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The theory of the capture of muons by nuclei (u™+Na— »,+N3) is developed, the nuclei ¥, and N,
being treated as “elementary” particles. Form factors are introduced to describe the N, — N transition
matrix elements of the hadron weak currents; these form factors are then evaluated on the basis of the
conserved-vector-current and partially-conserved-axial-vector-current hypotheses and with use of appro-
priate experimental data regarding the corresponding electromagnetic and beta-decay transitions. The
reactions p~+:He? — v,+1Hob, p~+¢Ce — v,+sB+2, and p~+3Lis® — v,+2He® are discussed explicitly

1965

and the calculated rates are compared with available measured values.

1. INTRODUCTION

N the present paper we apply to the theory of muon
capture the methods developed in a previous paper!
for the treatment of beta decay. In brief, we treat the
nuclei N, and N, which participate in the muon
capture process uy~+N,— v,+N3y, as “elementary”
particles and apply the hypothesis of the conserved
polar-vector hadron weak current (CVC) and the
hypothesis of the partially conserved axial-vector
hadron weak current (PCAC). The CVC hypothesis,
which permits identification of the polar-vector hadron
weak current with the isospin current, relates the polar-
vector and weak-magnetism N, — N, form factors with
the Dirac and Pauli electromagnetic form factors of N,
and Ny; the PCAC hypothesis, which together with a
suitable pion-pole-dominance assumption implies the
Goldberger-Treiman (G-T) relation, connects the axial-
vector and induced-pseudoscalar N, — N, weak form

factors; finally, the axial-vector N, — N form factor is
known at zero momentum transfer from the observed
Ny — Ng+e 7, beta-decay rate while its dependence
on momentum transfer can be found from an analysis of
suitable empirical nuclear-structure data (see below). In
this way, we avoid all recourse to the use of nuclear
models and of the impulse approximation in order to
calculate the N,«> N, transition matrix elements of
A and 514 and are able to give theoretical expres-
sions for at least several of the muon capture rates which
are substantially free of the uncertainties of nuclear
physics.?

II. CALCULATIONS

The relation between the rate of the muon-capture
reaction:I'(u=+N,— v,+N}) and the rate of the corre-
sponding beta-decay reaction: T'(NV, — No+e+7.), is
given by?

T(uw+N.— V,"‘I'Nb)_[ 4”3]E,’(1— E, >[C(N¢)/Z(N.,) e )“J / %G&)@)%x(m(zv,,_» Ny) /

T(Ny— Nete+3,) L(2r)

my+my

[i"_:r f " dE.E(E2—m2)*(my—m,—E.*F(Z(NJ),E.) /

(@m)?

me

r \ 137 mytm,

dpe [ dps
4r ;(‘*exk"’mn“’(Nb—»Na)),

La®W=TILA+ve)vevs(y: o4/ 2iE)yaorr(1+7v8) (v putim,)ys/ 24E,)]
= (E'Eu)_l[(?')x (Pﬂ) v+ (Pr))\ (Pu)r"" 504’: * Pﬂ+elhv (?r)p (17#) vj (_ 1)3" )

* Supported in part by the National Science Foundation.

1 C. W. Kim and H. Primakoff, Phys. Rev. 139, B1447 (1965). This paper will be referred to as I.

? We recall that the equations of the impulse approximation are

| Vo) (Na; - -+ b ®,030) 748 . . L),
| Vo) (W - o« 28,0y 1y ®) .0,

and

4
HN=Z [/ ] exp[+iger®)],
k=1

A

AW E [T expl-+ig-r®;
k=1

LAY Je=[r—vanFv(g?; p = 5)— (ors0,/2m5) Fac (s p — 1)) s,
[ Je=[Cr—valnvsF algh; p — 1)+ Ggr(mat-mp) /m2yysFp(gd; p — 1)) s,

o= (u—ph= (P5—Da)re

See I for notation.

* A. Fujii and H. Primakoff, Nuovo Cimento 12, 327 (1959); H. Primakoff, Rev. Mod. Phys. 31, 802 (1959).
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Na® (Ne— Np)=(2J+1)7 M §, u i’i, {(No; - Mo+ | G+ D) [ Nas -+ - Mg - )*
T X{Np; o My | (WD H D) | Nyj - - - Mg--+)), (1)
#= (i = (o1, P )
L@ =TrL (1+vs)veva( (v petime)ys/ 2Eyyern(147s) (v - psvs/ 2E5) ]
= (EcEl)—IE(po)x(pi)k'i' (Pe))\ (Pi)x—‘ 60?0' Pi+€x)\pa(Pe)p(Pi)w] (_ 1)6“ ’

Iy Jea
N @ (Np— No)= (21, +1)7 2 T Ve Mo [ (G ) Ny - My - - )
My=—Jp Mg=—Ja
X{Na; - Mg+ | (WD H @) Np; -+ My -+ )}

92‘—“ (pu_fby: (P¢+Pi)2' ’
C(NV,) is a correction factor arising from the effect of the nonpoint character of the charge distribution of N, (see
Appendix) and F(Z(N,),E.) is the Fermi function of beta-decay theory

[F(Z(NJ),E)=[2xZ(Na)/13Tv.J{1—exp[—27Z (Na)/137v.]} ; ve= | pe|/Ee= (EF—m2)*/E.].

