Physik 55, 437 (1929). 
17 M. M. Klein and K. A. Brueckner, Phys. Rev. I l l , 1115 

(1958). 
18 M. H. Mittleman and K. M. Watson, Ann. Phys. 10, 268 

(1960). 

with model calculations fo find the best values of the 
constants appearing in Eq. (1). 

For small systems, at least, there exists a method to 
obtain a better form for the polarization potential. 
First derived by Be the19 in studies of core polarization 
in the excited states of helium, modifications of this 
method have been used by Dalgarno,20 Martin,21 

Temkin,22 and others. The method is now referred to as 
the polarized orbital approach, and thus far has only 
been used to study electron-hydrogen atom scattering.4 

Herein we extend this approach to electron-He scatter­
ing in a fashion similar to that of LaBahn and 
Callaway.23 

Several investigators have attempted to construct an 
effective potential theory of electron scattering. In par­
ticular, Watson and co-workers24 have developed an 
approach to the calculation of such a potential for the 
scattering of both electrons and ions, but their pertur­
bation theory must be carried to high order before the 
orthogonality corrections appear. Mittleman and 
Watson18 did consider the orthogonality problem in 
their study of the scattering of an electron from a 
Thomas-Fermi atom [using Eq. (1)]. A unified view 
of the theory and basic philosophy has been presented 
by Goldberger and Watson.25 

In this paper we shall present an approach to elec­
tron-atom scattering in which an effective potential 
which contains both orthogonality and exclusion 
effects is defined as a pseudopotential. 26p~28 The pseudo-
potential we use also contains polarization effects in an 
adiabatic form, and is employed to calculate electron-
and positron-helium atom scattering cross sections in 
the limit of low energies. The agreement between theory 
and experiment is very good. 

It is important to emphasize that it is not the purpose 
of this paper to restrict attention to the particular case 
of e-He scattering. Rather, it is our intention to present 
the pseudopotential method as a natural tool for the 
study of scattering problems and to show that the 
results obtained in this way are of comparable accuracy 
with the results of more tedious and less instructive 
approaches. What we demonstrate in this paper is that 
the use of pseudopotential arguments leads to an easily 
understood physical description, while because it 

19 H. A. Bethe, Handbuch der Physik (Edwards Brothers, Inc., 
Ann Arbor, Michigan, 1943), Vol. 24, Pt. 1, pp. 339fL 

20 A. Dalgarno, Proc. Phys. Soc. (London) A66, 268 (1953). 
21 V. M. Martin, M. Seaton and J. B. G. Wallace, Proc. Phys. 

Soc. (London) 72, 701 (1958). 
22 A. Temkin, Phys. Rev. 107, 1004 (1957); 116, 358 (1959). 
23 R. W. LaBahn and J. Callaway, Phys. Rev. 135, A1539 

(1964). 
24 M. H. Mittleman and K. M. Watson, Phys. Rev. 113, 198 

(1959); B. A. Lippmann, M. H. Mittlemann, and K. M. Watson, 
ibid. 116, 920 (1959). 

26 M. L. Goldberger and K. M. Watson, Collision Theory (John 
Wiley & Sons, Inc., New York, 1964), Chap. 11. 

26 B. J. Austin, V. Heine, and L. J. Sham, Phys. Rev. 127, 276 
(1962). 

27 J. C. Phillips and L. Kleinman, Phys. Rev. 116, 287 (1959). 
28 M. H. Cohen and V. Heine, Phys. Rev. 122, 1821 (1961). 
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permits the use of variational procedures even in the 
presence of bound (i.e., core) states, the necessary cal­
culations are not difficult to carry through. 

III. THE PSEUDOPOTENTIAL 

In an atom, molecule, or solid there is extensive can­
cellation between the large negative potential energy 
V of a valence electron inside the core of an atom, 
and the large positive kinetic energy which is character­
istic of the oscillations of the one-electron-valence 
wave function </> in that region. These oscillations arise 
from the restrictions imposed by the Pauli exclusion 
principle. Calculations which involve the wave function 
of the valence electron may be considerably simplified 
by introduction of a formalism which explicitly uses the 
orthogonality imposed by the Pauli principle to simplify 
the form of the wave function, albeit by the introduction 
of a new potential. The new potential inherently 
contains the cancellation of energies already mentioned, 
so that the resultant wave function is "smooth." 

Now, the one-electron self-consistent field (SCF) 
eigenvalue equation 

( r + 7 ) * = € * (2) 

can be transformed to read 

(T+V+VB)4>=e4>, (3) 

where VR is a nonlocal repulsive potential, and <f> is a 
pseudo wave function which is equal to \j/ at large 
distances from the core, but inside the core has the 
oscillations of \f/ removed. The potential (VR-\-V) 
defines the pseudopotential, 

VPS=V+VR (4) 

which can now be used as the scattering potential or 
effective potential for <£, since almost all of the complex 
many-electron effects and exclusion-principle effects 
are included in the defined potential. 

