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thus must correspond to the temperature at which the 
lithium was diffused into the silicon, that is, to very high 
values of ®. This conclusion is supported by Fig. 12. 
The latter gives the result of comparing this sample 
with sample 20 by means of the similarity relations. 
Although the agreement is not very good at low 
temperatures T, the two curves are close enough to 
indicate an almost random distribution. The disagree
ment at low T may, in this case, well be due to the 
Tanaka-Fan traps, since sample £56 has very low 
compensation. 

Note added in proof. After submitting the article for 
publication, a previous work by E. M. Pell on lithium-

I. INTRODUCTION 

IN a previous article1 (hereafter referred to as I) an 
exact equation for the evolution of the density 

matrix of a quantum-mechanical system (generalized 
master equation) was derived as a "formal" expansion 
in powers of the density—for density matrices which are 
initially diagonal. 

It is the purpose of the present article to extend that 
result to completely arbitrary initial states (arbitrary 
initial density matrices). We shall thus derive a master 
equation, for both quantum and classical systems, which 
is exact for arbitrary initial states (at all times) and which 
is expressed as a "formal" expansion in the density. 

The comparable master equations of Prigogine 
and Resibois,2 Van Hove,3 Zwanzig,4 Peterson,5 and 
Janner,6 on the other hand, are expressed as formal ex
pansions in the interaction potential whereas Swenson's7 

equation is expressed as an expansion in the two-body 
scattering matrix. 

The present article is a continuation of I, to which the 
reader is referred for definitions and nomenclature. 

1 J. Weinstock, Phys. Rev. 136, A879 (1964). 
2 1 . Prigogine and P. Resibois, Physica 27, 629 (1961); P. 

Resibois, ibid. 29, 721 (1963). 
3 L. Van Hove, Physica 23, 441 (1957). 
4 R. Zwanzig, J. Chem. Phys. 33, 1338 (1960). 
6 R. L. Peterson, J. Math. Phys. 5, 85 (1964). 
6 A. Janner, Helv. Phys. Acta 35, 1 (1962). 
7 R. J. Swenson, J. Math. Phys. 4, 544 (1963). 

boron ion pairing in silicon Q. Appl. Phys. 31, 1675 
(I960)] was brought to our attention. The comparison 
between his result on the pair size, 2.5-2.7 A, and ours 
of 2.87 A is quite satisfactory. 
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II. QUANTUM MASTER EQUATION FOR 
ARBITRARY INITIAL STATES 

We begin with Eq. (43) of I which is valid for arbi
trary initial states of the system [arbitrary p(0)]. The 
problem now, as in I, is to obtain an expression for 
OngNpiO) in terms of pnit) which, when substituted into 
Eq. (43), yields a closed equation for pn(t) (master 
equation). This was done in Appendix D of I for ini
tially diagonal density matrices (initially independent of 
particle configurations in momentum representation) by 
setting 0Dgo(E)p(0)l=g0(E)0Dp(0)^ equal to zero. To 
obtain an expression for OogNp(0) which is valid for 
arbitrary initial states we need only add go(E)ODp(0) 
to the right-hand side of Eqs. (Dl) and (D3) of I. 
If we then follow the remaining steps of Appendix 
D and keep all terms which appear postmultiplied by 
go(£)Opp(0) we eventually obtain, in place of (D10), 

ODgN(E)P(0) = — { £ (ODTg0-
1)k}DgN(E)p(0) 

k=i 

+""•{ E (0DTg0-y}go(E)0DP(0) 
k=0 

= "mc{ODTg<rKl-ODTg0-
iri}DgN(E)p(0) 

+»-{(l-O f l7V1)-1}go(£)CW(0). (1) 
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Exact generalized master equations, for both quantum and classical systems, are derived for completely 
arbitrary initial states (arbitrary initial "correlations") in the form of a "density expansion." This result is 
a generalization of a previous equation which was restricted to initially "uncorrected" states. 
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Equation (1) is an exact expression for the off-diagonal 
part of the Laplace transform of the density matrix for 
arbitrary initial states—in the limit of an infinite system. 