In obtaining Eq. (1) we have of course supposed, in accordance with the basic assumption of muon-electron

symmetry, that the coupling between (N,N.) and (u,»,) is identical with the coupling (¥,V4) and (e,»). In the
case where the Ny — N, beta-decay reaction is ‘“allowed”

dp, [ dps
f —(LaPNa (N — Na))
4r J 4x

is effectively independent of E, and Eq. (1) can be written as

G No = et Vo) : (Vo) myma \;
i (N:Z»VM;;I:;: {WE,=(1—mim)[C(N.,)<Zli‘; m’:’fm) ] / FVy— N,.)}R(Na,Nb)

mp—maq

f(Npy— No)= dEE(E2—m2)*(my—me— E)*F(Z(Na),E.) )

dp, dap. [ dps
R(NaNp)= | —La®TNa® (No— Nb)/ —La@NaO (N — NJ),
4 dr J 4r

where f(N3— N,) is the f function of beta-decay theory appropriate to the Ny — N, “allowed” electron-energy
spectrum. It thus remains to express the Vs <> N transition matrix elements of 7,("? and 7,4 in terms of ap-
propriate form factors, to evaluate these form factors in the manner described in the Introduction, and to use the
results to calculate R(V4,N5) on the basis of Egs. (1) and (2).

l}'+ 2He? — v,+ 1 Hy?

WE: p;oceed to apply the above procedure to the muon capture reaction y=+.He;® — »,+:1Hz%.* We have from
Eq. (13) of I

(H?; - My | n | He?; -+ - Mg -+)
={ul (B - - My - - Jyd\Fv (¢*; He® — H®) — (02,4,/2m)Fau(¢*; He* — H?) Ju(He?; - - - M- )}
(H3; -+ My | @ | He?; -+ - M, )
={wl(H; - - Mo - JydmvvsF a(¢; He* — H)+ (ign (mot-ma) /ma)viF p(¢; He* — HY) Ju(He?; - - - M- - )};
023,31,12= (8) 7 MY4¥1,2,375=01,2,3, O14,24,30= () v1,2,374;
Fy u.4.p(¢; He* > H)=Fy u,4,p(¢*; H* — He?); ®
= (po— pa)’= (pu—pv)*=—mJl+2m, E,m, 2+ 2m, (ma— my—m,2/2m,) = 0.96m,2;
(Hed; -+ -M,--- Ij)\(v’|H3; s My )=2[ut(Hed; - - Mg )onau(H3; - - My - -)JFv(0; H3 — He?),
(He¥; - - Ma--- | HZW@D|HE; - - - My - Sut(Hed; - - - Mg - - )ion(1— Sn)u(H3; - - - My - -)JF4(0; H3 — He?),
= (pa—p)*= (pet p5)*=—ml2+2(po- Pi— EE5)—m 2K1/(1*)s, 1/{r*)a
* For previous accounts of application of the above procedure to u~+He® — »,+H? see A. Fujii and Y. Yamaguchi, Progr. Theoret.

Phys. (Kyoto) 31, 107 (1964); W. Drechsler and B. Stech, Z. Physik 178, 1 (1964); H. Primakoff, Weak Interacti nd Hi,
Neutrino Physics, edited by T D. Lee (Academic Press Inc., New York, 'to be published). » Weak Interactions and High Energy
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so that, carrying out the indicated sums over M4, M, k, N in Eqgs. (1) and (2), we have®

R(He} H%)=N/D

N=[Gv(0.96m,2; He* — H3) P+3{[G4(0.96m,?; He? — HY)
—2[G4(0.96m,2; He? — H3) J[Gp(0.96m,2; Hed — H8) ]4+3[Gr(0.96m,2; Het — H) 2}

D=[Fy(0; H3— He®) P+43[F4(0; H*— He®) }?;
Gv(¢*; He* — H%)=Fy (¢*; He* > H®) (14 E,/2m.)
Ga(¢?; Hed — H¥)=—F 4(¢*; He* — H*)— Fy(¢*; He* — H*) (E,/2m,)— Fv(¢*; He® — H?) (E,/2m.,)

Gr(; Het — HY)=[(my(myt-ma)/m2)F p(¢; He — HO)+F.a (¢ He — HY) — Fy (¢¢; He — HY) 1(E,/2m,)
—Fu(¢; He* — HY) (B,/2m,).