If the eigenvalues of Eq. (3) are to be the same as 
those of the untransformed Eq. (2), Austin, Heine, and 
Sham have shown that VR must take the general form 

VB4>=ZXC(XC\F\4>), (5) 
c 

where the Xc are core orbitals, and F is any arbitrary 
operator. I t should be noted that F can be chosen so as 
to satisfy any one of many independent criteria related 
to the orbitals. 

Cohen and Heine28 have examined the various criteria 
which could be used to define the new valence orbitals. 
In particular, they have shown that the smoothest 
orbitals (in the sense of having the lowest kinetic 
energy) are given by the following potential : 

F i 2
C H0=-L(x c |F|0)x c+fZ(Xck)x c , (6) 

c c 

where 
V=(<t>\V+VR\<l>)/(<t>\ct>). (7) 

The second term on the right-hand side of Eq. (6) is 
small and will be neglected in this paper. The neglect of 
V, while still leading to a "smooth" valence-electron 
wave function and the same eigenvalues, is equivalent to 
choosing the Austin, Heine, Sham pseudopotential de­
fined by F= — V.n Hereafter in this paper when refer­
ring to the pseudopotential, we shall specifically mean 

t V 0 = - Z x c ( X c | F | t f > ) . (8) 
c 

There are many computational advantages derived 
from this procedure. Actually, the calculation of VRA 

or VRCR involves a self-consistency condition, since 
VRA is used to determine <t> but VRA is calculated using 
<f>. The smoother the wave function, the more rapid is 
the convergence to the correct wave function. The 
pseudopotential V-\- VR is influenced by <f> in three ways. 
Because of the self-consistency conditions implicit in 
the Hartree-Fock equations, the core orbitals depend 
on the valence-electron orbitals or the scattered electron 
wave function, as well as on each other. However, a 
comparison of the wave functions of Na with those of 
Na+ , or of K with K+ , shows that the core orbitals are 
insensitive to the presence of the outer electron,29 much 
less to the exact form of the wave function. Thus, 
V-J-VR depends on <f> explicitly in two places: in the 
exchange potential, and in VR. 

Because the wave function obtained in this way is 
smooth, we can bypass the complete self-consistent cal­
culation of <f> by simply assuming a form for <f> in the 
calculation of the potential. The resulting energy or 
scattering length is then even more insensitive to the 
exact form of <£. Indeed, since <j> resembles a simple plane 
wave, V+ VR is calculated for the case of a plane wave. 
The total effective Hamiltonian is then used to determine 
<j>. The self-consistency of the calculation can easily be 
carried further, if that proves necessary. 

The effective core potentials for electron-helium atom 
scattering are constructed from a potential V which is 
the sum of the nuclear, Coulomb, and exchange po­
tentials, plus the polarization potential arising from the 
small distortion of the atom by the electronic charge: 

2 fX2(ri) f x W x W 
V= + 2 / dTl- / dTlPn 

+ Fp o l(r3) , (9) 

where r3 is the distance of the scattered electron from 
the nucleus, rn is the distance between two electrons, 
X is a Hartree-Fock atomic wave function (very similar 
to the correct self-consistent field core orbital), Fu is an 

29 D. R. Hartree and W. Hartree, Proc. Cambridge Phil. Soc. 
34, 550 (1948), and recent papers by C. C. J. Roothaan and 
collaborators (unpublished). 
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operator which permutes electrons one and three in 
functions to its right, and Vpo\ is the polarization po­
tential evaluated below. 

IV. POLARIZATION POTENTIAL BY CORE 
POLARIZATION METHODS 

For the study of low-energy electron scattering, it is 
sufficiently accurate to use the adiabatic approximation 
to calculate the polarization potential. By this we mean 
that at each distance r3 the scattered electron is 
assumed to be at rest relative to the core electrons of 
the atom, i.e., the core electrons of the atom adjust to 
any movement of the scattered electron before appre­
ciable displacement occurs. The adiabatic assumption 
is poorest for very small electron-atom separations, 
when the electron is "well within the atom," but even 
in this domain two factors tend to limit the error made. 
First, the potential itself approaches zero, so that any 
error cannot be very large. Second, in calculations by 
Temkin and Lamkin on electron-hydrogen atom scat­
tering using various potentials all of which differ at 
short distances, similar results are obtained in all 
cases.30,22 

To study the two-electron atom it is necessary to 
make another assumption before core polarization po-

Vvoi=V0+clV1+V2, 

tentials may be used directly. To be specific, it must be 
assumed that the electrons polarize independently, so 
that each electron reacts as if it were in the field of an 
effective nuclear charge, zen. This approximation can be 
tested using the calculations of Dalgarno31 and others. 
Dalgarno has computed the polarizability both in the 
uncoupled (independent electrons) and the coupled ap­
proximations. The difference between the results is less 
than 10% for the helium atom. In the beryllium atom 
the error is larger, but the error appears to become 
smaller again for neon and similar large systems.32 