[If p(0) is diagonal then the last term on the right-
hand side of Eq. (1) would vanish and Eq. (1) would be 
the same as Eq. (D10) of I.] 

Substituting (1) into the sum on the right-hand side 
of Eq. (43) of I and making use of Eqs. (29) and (36) 
of I we obtain, instead of Eq. (46) of I, 

D E L T9{iv • 'is+i)g6~l0DgN{^iv • -i8+i)p(Q) 
s il<---<is+l 

+D{™*{ TgtrKl- Oz>rgo-1)-1})goOz>p(0) 

^K(E)EDgNP(0)+lDT+K(E)2ODP(0), (2) 

where K(E) is defined in Eq. (47) of I. If we now sub
stitute Eq. (2) into Eq. (43) of I we obtain, after evalu
ating the formal inverse Laplace transforms, the follow
ing closed equation for the diagonal part of the density 
matrix pn(t) : 

PD(t) = PD(Q)+ZK(t)+t 0.(O]ODP(O) 

+ f dylK'(t-y)+£, Ps'(t-y)-]pD(y), (3) 

where, as in I, we have used K(1)^=0=0. 
Differentiating both sides of (3) with respect to / and 

using Eq. (37) of I we finally obtain 

dpD(t)/dt=tK'(t)+t, &'(/)]Cbp(0) 

+ [ dylK"(t-y)+ltf3s"{t-y)-]pD(y). (4) 
JQ «-I 

Equation (4) is an exact equation for PD(0 at all 
times for completely arbitrary initial states—in the 
limit of an infinite system. 

The range of validity of this equation is somewhat 
more general than the master equation of Prigogine and 
Resibois2 in that it is valid for inhomogeneous systems 
(as well as homogeneous systems) and for any pair-
interaction potential. Otherwise, the distinction between 
the two equations is that the terms in Eq. (4) are ar
ranged as a "formal" expansion in the particle density 

whereas the corresponding terms in the Prigogine-
Resibois equation are arranged as a "formal" expansion 
in the interaction potential. 

Equation (4) differs from Eq. (49) of I in that it is 
valid for all initial states, whereas Eq. (49) is valid for 
only initially diagonal states (no initial "correlation"). 
The term [ir(fl+£.j8/(0]O2>p(O), in Eq. (4), fully 
describes the effects of initial "correlations" on PD(0 
but has not been fully investigated. Presently one can 
only say that this term will eventually vanish if the 
initial "correlations" are of finite range. 

III. CLASSICAL MASTER EQUATION FOR 
ARBITRARY INITIAL STATES 

The classical master equation [see Ref. 8] is an 
equation for the A^-particle momentum distribution 
function <p(t) defined by 

^ ) ^ F - ^ ^ { R } ^ ( { R } , { P } , 0 , 

where {R} and {P}, respectively, denote the configura
tions and momenta of all N particles of the system, and 
FN is the distribution function of all N particles (solu
tion of Liouville's equations). 

The master equation for <p(t) can be immediately ob
tained from Eq. (4) by simply replacing the quantum 
mechanical Liouville operators (see I) by the cor
responding classical Liouville operators and replacing 
the diagonal part D of an operator by the configuration 
integral V~Nfd{R}. We thus obtain from (4)—after 
noting that K(t) vanishes exactly for a classical system 
[see I and Ref. 8]— 

d<t>(t) oo 
=Z Ps'(t)0DFN(0) 

dt «-i 

+ f dyLZPsff(t-y)My), (5) 
Jo 

where /3S is the classical collision operator defined in 
Ref. 8 and 0D is defined by 0D= (l-V~Nfd{R)). 

Equation (5) differs from the exact classical master 
equation in Eq. (29) of Ref. 8 in that it is valid for all 
initial values of FN (all initial distribution functions), 
and hence contains the initial "correlation" term 
Jls/3/(t)ODFN(0), whereas the latter equation is valid 
only when ODFN(0) = 0. 

8 J. Weinstock, Phys. Rev. 132, 454 (1963). 