(4)

We now must specify the numerical values of the form factors in Eq. (4). On the basis of the CVC hypothesis,
and with use of appropriate electron —He? and electron —HS? scattering data for Fpirec(¢?; He?), Fpirsc(¢?; H?),
Fp;uu(qz; Hes), Fp,,,uli(qz; Ha),e we have

Fy(¢*; He? — H*)=Fy(¢*; H* — He®) = Fpiras(¢*; He*)— Fpirae (¢*; H?);
Fy(0; H? — He®) = Fiirao (0; He?)— Fpirao(0; H) =2—1=1;
Fy(0.96m,2; He? — H3) = Fpirao(0.96m,2; He?) — Fpirac (0.96m,2; H?) =0.82;
F (g% He® — H) = F 3 (¢*; H® — He®) = Fpauii(¢*; He®) — Fraui(g*; HY); ®)
Fy(0; H? — He?) = Fpau1i (0; He®) — Fpau1i (0; H?) = [u(He?) — 3 ]—[u(H)—3]
= (—2.13—3)— (2.98—1)= —5.44;
Fr(0.96m,2; He? — HY) = Fpgu1; (0.96m,2; He®)— Frpaun (0.96m,2; HY) = — 4.73= (0.87)X (—5.44) .

Also, with the value of Fy(0; H*— He?®) known, the value of F4(0; H* — He?) can be calculated [see Eqs. (25)-
(27) of I] from the measured rate of the beta-decay reaction ;H;* — ;He+e+7,, viz.7;

F4(0; H} — He¥)=— | F4(0; H3— He®) | = —1.22, (6)
where the minus sign is chosen on the basis of an impulse-approximation calculation? of

3
Fa(0;n— p)(¥(He; - - - 0 gg® 7.0 .. )| :_,::1 74 ®g® | (H3; - - - r®) gy ®) 7,0 .. 1))

F4(0; H? — He*)=
( [t (He)ou ()] > 0

while the variation of F4(¢?; He® — H?) with ¢? is assumed given by

Fa(¢?; He* > H?) Fy(g?; He*— H?)
F4(0;He*— H?) F(0; Hed — H?)

@®

so that

F(0.96m,2; He* — H?)
F(0; H? — He?)

5 See the analogous calculations for p=+p — #+4-», in Ref. 3. Equation (4) is correct within neglect of t ~E}? 2 B2 2

2/ 4m s, - - -. Also see Ref. 4. * g erms [4m?, B2 /4ma,

¢ H. Collard, R. Hofstadter, E. B. Hughes, A. Johansson, M. R. Yearian, R. B. Day, and R. T. Wagner, Phys. Rev. 138, B57 (1965).
7 See Refs. 3 and 4. ?

F4(0.96m,2; Hed — Hs)g[ :|><FA (0; H*— He?) = (0.87) X (—1.22)=—1.06.  (9)
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The assumption in Eq. (8) is suggested by the impulse-approximation results®
Fa(g*; He* — H?)
FA(0; Heb — H?) \
Fa(g; p— n)(E(H3; - - - x® gy 2.8 .. )| El r_®g® exp (ig-1®) | ¥ (He?; - - - 18 gg® 5@ .. 0))

o

3
Fyu ((); p— n)(\p(HS; .. ',I'(k),d'a(k),‘r;;(k),' . )‘ Z 7_E)gk) l\I/(He3; .o ,l'(k),a;;(k),rg("),' . ))
k=1

3
Fy(@; p— n)) (W (H?; - - - x® g5 748 )| T 7_Rg® exp(iq-1®)) | W (He?; - - +,1®) gy ®) 750 - - 1))
k=1

=~ (10)
Fy(0; p—n) (WHS; - - 10 gy ®) r0 )| g: r_Og® | T (He?; - - - 1 g5®) 78 .. .))
and =
Fa(¢*; He* — H?)
Fu(0; He? — H?)

3
FM(Q2; p— n)(\I/(H3; .o ',l'(k),a'a(k),fa(k),' . )‘ Z T__(k)’)’4(k)0'(k) CXp('i(]'l'(k)) I\I/(He3; .o ,r(k),a's(k),Ts(k),' . )>
k=1

fad

3
Far(0; p— n)(F(H3; - - x® g3 ® £,®) )| T 7Ry R0g®) | F (He?; - - - 1®) gg®) 758 ..0))
k=1

3
Fv(q2; p— n) <\I/(H3; e ,I'(k),o'a(k),Tg(k),' . )I Z T_(k)’Y4(k)0'(k) exp(iq-r(")) l\]'_/(He?i; e ,I(k),tfa(k),‘ra(k),' . ))
k=1

IR

3
Fy(0; p— n) (U(HB; - - 1 ®) g, ® 7@ .. .)lkz 7By (Og® | (He?; - - - 1®) g8 748 .. )
=1
(11)

since 4221 in nonrelativistic approximation for nucleon motion. Further, we postulate the general validity of the
PCAC hypothesis and of an associated pion-pole-dominance assumption whence follows the general validity of the
G-T relation [see Egs. (13)-(18) of I]

Fp(0; H?* — He?)=2—F 4(0; H? — He?) (12)
so that, using Eq. (6),
Fp(0; H? — He?)=21.22. (13)
As regards the variation of Fp(¢?; He? — H?) with ¢? we can write on the basis of the impulse approximation
Fp(g*; He* — H?)
Fp(0; He* — H?)