Many forms for the core polarization potential have 
been proposed.22 However, most of the analyses pub­
lished to date have been based on the assumption that 
the electron cannot penetrate the atom. The form 
originally used by Bethe19 does include penetration in 
the dipole (/=1) contribution. Recently, two papers 
have extended Bethe's work. Callaway33 has calculated 
the no penetration, 1=1, 1=2, potential for s orbitals 
and Reeh34 has calculated the complete 1=0, 1, 2 po­
tential for s and p electrons. In our calculations we 
shall use the Reeh /=0 component, the Bethe 1=1 
component, and only one nonpenetration component, 
namely that computed by Callaway for 1=2. LaBahn 
and Callaway23 have used only the Bethe potential. In 
explicit form, the potential we use is 

(10) 

(11) 

where 

Vi= - | 1 - — n + 2 * + 6 r f + ( 2 0 / 3 y ^ , 

F2= \ l-e-24l+2x+2x2+ix*+%x*+— r>+—x*+ x7X\, (12) 
x*L \ 15 45 225 / J 

V,= 2e~4 + — + § + * + 2 ( l n 2 + c ) ( - + - V E i ( - 2 x ) ( l )+\nx(-2x+l+-+~) 
L x2 2x \x2 x) \ x2) \ x x2) 

- J - + 4 + 4 * j+0(2+4*) ] + ~ + 2 ( 1 — ) E i ( - 2 * ) + 2 e - 4 * r - + — + | + * -Ei(2s) 
\x / J x \ xJ Lx2 2x 

x(-+-+4+2*W—h-+l) ln*l, (13) 
\x2 x / \x2 x / J 

a= - (l+l/x)<r**(ln2+c+i l n* )+J ( l / * - l ) Ei ( -2x)+r**( l /4*+i- - i*) , 

0= (l+lA)[<r**(i Ei(2*)-J l n ^ - l n 2 - c ) - i ] + | ( l / x - l ) [ ( E i ( - 2 x ) - - M + 6 - 2 - ( l / 4 a ; + i - ^ ) ] , 
c = 0.577215665- • • = Euler's constant, 

re — r 
Ei(-£) = - / —dt, Ei(x) = 6> 

-dt 
t 

and in each case x=r32eff, the product of the distance 
of the scattered electron from the nucleus and the 
effective nuclear charge. For helium a value of zeu of 
1.6875 is used, since this corresponds to the best single 
Slater orbital approximation to the wave function. It 

30 A. Temkin and J. C. Lamkin, Phys. Rev. 121, 788 (1961). 

might be argued that seff should be selected to give the 
correct asymptotic behavior of the wave function. 

31 A. Dalgarno, Advan. Phys. 11, 281 (1962). 
32 H. Cohen, Laboratory of Molecular Structure and Spectra, 

University of Chicago (private communication). 
33 J. Callaway, Phys. Rev. 106, 868 (1957). 
34 H. Reeh, Z. Naturforsch. 15a, 377 (1960). 
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However, the asymptotic behavior of the wave function 
has little influence on the polarization potential, since 
the potential varies as r3~"4. We have forced the polar­
ization potential to be correct at large distances by ad­
justing the constant c\ (which is 1.1219 for our choice 
of 2eff, and is 1.000 for the LaBahn and Callaway23 

choice). We shall treat all parts of the polarization, in­
cluding the pseudopotential part, as though they 
correspond to a wave function with an effective nuclear 
charge of 1.6875. This approximation is not serious, as 
shown by the results of Temkin andLamkin.30'36 

V. TOTAL EFFECTIVE POTENTIAL 

As Hartree-Fock orbitals in Eqs. (8) and (9), except 
for the polarization calculation, we shall use the Bagus-
Gilbert nominal basis set36 

X=0.18159^i«(2.906)+0.84289^1.(1.453), (14) 

where <pu(z) is a normalized Slater Is function with 
orbital exponent z. We evaluate the exchange part of 
the potential in the limit of zero-electron energy, 
assuming that the scattered-electron wave function in 
the pseudopotential formalism is sufficiently smooth 
that the spatial variation contributions to the exchange 
are small. Then 

x(n)*(n) 
-drix(rs)-

rn •I 
x(n) 

drlX{rz)<t>{ri) (15) 
rn 

in the limit as k —•> 0, where k is the magnitude of the 
wave vector of the scattered electron. There is then ob­
tained the local potential37 

VA = V- FPoi= -6.116632e~A7f+0.535625e-2A7r 
+3.3831894^3AVr+0.1978492e-4A7> 
+ 2.2064609^-2Ar+ 2.026883<r3Ar 

+0.191650<r4Ar (16) 

with A= 1.453. To complete the potential, 

VR<t>~- xV<fxPrix(rz) (17) 

must be computed. Again taking the limit k —> 0 so as 

35 Preliminary versions of the next section were presented at the 
Istanbul International Summer School of Quantum Chemistry, 
August-September, 1964, and will be published in the proceedings 
of the conference. 

36 P. Bagus, T. L. Gilbert, C. C. J. Roothaan, and H. Cohen 
(to be published). These results were supplied by Gilbert of 
Argonne National Laboratory and by Roothaan of the Laboratory 
of Molecular Structure and Spectra, University of Chicago. 