3
Fp(gt p— m)(WHS; -+ 1B 03® 70 )| T 7 Wy, 0y (8 exp (iq1®)) | ¥ (HEP; - - - 1 ® g3 8 73 ® .. .))
k=1

I

3
Fp(0; p— n)(W(H?; - - - x® gy® 7,00 .| ?17_(k)74(k)75(k)|\1,(He3; PR O RO RO

~

[<Fp(q2; p— n))/(ﬂ(q’; p— 'n))_‘FA(ff} He* — H?)

(14)
Fp(0; p—n) /! \Fa(0;p— n)/JFa(0;H - 1)’
8 See the last of the Refs. 4. The CVC hypothesis together with electron-proton and electron-neutron scattering data for Fpira (¢%; prot),
Fpirag(¢?; neut), Frauli(¢%; prot), Frauii(¢?; neut) indicates that (Far(g?; p — #)/Fu(0; p — n))=2(Fv(g?; p — n)/(Fv(0; p — n)) while
the CERN »,+# — u~+p experiments are consistent with (F4(g%; p — #)/Fa(0; p — n))=2(Fy(g?; p — n)/Fv(0; p — n)).
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since nonrelativistically 4%y ®=~¢® - (q/2m,). Furthermore, since (Fp(g%; p— n)/Fp(0; p— n))=m.*/(m+*+¢*)
and (Fa(g*; p— n)/F4(0; p — n))==1 for 0@ <Sm,? [see Eqs. (11)-(16) of I] we have

Fp(g*; He* — H3)N( ms \Fa (¢*; He* — H?) 5)
Fp(0;Hes > HY) m,2+q2/FA(O; He? — H?)
so that, using also Egs. (12) and (9),° \
Fp(0.96m,2; Hed — H%g(——'———)x (= F 4(0.96m,2; He* — H?))
my2+0.96m,>
=0.635X (1.06)=0.67. (16)
Substitution of Egs. (5), (6), (9), and (16) into Eq. (4) yields
R(He? H?) =0.834 an
and this, together with the value C(He?)=0.965 (see Appendix) and with
(/) exper={[f(H3 — He®)/T (Hs* — sHe e+ 5,) Jexper} In2=113720,
gives, upon use of Eq. (2),
[T (u+2Her — vut1H2) Jtneor= (1.51220.04) X 10% sec™? (18)
in excellent agreement with the most recent experimental value!!
[T (u+2Her® — v+ 1Ho®) Jaxper= (1.50520.046) X 10° sec!. 19)

It is worth emphasizing explicitly that this excellent agreement is a strong argument in favor of the CVC-
implied weak magnetism term and, to some extent, of the PCAC-implied G-T relation for the induced-
pseudoscalar term. Thus, for example, if the numerical value of — F(0.96m,2; He*— H?)is decreased from 4.73 [ Eq.
(5)] to 3, [T (u+He*— v, +H?) Jineor is decreased from (1.512£0.04) X 10% sec™ to (1.362£0.04) X 10®sec™?, while if
the numerical value of Fp(0.96m,2; He? — H?) is increased from 0.67 [Eq. (16)] to 1, [T'(u—+He?* — »,+H3) Jincor
is decreased from (1.5140.04)X10% sec™! to (1.444-0.04)X10% sec™.

p=+6Cel? — v,+ B2 and y=+3Lis® — v,+,He

In the case of the muon-capture reactions y=+Ce2— v,+35B7? and u—+3Lis® — v,+2Hes® we have from
Eq. 31) of I

(B2 - My -+ | V| C25 - - M - - )= {[ O+ (ms2—ma?) (92/¢8) J(Fen(g?; C2 — B2)/2ma)
—enpeSc*(go/2mp) Fu(¢*; C? — B2)}
(B o My -+ | n [ C2; -+ - M- - - )= (iSi*F 4(¢%; C2 —B2)+ (igaS*- ¢/mHF p(¢?; C12— B?)} ;
Far,4,p,c0(¢%; C¥— B2)=Fu,4,p,0n(g%; B2 — C¥);
Or=(patpo)r; limgo[Fen(g?; C2— B2)/¢*]=finite constant;
SY=[SSH1) 20 (M o) =V2E,(M3);  £1(M)=spin-one type polarization four-vector; &(M3)- pp=0;
= (o Po)= (pum 1o)== M2 2 Bt 2k 2o, (ma— m— (2 2m3) ) =0.T3m,2;
(C2; oo Mg - []')‘(V)IBH; <My )0,
(C2; -+ My | n @ | B2; - - - My - - Y22iS\(1— 604) F 4 (0; B2 — C2);
= (pa—p0)*= (Pt p5)* = —m+2(po* Di— EE)=—§ (mo—ma)) K1/ (s,  1/(r?)a.
¢ The G-T value of Fp(0.96m,2; He* — H3) in Eq. (16):

ma

~| 7u(matmp) ma? F(0.96m,2; Het — H?3)
=[ - me ](m.-’+0.96m,.’) Fu(©; pHa SHS) ](_FA(O; H? — He*))=16.9(—F4(0; H* — He?))

corresponds to the familiar G-T value of Fp(0.88m,2; p — n) (see the last of the Refs. 4):

mu(my+my) my(mpt+ms Mmat
19 The uncertainty of +0.04 in Eq. (18) arises largely from the uncertainty in the experimental values of Fpirac(g?; He?), Fpirac(g?; H?),
Fpauti(g?; He?), Frauii(g?; H?) (see Ref. 6), and from the uncertainty in (f#)exper for 1Hz* — 2He3+¢~+7,. We wish to thank Dr. R. J. Es-
terling for a helpful comment on this point.
1 L. B. Auerbach, R. J. Esterling, R. E. Hill, D. A. Jenkins, J. T. Lach, and N. H. Lipman, Phys. Rev. 138, B127 (1965). Full
references to all previous experimental and theoretical work on the y~+He? — v, H3 reaction are given in this paper. Note added in

proof. See also D. R. Clay, J. W. Keuffel, R.L. Wagner, Jr.,and R. M. Edelstein (to be published), who find [T (u=4 ;He,3 H2?) Jeoxper
= (1.465-£0.067) X 10° sec ™. ’ gaen e P » LG ot o) s

(20)
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Thus, carrying out the indicated sums over Ma, My, , X in Egs. (1) and (2), we have®
3% 2{[G4(0.73m,2; C — B2) P—2[G4(0.73m,2; C2 — B2)J[Gp(0.73m,2; C2 — B2)]
+3[Gp(0.73m,2; C2— B12) %}
2[F4(0; B — CO) e
Ga(g?; C2— B)=—F4(g* C** — B%)—Fu(g*; C* — BH)(E,/2m,),
Gp(g?; C?— BY)=Fp(¢*; C— B®)(E}?/m)—Fu(g; C* — BY)(E,/2m,).

R(C?BY)=

In an entirely similar way
2{[G4(0.91m,2; Li® — He’) P—2[G4(0.91m,2; Li® — He®) J[Gp(0.91m,2; Li® — He®)]
+3[Gr(0.91m,2; Li* — He®) 7}
3% 2[F 4(0; He — Lif) ' (22)
Ga(g?; Li® — He®)= — F 4(¢%; Li® — He®)— F 5 (¢?; Li* — He®) (E,/2m,,) ,
Gp(g*; Lis — He®)=F p(¢?; Li®* — He®) (E,*/m,*) — Fu(¢*; Li® — He®) (E,/2m,) .

R(Li% He®) =

We must now specify the numerical values of the form factors in Egs. (21), (22). First of all, Eqs. (20) and (1)
show that the value of |F4(0; B>— C®)| can be calculated from the observed rate of the beta-decay reaction
sB712— ¢Ce2+e "+ 7., Viz.;

|Fa(0; B2— C12)|=0.515 (23)
and similarly
|F4(0; He® — Li)| =1.13. (24)

Further, we again assume the general validity of the PCAC hypothesis and of the associated pion-pole-dominance
assumption, and so, of the G-T relation, viz. [see Egs. (31)-(33) of I]
Fp(0; B2— C)=~—F4(0; B2— C?); Fp(0;Het— Li®)=~—F4(0; He® — Lif), (25)
and, again suppose, analogously to Egs. (8), (15), and (12),
Fa(gh; C%— B2)=Fa(@; B — C)=[Fu(¢; B — C)/Fu(0; B2 — C]-F4(0; B — C)
=Fu(g?; B2 — C?)-F4(0; B2— C12);
Fa(g; Li® — He®) = F 4 (¢*; He® — Li®)=X[F(¢*; He® — Li%)/F 3 (0; He® — Li%) ]- F 4 (0; He® — Lif) (26)
=3 (¢®; He® — Li%)- F4 (0; He® — Li®)
and
FP (qZ; Cl2 —_ B12) =F.P(q2) B12 _ Cl?)
=(my*/ (ma+¢))[Fa(g; B — C#)/F4(0; B2 — C)JFp(0; B2 — C?)
(.2 (m24-¢))(— Fa(gt; B — C2)) = .2/ (my2+0))Far (g2 B2 — C2)(— F 4 (0; B2 — C)),;
Fp(g?; Lis — He®) = Fp(g?; Het — Lif) (@7
= (m/ (me+¢))[Fa(g®; He® — Li®)/F 4(0; He® — Li®) JF »(0; He® — Li®)
=(my’/ (me+¢))(— Fa(¢*; He® — Li®))= (m*/ (m*+¢*) )Fu (¢*; He® — Li®) (— F 4 (0; He® — Lit)).
It thus remains to find Fa (0; B‘2—>‘C_12) and Fu(¢?; B?— C®), and, F(0; He® — Li%) and Fa(g?; He® — Lif),
To find Fa(0; B2 — C) we consider the weak-magnetism correction factor to the otherwise “allowed”

sB72 — §Ce'?+e~1 7, electron-energy spectrum; this is calculated from Eq. (1) with use of the CI2 «<» B2 transition
matrix element in Eq. (20) as®®

dEeN (Ee) = dEe[Ee (E62_m62)ll2 (mb"'"ma_ EG)ZF(Z (Cu),Es)] (1+aE.) ,

8( 1 )[ Fu(0;B2— C%) 7 16 Z(C®)
- \QFA(O;B”——)C“)J 9

R(C?),

3 9 137 (28)