87 The local pseudopotential approximation implies that the 
variation of the pseudo wave function <f>(ri) over the atomic-core 
region is small. We can then replace the repulsive pseudopotential 
VRA [Eq. (8)] by a local potential 

VR
A<t>~~2xc(xc\V)<t>. 

to obtain a local potential, we find 

VR=~ [x(n)V(ri)<Pnx(rt). 

Substituting F = F A + J V > I , then, 

(18) 

VR = 5.634646<r1 -453'»+ 3.434869^~2 -906" 

+ 1.107442^-1-6875r». (19) 

The total effective potential is, of course, 

VT=VA+Vpol+VR (20) 

which is easily obtained from Eqs. (16), (10), and (19). 
Because of the assumptions made in calculating this 
local potential, it is valid only near k = 0. However, for 
k —> 0, most contributions vary as, e.g., l / [&2+ (1.453)2], 
and the error in the potential is small even for electron 
energies of 0.5 eV (£^0.2) . The validity of this con­
clusion is easily checked using the calculations of 
LaBahn and Callaway. 

In Fig. 1 is displayed the total potential for the elec­
tron-helium atom scattering. The maximum of this 
potential occurs at about 1.15 a.u., an interesting ob­
servation since the scattering length is 1.19 a.u. accord-
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FIG. 1. The electron-helium atom pseudopotential as a function 
of electron-atom separation. 
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ing to O'Malley. The potential does not become nega­
tive until 6.7 a.u., and has a well depth of —0.0001109 
a.u. at 7.8 a.u. From these observations alone, it is 
obvious that the polarization interaction is not very 
important in electron-helium atom scattering. LaBahn 
and Callaway,23 using effective-range theory, estimate 
that the short-range potential has a range of 3.7 a.u., 
and this agrees closely with our results. 

VI. SCATTERING LENGTH 

Before presenting our variational calculations of the 
scattering length, it is advantageous to examine the 
Born-approximation estimate of the cross section in the 
limit of zero energy. We examine the Born approxima­
tion not because it is good (indeed, one cannot use the 
Born approximation), but because the relative magni­
tudes of the various contributions are nicely and simply 
represented in this way. In Table I there is displayed 
the Fourier transform of the potential subdivided into 
the various contributions. We note again the relatively 
small contribution of the polarization interaction to the 
total cross section. It is also important to note that the 
contribution of the polarization interaction is very 
small primarily because of the orthogonalization im­
plicit in the pseudopotential (only the tail of the polar­
ization contributes), and therefore it is to be expected 
that the polarization interaction will make a much 
larger contribution in positron-atom scattering where 
orthogonality requirements are absent. We shall later 
present some simple calculations verifying this remark. 

The magnitude of the potential makes the use of the 
Born approximation inappropriate. There are two 
alternative ways to calculate the zero-energy cross 
section: the integrodifferential equation, which reduces 
to a one-dimensional equation because of our local 
potential assumption, may be integrated (see LaBahn 
and Callaway23), or standard variational procedures 
may be used to determine directly the scattering 
length. Several numerical integrations were tried, but 
difficulty was encountered in the small-& region and we, 
therefore, used instead the variational method. A 
variational calculation is also more accurate, since the 
extrapolation of the cross section to zero energy can be 
difficult. (It should be remembered that the k de­
pendence of the repulsion and polarization components 
of the cross section are very different.38 

Ohmura has developed a method for obtaining the 
scattering length using the Kohn variational procedure. 
This method converges monotonically to the correct 
scattering length with increasing parameterization, 
provided that the wave function has a few simple 
properties. A general discussion of these required prop­
erties is to be found in the text by Wu and Ohmura.39 

88 T. F. O'Malley, L. Spruch, and L. Rosenberg, J. Math. Phys. 
2, 491 (1961). y 

39 T. Y. Wu and T. Ohumura, Quantum Theory of Scattering 
(Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1962), 
p. 76ff. 

TABLE I. Zero-energy Fourier transforms (in a.u./4r). 

VA 
Vo 
Vi 

v2 

Potential 

-2.4281 
-0.0597 
-0.5034 
-0.0484 

Pseudopotential 
contribution 

+3.9510 
0.1661 
0.2550 
0.0398 

Total 

1.5229 
0.1064 

-0.2484 
-0.0086 

1.3723 

Given the asymptotic conditions 

lim <$>(r3) —> sin(&r3+5) , 
ra-oo ( 2 1 ) 

$(0) = 0 

and letting at be the variational approximation to the 
scattering length, 

lim<S>(r3)-->r3-af. (22) 

The stationary value of the scattering length, here de­
noted jit, then satisfies the condition 

H<at+I Hrz)LHrz)d% (23) 
Jo 

with at determined by actually taking the limit (21), 
and where 

L=~-(d2/dr2)+2VT. (24) 

The factor of 2 in Eq. (24) arises from the change from 
atomic units to Rydberg units. Ohmura shows that for 
the correct choice of trial wave function, there is a 
monotonic convergence to the scattering length from 
above provided that no bound states exist. Notice that 
there is no possibility for bound states to occur in the 
pseudopotential formalism, since the wave function for 
the scattered electron must be orthogonal to the bound 
states of the atom. 