8( 1 )I: Fu(0; B2 — CR2)

3 VIF 4(0; B2 — C1)

2my,

]—1.1)(10—3/MeV,

2m,

2 Equation (21) is correct within neglect of terms =~ E,/2m,, E}2/4m2, - - -.
13 The second term in g is a Coulomb correction; R(C®2) = (12)/ (5.7;»:,) is the radius of the C2 nucleus.
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while experimentally'
a=(5.54£1.0)X10"3/MeV. (29)
Equations (28), (29), and (23) yield

Fu(0; B2— C?)= (6.57£1.0)F 4(0; B2 — C2) = 4(3.40.5). (30)
Alternatively, the CVC hypothesis predicts
Fu(g*; B2 — C?)=V2u(g*; C** — C), 31)

where u(g?; C'** — C?) is the transition magnetic moment from the C*2 excited state which is in the same isotriplet
as the B2 ground state to the C'? ground state; u(¢*= (pa— pa')*= p,2=0; C?* — C12) is determined from the ob-
served value of the corresponding transition rate for C'#* — C24-y (N, — N,+7) photon emission as!®

I(C#* — C24y)=3(1/137)[u(0; C** — C*) P(E,*/m,?) = (50£5) eV,

|u(0; C12* — C12)| =2.30£0.10, (32)

so that, using Eq. (31),
| Far(0; Bi2— C12)| =3.24:£0.15 (33)

in excellent agreement with Eq. (30). As regards the value of |F(0; He® — Lif)| no study of the weak-magnetism
correction factor has been made and only the CVC-based method of Eqgs. (31)-(33) is available; this yields

Fu(¢*; He® — Li®) =V2u(g?; Li®* — Li¢) (34)
with!®
I' (Li** — Li%) = (1/137)[u(0; Li** — Li®) PE,3/m 2=6.4-£0.6 eV ;

| F3(0; He® — Li%) | =vZ|u(0; Li®* — Li%) | =v2(4.1424-0.20) = 5.83-0.30, (35)

where p(¢?; Li*®* — Li°) is the transition magnetic moment from the Li® excited state which is in the same isotriplet
as the He® ground state to the Li® ground state. Thus, substitution of Egs. (23), (24), (26), (27), (30), (33), and
(35) into Egs. (21), (22) gives

G4(0.73m2; C2— B1?)= —[F 4(0; B2 — C2)+F 5(0; B2 — C2)(0.87m,,/2m,,) 1F,(0.73m,2; B2 — C12)
= (0.672)F 3 (0.73m,2; B2 — C12),

2

0.87m,

Gp(0.73m,2; C2— B2)=— [(

) L
M A3my

2
) +Fu(0; B2— C1) (0.87m,,/2m,,):|

Moy
X Fu(0.73m,2; B — C2)=F (0.316)F 5 (0.73m,2; B2 — C12);
R(C2,B12)=3X1.30[Fx(0.73m,*; B2 — C)F;
| . ' 36
G4(0.91m,?; Li® — He®) = —[F4(0; He® — Li®)+F 1 (0; He® — Li®) (0.96m,/2m ) 152, (0.91m,2; Hes — Li¢) o

=T (1.44)F 4 (0.91m,2; He® — Li6)

2

0.96m,

2
Gp(0.91m,2; Lif— Hes)=—[< )FA(O; He“-—>Li6)( > +F(0; He® — Li) (0.96m,‘/2m,,):|

ma2+0.91m,2 My
X Far(0.91m,2; He® — Li®) = F (0.703)F 5 (0.91m,2; He® — Lis);

R(Li% He®) =1 X 1.23[F(0.91m,2; He® — Li%) ?;
and it only remains to determine the numerical values of $(0.73m,%; B2 — C'2) and & #(0.91m,2; He® — LiS),

14 Seﬁ C.S. WuaRev.lMod. Phys. 36, 618 (1)964).

15 The “observed” value of I'(C2* — C2+4+) given in Eq. (32) is a weighted average of fou t :
Mayer-Kuckuk and F. Michel, Phys. Rey 12)7, 547 (1962). ) g B¢ of folir recent measurements as quoted in T.

16 The “observed” value of T (Li®* — Li¢+-v) given in Eq. (35) is the weighted average of a measur tb
G. Fricke, and F. E. Gudden, Phys. Rev. 120, 2081 (1960) [T (Lit — Lit-{-y) = 6.20.6 eV ] and of a measoremsant b L. Corrr oy
R. Tobin, Nucl. Phys. 14, 243 (1959) [T (Li** — Li*+~) =9.1£2.0 eV . :
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The numerical values of F(0.73m,2; B2— C2) and F(0.91m,%; He® — Li%) are given, on the basis of Egs.
(31), (32), (34), (35) which are implied by the CVC hypothesis and the defining Eq. (26), by
Fu(g?; B2 — C2)=[pu(g?; C** — C¥)/u(0; C'* — C1?) ]=[u(g?; C'** — C)/2.30];

37
Fa(¢?; He® — Li%) = [u(g?; Li®* — Li6)/u(0; Li®* — Li®) J= [u(¢?; Li** — Li%)/4.14] 7

with u(g?; C* — C2) and u(¢?; Li®* — Li®) determined by the differential cross sections for the inelastic scattering
processes: e+ C2 — ¢+ C2* and ¢+ Li® — ¢+ Li®*. At an electron scattering angle of 180°, these differential
cross sections are of the form

do(e+C2— e+ C%; E,, 180°)=( - )( 5 )zEu(qZ;C“*—>C‘2)]2
a9 2my*/ \|q|+ (ma' —ma)

~( z,i;le = ('21,_"“))2@(0; €1 CH) Pl % O

= (1.15X 10-%2) X (0.855)2X (2.30)2[ Fas (¢2; C12* — C12) 2 cm?/st
=4.46X10732[F 4 (¢?; C*** — C) ] cm?/sr;
¢*=1q|"= (7'¢)’=|pd' —pa|*— (EJ' — Eo)*= | p.—p/ |*— (E.— E.)?
~[(E.+E.))*—2E.E./(14c0s180°)]— (E.—E.)?
S[2E.— (my' —ma) P— (my' —ma)?; ms' —ma=15.1 MeV;

do(+Li*— e-+Li*; E,, 180°) 1/ ¢ lal 2
—( )( ) buts i Lo
aQ 3\2m 2/ \|q|+ (ms —m,)

(38)

=§<2:p2> < lal+ (‘r:i’—m,,))?':“ (0; Li** — Li®) P[F (¢*; Li** — Li%) I

=3(1.15X107%) X (0.966)2X (4.14)2[F 4 (¢%; Li®* — Li®) ]2 cm?/sr;
=6.13X 10732 F 1 (¢%; Lit* — Li®) P cm?/sr;
¢*=la]*— (7= | ps'—pa|*— (EJ'— Eo)*= | p.—p/ |~ (E.— E.))?
=[(EA+E.)—2EE,(14c0s180°) ]— (E,— E.')
=[2E.— (md —mg) P— (md —mg)?; mg —ma=3.56 MeV;

with ¢#=0.73m,*= (91 MeV)? and ¢*=0.91m,>= (101 MeV)? corresponding to |q| =92 MeV, E,=53.5 MeV and
|a| =101 MeV, E.=57 MeV, respectively. Then, with the interpolated experimental values'?

do(e+C"2— e+ C1%*; E,=53.5 MeV, 180°)/dQ= (2.00=£0.30) X 1032 cm?/sr,

do(e+Li*— e +Li%*; E, =57 MeV, 180°)/dQ= (1.7520.30) X 10-32 cm?/sr, 39)
we have
[F3(0.73m,2; C2* — C12) 2=0.4484-0.070,
[$(0.91m,2; Li®* — Li%) J2=0.286--0.040, (40)
whence, using Eq. (36),
R(C®2B®?)=1.754-0.20,
(41)

R(Li¢He®)=0.1170.018.

Thus, substituting Eq. (41) into Eq. (2), and with C(C2)=0.885, C(Li%)=0.928 (see Appendix), (ff)exper
17 J. Goldemberg, W. C. Barber, F. H. Lewis, Jr., and J. D. Walecka, Phys. Rev. 134, B1022 (1964).
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=11 7002300 for B2— C2, (ft)exper=808=:30 for He® — Li® we finally obtain'®

[T (=4 6Ce? — v+ 5B1') Jtneor= (6.61.0) X 10% sec™ 42)
and

[T (4 sLis® — vut+sHes®) Jnoor= (0.98=:0.15) X 10° sec™. (43)

These theoretical predictions for the indicated muon capture rates can be compared with experiment in the case
of C!2 where the most recent measurements yield!*-?

[T (4 6Cé2 = vt 5B712) Jexper= (6.72£0.9) X 10% sec™?
= (6.75_0.751%) X 10% sec?. (44)

In the case of Li® no measurements are as yet available but previous nuclear model-impulse approximation calcula-
tions have given values ranging from 0.4X10? sec™ to 2.1X10% sec™1.2

APPENDIX

In this Appendix we describe the calculation of C(IV,), the correction factor arising from the nonpoint character
of the charge distribution of N,. We have

{_}_<iz+_2 _‘f>+ V(r)—E}‘I’E(f)=0;

2u\dr® rdr
V(r)= 2uaR)'[—3+2/R*]: 0=r=R, (A1)
V(r)= ae®)[—a/r]: r=R;

p=muma/ (my+ma), a=137/Zy,
where E and Wg(r) are, respectively, the muon energy-eigenvalue and muon energy-eigenfunction appropriate to

a muon 1s orbit about a nucleus of charge Z(N.)=Z and radius R(N,)=R=(5/3)"2X [root-mean-square charge
radius]. In terms of ¥z(r), C(V,) is given by