The choice of trial function is fraught with difficulty 
and our choice was dictated by computational con­
venience. As an n function approximation we take 

n 

$n(rz) = Uo+ £ bmumi (25) 
w = l 

where 
u0=r, 
^m=exp[— (m— l)r][l—exp(—r)] . 

These terms represent the spatial variation of the phase 
shift. While individual terms in this expression vary 
rapidly with distance, the net spatial variation of (25) 
near the nucleus is small. 

The scattering length was evaluated using Eq. (23) 
for VA> VA+VR(A), and VT for n= 1, 2, 3 [Eq. (25)], 
i.e., using up to three variational parameters. VR(A) 
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TABLE II. Variational calculations of scattering lengths for electron-helium scattering using the Kohn-Ohmura procedure. 
<f> = r-a(l-e-r)-(3e-r(l-e-r)-ye-2r{l-e-r). 

Potential 
M(0) 
(a.u.) 

M(D 
(a.u.) 

M(2) 
(a.u.) 

M(3) 
(a.u.) 

1. No pseudopotential or 
polarization: VA 

2. No polarization effects: 
VA+VR(A) 

3. Total potential 

4. Experimental* 
5. LaBahn-Callawayb 

calculation using only dipole 
polarization but more 
elaborate methods 

-4.887 

3.0425 
(« = 0) 

2.7412 
(a = 0) 

undefined 

1.713 
(a =1.230) 

1.473 
(a = 1.204) 

1.5056 
(a =1.500) 
03=-1.686) 

1.278 
(*= 1.468) 
(/3=-1.647) 

1.5016 
(a =1.5721) 
(0=-2.1011) 
(7=0.6156) 

1.193 (a =1.436) 
03=-1.428) 
( 7 =-0 .315) 

(1.19) 
1.132 

» See Ref. 9 in text. 
b See Ref. 23 in text. 

represents the repulsive potential without polarization 
terms. The results obtained are listed in Table II. 
Agreement with other calculations, when these exist, 
is good. Without the polarization interaction, i.e., 
V=VA+VR(A), our calculated scattering length is 
1.502 a.u. versus 1.442 a.u. obtained from a more elabo­
rate (and more precise) calculation by Moiseiwitsch.7 

The agreement between our calculated scattering length 
and experiment may be misleading since the "experi­
mental" results are based on a drastic extrapolation 
using effective-range theory,9 and the associated error 
may be as large as 10% since exchange effects may not 
be properly accounted for by the extrapolation pro­
cedure used. The scattering length reported herein has 
probably converged to within a few percent of the 
correct result. The scattering length computed by 
LaBahn and Callaway is in good agreement with our 
value, even though they have neglected the /=0 terms 
defined in Sec. IV. Although we may have overesti­
mated these terms, they probably contribute less than 
10% (in a positive sense) to the scattering length com­
puted by LaBahn and Callaway23 (see Table I). The 
good agreement between the results of our calculations 

TABLE III. Phase shifts 5 and cross sections a 
for s-wave electron-helium scattering. 

E 
eV 

0.00 
0.005 
0.022 
0.049 
0.087 
0.136 
0.196 

k 
a.u. 

0.00 
0.02 
0.04 
0.06 
0.08 
0.10 
0.12 

Complete 
pseudopotential 

sin5/& 
a.u. 

(-1.193)a 

-1.275 
-1.310 
-1.340 
-1.342 
-1.346 
-1.357 

cr 

a.u. 

(17.885)* 
20.42 
21.57 
22.57 
22.64 
22.77 
23.12 

Pseudopotential 
without monopole 

distortion term 
sin5/& 

a.u. 

-1.228 
-1.270 
-1.297 
-1.297 
-1.301 
-1.300 

<r 
a.u. 

18.95 
20.27 
21.14 
21.14 
21.27 
21.24 

and those of more elaborate calculations is very en­
couraging. However, it will be shown that the cross 
section as a function of energy is not given very accu­
rately by our potential. 

A plot of <£(r3)/r3 from Eq. (25) shows that the func­
tion is smooth and deviates from unity by less than 
17% out to 0.3 a0, i.e., the rapid variations of the indi­
vidual terms are removed in the sum of terms. Indeed, 
some of the remaining variation of <£(r3)/>3 would be 
removed upon adding further terms to the trial function. 
The computed scattering length may be expected to 
vary only slightly with increasing number of terms while 
the wave function may vary greatly. It should be noted 
that the constancy of <£(r3)/V3 implies that only minor 
errors are introduced by not completing the iterative 
procedure. 

We estimate that the scattering length calculated 
herein is accurate to 5% in the limit of zero energy. The 
error, unfortunately, increases rapidly with energy, 
since the potential is more sensitive to k than at first 
suspected. 

VII. SCATTERING CROSS SECTION AS 
A FUNCTION OF ENERGY 

The cross section as a function of energy can be de­
termined from our total potential by integrating 

(L-k2)$=0. (27) 

1 From previous section by variational calculation. 

In assuming that there exists a local potential, we have 
removed the energy dependence of the operator L. As 
stated earlier, this k dependence is weaker than that of 
the principal scattering process. However, we shall see 
that for scattering with nonzero incident energy our 
results deviate significantly from the more exact calcu­
lations of LaBahn and Callaway. It is possible to 
include, with relative ease, some of the k dependence of 
the potential. We have not, for reasons of consistency, 
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FIG. 2. The electron-helium atom 
elastic-scattering cross section as a 
function of energy. 1. This work based 
on a pseudopotential formalism in­
cluding all adiabatic polarization 
effects. 2. This work, pseudopotential 
formalism without monopole distor­
tion term. 3. LaBahn and Callaway 
adiabatic-exchange results including 
dipole polarization effects. 4. Modi-
fied-effective-range theory using only 
dipole polarization effects. Plus sign 
represents experimental data of Golden 
and Bandel. 

Energy (eV) 

made this extension herein, but other studies of elec­
tron-hydrogen atom scattering40 will consider this 
energy dependence in more detail. 

Equation (27) was integrated outward, using 
standard procedures,41 on the IBM 7094 computer at 
the University of Chicago. 

For the low-energy region of interest the numerical 
integration was carried out to 50 a.u. The mesh size Ar 
used was varied from 0.01 to 0.1 in the following way: 
Ar=0.01 for 0 < r < 0 . 1 5 , Ar=0.05 for 0 .15<r<2.0 and 
Ar=0.1 for 2 .0<r<50.0 . The phase shifts were evalu­
ated from the zeros and the maxima of the resulting 
wave function. As a check, the procedure of LaBahn 
and Callaway23 was also used by matching the wave 
function to spherical Bessel functions of the form 
k~l (C coskr-{-D sinkr) from which the s-wave phase 
shift is found to be 50= cot -1 (D/C). From the phase 
shifts, the cross section as a function of energy for the 
s wave was constructed (Table I I I and Fig. 2). 

For the low energies considered, ^-wave scattering is 
small. To calculate the magnitude of ^-wave scattering 
we need another potential, since when 1=1 the exchange 
potential changes and VR disappears. The p-w&vt 
phase shift should vary approximately as k relative to 
the s-wave phase shift. Since in our calculations &2<0.04 
a.u. (approximate) calculations indicate that ^-wave 
scattering contributes less than 1% to the total cross 
section even at £ = 0.2(0.54 eV). 

To obtain accurate zero-energy cross sections experi­
mental points are required in the region 0.06>&>0.01 

40 N. R. Kestner (to be published). 
41 J. Irving and N. Mullineux, Mathematics in Physics and 

Engineering (Academic Press Inc., New York, 1959), p. 697; 
J. B. Scarborough, Numerical Mathematical Analysis (Johns 
Hopkins Press, Baltimore, 1962), p. 56. 

a.u. (0.048 to 0.001 eV). The scattering cross section in 
this region changes rapidly with energy. In this regard, 
we are in agreement with the calculations of LaBahn 
and Callaway.23 We also agree that the cross section 
from 0.15 to 0.6 eV (at least) is relatively flat, but our 
calculations only hint at the maximum found by 
LaBahn and Callaway, and are not accurate enough to 
unambiguously establish the existence of the maximum. 
The calculations reported in this paper deviate by about 
20% from those of LaBahn and Callaway, and by a 
slightly larger amount from the results of effective-
range theory. 

I t should be noted that at one point we have included 
an effect omitted by LaBahn and Callaway, i.e., the 
short-range zero-angular-momentum effects of polar­
ization [Vo in Eq. (13)]. While it is difficult to estimate 
how accurate our one-electron model is as a description 
for this effect, we have shown that this particular con­
tribution is of the order of one-third the dipole polar­
ization contribution. The quadrupole term is much 
smaller. The effects of the spherically symmetric polar­
ization term extend to larger k because of the short 
range of the polarization potential. Indeed, some of the 
discrepancy between our values and those of LaBahn 
and Callaway, but probably not the major fraction, 
might be thus accounted for. We estimate that the 
terms included by us but omitted by LaBahn and 
Callaway would contribute an increase of the order of 
10% to their cross sections (see Table I) . I t is then 
necessary to re-examine the modified effective-range 
theory, but our work had been completed before we 
learned of these results, and thus we have not evaluated 
the effect of VQ alone. 

Both this paper and the paper of LaBahn and 
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Callaway have established two features of the energy 
dependence of the cross section which should be studied 
experimentally: there is predicted a rapid change in 
cross section with energy below 0.05 eV, and a maximum 
in the cross section somewhere between 0.4 and 0.9 eV, 
our value being on the lower side but less accurate. 