C(NJ)= waa[ / ! Vg (r)r'dr / f ! r2dr]2. (A2)

To calculate ¥g(r), and so C(V.), we note that Eq. (A1) yields
VY5 (r)={[N (xa®*)*G(—n+1, 2; 2R/na) exp(— R/na) Jexp(3 (R/a)*)/F (3G —e), 3; (R/a)")]}
XFG(3—e), 3; (*/a*)(R/a)'?) exp(—3(*/R*) (R/a)?): 0=r=R,

Vi (r)={N (xa®)"*}G(—n+1, 2; 2r/na) exp(—r/na): rZR; (A3)
G(Z/137)) /a2 1 /R3\Y2 3/R\?
LT )
L —E 2n°\a® 2\a
where F(a,8; x) and G(e,8; %) are solutions of the confluent hypergeometric differential equation
az d F(a,8; x)
[x—+ B— x)——a:H ] =0 (A4)
dax? dx G(a,B8; x)

18 See also L. L. Foldy and J. D. Walecka, Nuovo Cimento 35, 1026 (1964), footnote on p. 1058. Note added in proof. Foldy and
Walecka (to be published) have very recently given a comprehensive study of the C2 — B case on the basis of the impulse approximation
but in an essentially nuclear-model-independent way and find a resuit for the muon capture rate which is in substantial agreement
with that in Eq. (42).

1 G, T. Reynolds, D. B. Scarl, R. A. Swanson, J. R. Waters, and R. A. Zdanis, Phys. Rev. 129, 1790 (1963).

20 E. J. Maier, R. M. Edelstein, and R. T. Siegel, Phys. Rev. 133, B663 (1964).

% See A. Lodder and C. C. Jonker, Phys. Letters 15, 245 (1965).
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which have, respectively, uniformly convergent and asymptotically convergent expansions
a/x\ alet1)/x?
F(aB; %)= 1+g(;)+m(;>+ Ty
Glabs x>=——(ﬂ—_1—)!—<—x>—a{1—a<a—a+1>(i)+a(a+1>(a——a+1)(a—ﬁ+2>(i)+- -
B—1—a)! 1lx 2la?

Also, E or n is determined by the continuity of (d/dr) In¥g(r) at r=R and N is fixed on the basis of the normali-
zation condition: S [Wg(r) Pdrridr=1.
We now confine ourselves to the case of low-Z nuclei, where R/a<<1. Here

==1; &3 (R/a)'3;
G(—n+1, 2; 2r/26)=G(0, 2; 2r/na)=1: r=R; N=1.
Substitution of Egs. (A6) and (A3) into Eq. (A2) then gives

con{- 2 A

0.965: He¥(Z=2)
=40.928: Lis(Z=3)%. (A7)
0.885: C2(Z=6)

(AS)

(A6)
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Proton Total Reaction Cross Sections at 16.4 MeVy

RoBERT E. PoLLock AND G. SCHRANK*
Palmer Physical Laboratory, Princeton University, Princeton, New Jersey
(Received 28 May 1965)

Total reaction cross sections for protons of a laboratory energy of 16.4 MeV at the center of foil targets of
C, Mg, Al, Ni, Cu, and Pb have been measured by a beam attenuation method. The technique differs
from other measurements with intermediate energy protons in that a double-focusing magnetic spectrometer
is contained within the scintillation counter telescope which precedes the target. The magnet selects a beam
free from slit-scattered protons, with a precisely determined momentum, while the focusing compensates
for the beam divergence in the first detector so that all detectors see comparable counting rates. Solid-state
circuitry with controlled recovery characteristics was developed to permit instantaneous rates in excess of
108 protons/sec and to circumvent the problem of a low duty cycle. The measurements require several
major corrections, and continuing effort to improve the evaluation of these corrections since this measure-
ment was first described has led to the following values for reaction cross sections:

Target C Mg Al Ni Cu Pb
ag(mb) 368 712 701 898 955 1330
Standard deviation 30 56 34 53 64 180

Total reaction cross sections have been predicted by optical-model analyses of proton elastic scattering at
this energy with a variety of optical potentials. The measured values for Ni and Cu lie somewhat lower than
the predictions of the optical model, while the values for Pb and C are higher than the predictions.

1. INTRODUCTION tion. Early in the development of a suitable optical

al, the need for realistic reacti ci
. . . potential, the need for realistic reaction cross sections
OTAL. reaction - Cross sekcltlonhs .determmed .by led to diffuse-edged potentials much as realistic polariza-
experiment can restrict the choice of scattering ¢ ong required the added spin-orbit interactions. With
potential used to describe the nucleon-nucleus interac- the many-parameter potentials now in common use
D— ~ mim 2
cgmﬁfsgﬁgrinﬁafh?fﬁggﬁg lsréigg:itﬁtc)y’l‘trl:;yf Eﬁ é\tomic Energy it is misleading to speak of one experiment as determin-
* Present address: Department of Physics, i)'niversity of INg qne or another parameter Sin_ce 'all are effective ?0
California, Santa Barbara, California. varying extents. A helpful description of the way in
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