In the recent experimental work of Golden and 
Bandel [D. E. Golden and H. W. Bandel, Phys. Rev. 
138, A14 (1965)],42 the electron-helium atom cross 
sections at low energies (to 0.3 eV) were determined. 
The modified effective-range formula23 yields a scattering 
length of 1.15±0.02 a.u., in good agreement with the 
value 1.193 a.u. calculated herein. At higher energies 
(0.4 eV) there exists a discrepancy of about 15-20% 
between our calculated values and the experimental 
results of Golden and Bandel, which are in very good 
agreement with the calculation of LaBahn and 
Callaway.23 This discrepancy does not arise from the 
use of the monopole distortion term, which contributes 
only about 5% to the calculated cross section 
(Table III). There are two possible ways of improving 
our results for higher values of k: (a) The k dependence 
of the pseudopotential should be included; (b) A non­
local potential should be used. 

It should be noted that even if it proves rather dim-
cult to apply the pseudopotential formalism to the cal­
culation of electron-scattering cross sections for finite 
(nonzero) k, this method should be useful in conjunction 
with the effective-range theory.23 The combination of 
the calculated scattering length and the polarizability 
correction should lead to scattering cross sections at 
energies up to 1 eV which are reliable within 5%. 

VIIL POSITRON-HELIUM SCATTERING 

The description of the scattering of positrons by 
helium atoms is, in many ways, a much simpler problem 
than the description of electron scattering, since we have 
no difficulty with constructing an effective potential. 
Indeed. 

'rP= -VA
NE+Vpol (28) 

Potential Contribution 

F A N E 

Vo 
Vi 
V2 

Total 

4.969 
-0.750 
-6.696 
-0.610 

-3.088 

This potential is not &-dependent. The sign change 
arises from the sign of the positron charge. 

There are several reasons for examining positron-
atom scattering in this paper. Although our calculations 
are not accurate enough (due to the neglect of virtual 
positronium formation)43-44 to be regarded as a substi­
tute for experimental data, they are of interest in com­
parison with the electron-atom scattering results 
because of the large contribution by the polarization 
interaction. In addition, we find a Ramsauer effect if 
s waves alone are included in the representation of the 
cross section, in agreement with Schwartz's43 calcula­
tions of positron hydrogen-atom scattering. In the 
following we also estimate the £-wave contribution to 
the cross section, and show that the Ramsauer effect is 
then not to be expected, except in a very mild form. 

where F A
N E is the nonexchange part of V in Eq. (16), 

i.e., it does not contain the term displayed in Eq. (15). 

TABLE IV. Zero-energy Fourier transforms of the positron-
helium potential (in atomic units). 

42 This paper was published after this manuscript had been sub­
mitted for publication. Hence the present authors were not biased 
by knowledge of the experimental facts when these calculations 
were performed. 
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FIG. 3. The posi­
tron-helium atom 
potential as a func­
tion of distance. 

2 3 4 5 6 
R(flo> 

In Table IV we list the zero-energy Fourier transform 
for the potential of Eq. (28), where F A N E is 

e—2.906r3 

VA
NE= 1.420928 +2.064608er2-906''3 

+0.5130906-

p—b. 812 r 3 

+ 1.118281<r4-3B9r« 

+0.065950- +0.191650e-5-812'3. (29) 

The results are strikingly different from the case of 
electron-helium atom scattering where the contribu-

43 C. Schwartz, Phys. Rev. 124, 1468 (1961). 
44 L. Spruch and L. Rosenberg, Phys. Rev. 117, 143 (1960); 

W. J. Cody, J. Lawson, H. Massey, and K. Smith, Proc. Roy. 
Soc. (London) A278 (1963). 
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tions from the exchange potential and the pseudopo-
tential dominated. Here neither exists, and thus we get 
an entirely different picture of the scattering. In fact, 
without inclusion of the polarization interaction, the 
wrong sign is obtained for the transform and, as we 
show below, also of the scattering length. This is to be 
expected from the potential shown in Fig. 3. 

The scattering length was calculated in the same 
manner as for the previously discussed electron-atom 
scattering. The results are displayed in Table V. The 
change in sign agrees with the calculations of other 
authors. 

Again the differential equation was integrated nu­
merically for values of k to 2.0 a.u. The s-wave phase 
shift is shown in Fig. 4. We see clearly that a 
"Ramsauer" effect exists for the s-wave scattering, i.e., 
the cross section goes to zero at about 4.9 eV. This also 
occurs in the case of positron-hydrogen atom scatter­
ing.43,44 For a true Ramsauer effect, however, the con­
tributions from higher partial waves must also vanish. 
Several authors have compared the k = 0 cross section 
with the experimental estimate of Teutsch and Hughes45 

TABLE V. Zero-energy scattering lengths for positron-helium 
scattering (in atomic units). 

# = r - a ( l — e~r)— 0e~r(l — e~r)— 7*r2r(l — e~r). 

Potent ia l <*(0) /*<!) M(2) M ( 3 ) 

VA*& 

(No polarization) 

To ta l potent ia l 
VTP 

0.795 
( a = 0 ) 

- 0 . 4 3 0 
( a = 0 ) 

0.448 
(a =0.615) 

- 0 . 4 4 0 
(a =0.0988) 

0.426 
(a =0.439) 
(0 =0.392) 

- 0 . 5 7 5 1 
(a = -0 .4079 ) 
(0 = 1.0433) 

- 0 . 5 7 5 4 
(a = -0 .4209 ) 
(0 = 1.146) 
( T = - 0 . 1 2 2 1 ) 

for 18-eV positrons. Clearly this is not a value com­
parison, as is easily deduced from Fig. 4. 

The £-wave cross section was calculated using a one 
parameter (tanr?) variational equation46 

^= —coskr+sinkr/kr+tamj sinkr. 
Using the Kohn variational method,46 set 

r r ( i(i+i) N 

/ i s / #,fL+— ^ W r , 

where the stationary condition is 

5(7r-& tarn?) = 0 

k tan5*=& tdiXitji—Ii, 

(30) 

(31) 

(32) 

(33) 

The results of this analysis are displayed in Table VI 
in terms of the partial cross section <ny where 

<rr=E<r*=47r£-2X; (2/+1) sin25*. 
Z=0 J=0 

(34) 

45 W. B. Teutsch and V. W. Hughes, Phys. Rev. 103, 1266 
(1956). 

46 See, for example, a thorough discussion in Ref. 39, pp. 57-60. 
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FIG. 4. The positron-helium atom phase shift as a function of 
the magnitude of the wave vector. 

As clearly shown in Fig. 5, there is no Ramsauer effect 
because of the large ^-wave scattering. The />-wave 
phase shift is clearly not as accurate as the s-wave phase 
shift, but any comparison between the cross section 
computed for zero energy and that measured at 18 eV 
is impossible, and the assumption that the cross section 
is independent of energy is also not correct. Unfor­
tunately, the agreement between calculation and ex­
periment at k= 1.14 a0 is not good, since Teutsch and 
Hughes find <rr=0.07zfc:0.02 (a.u.). The experimental 
values are hard to obtain and may be in error. Our 
values are much larger than those of other authors, 
possibly due to differences in the method of introducing 
the polarization interaction: our cross section without 
polarization is in good agreement with that of Allison, 
Mclntyre, and Moiseiwitsch.47 Their value, including 

TABLE VI. Total and partial cross sections (a.u.) for positron-
helium scattering (s- and £-wave contributions). 

k 

0.0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 
1.2 
1.4 
1.6 
1.8 

s-wave partial 
cross section 

(4.161) 
2.518 
1.194 
0.583 
0.180 
0.035 
0.000 
0.012 
0.068 

0.174 
0.261 
0.316 
0.342 
0.355 

^-wave partial 
cross section 

0.000 

0.044 

0.175 

0.214 

0.185 

0.126 
0.070 
0.031 
0.009 
0.001 

Total 
cross section 

(4.161) 

1.238 

0.355 

0.214 

0.253 

0.301 
0.331 
0.347 
0.351 
0.356 

47 D. C. S. Allison, H. A. J. Mclntyre, and B. L. Moiseiwitsch, 
Proc. Phys. Soc. (London) 78, 1169 (1961). 
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A .8 .1.2 
k (atomic units) 

ZO 

FIG. 5. The positron-helium atom elastic-scattering cross section 
as a function of the magnitude of the wave vector. 

polarization, is only —0.16, indicating that they have 
greatly underestimated polarization effects. 

IX. CONCLUSIONS 

In this paper, by using a pesudopotential formalism 
and an adiabatic-core-polarization method for the 
introduction of polarization effects, we have calculated 
an effective potential for low-energy electron scattering 
from helium atoms. The zero-energy cross section 
agrees with the "experimental" value and with the more 
elaborate, though incomplete calculations of LaBahn 

and Callaway23 to within 5%. In agreement with the 
last authors we find the scattering cross section to be 
energy-dependent below 0.05 eV and relatively flat 
above, with a maximum possible near 0.4 eV. Polar­
ization effects contribute about 20% to the scattering 
length. At finite energies our values are substantially 
higher than those of LaBahn and Callaway since we 
have included the effect of symmetrical distortion of 
the atom by the scattered electron. This accounts for a 
sizeable part of the discrepancy between the two 
calculations. 

Our calculations show that the concept of a potential 
can be used, even in this extreme case, if care is taken 
to define the situation in which this effective potential 
is to be used. The simplicity of our calculations attest 
to the advantages of this method. Knowledge of the 
potential also enables us to understand better the qual­
itative features of our scattering results. I t appears that 
most properties of the potential are given within 10% 
by this useful approximation. 

The cross section for positron-helium atom scattering 
was found to have a large polarization contribution. 
The energy dependence of the cross section is complex, 
for while the s wave has a zero-phase shift at & = 0.6 
a.u., the total cross section (s and p waves) has only a 
small dip at this point. Thus no Ramsauer effect is to 
be expected. 

We feel confident that the methods discussed herein 
can be applied with reasonable confidence to other 
electron-rare-gas and inert-molecule-scattering prob­
lems without some of the parameterizations often used 
in the past for the exchange, orthogonalization, and 
polarization effects. 
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