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The new form of the strip approximation, devised by Chew, is applied to the problem of "bootstrapping" 
a p trajectory in the 7T-T system. Even in the absence of other trajectories it is possible to obtain a self-
consistent p trajectory and residue functions a(t) and y(t) for *<0, with strip widths in the range 150 to 
300 w,2. A particular example is given in detail. The absence of the force from other trajectories, and the 
rapid variation of a(t) and y(t) fort^Q, mean that our results can not represent the real p trajectory, but at 
least they confirm the viability of the methods used. 

I. INTRODUCTION 

THIS paper is one of a series devoted to applying 
the new form of the strip approximation1 to the 

calculation of the 7r-7r scattering amplitude. The physical 
principles underlying the new form of the strip approxi
mation have been given in previous papers.1,2 The 
amplitude is represented by its dominant Regge poles, 
with singularities which satisfy the Mandelstam rep
resentation, and should be correct in the resonance 
region and in the region of Regge asymptotic behavior. 
If the principles of maximal analyticity of the first and 
second kinds are valid, it is hoped that with the physical 
Regge trajectories, such an amplitude will be self-
consistent in the sense that the "potential" due to the 
crossed-channel singularities will generate the direct-
channel singularities. Chew and Jones2 have devised a 
set of equations which are suitable for investigating 
this possibility. 

The problem has two parts, the calculation of the 
"potential," and the solution of the N/D equations 
in the presence of the logarithmic singularity which 
this potential exhibits. The singularity occurs at the 
point where the resonance region is matched to the 
Regge asymptotic region, the boundary of the strip. 
Some preliminary results of solving N/D equations 
with such a boundary condition have already been 
reported,3 but only for a potential corresponding to the 
exchange of a fixed-spin particle. In this paper we report 
an attempt to "bootstrap" a complete trajectory. The 
full 7r-7r amplitude has several trajectories, P, P', p, 
and probably others, and a search for self-consistency 
with so many parameters presents a formidable prob
lem. Also the "potential" resulting from the exchange 
of even-signature trajectories has some curious features 
which are currently under investigation, but the p 
trajectory generates a potential which is very similar 
to the form obtained from a fixed-spin particle, and 
seems quite straightforward. The approximation of 
supposing that the p resonance alone dominates the 
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7r-7r amplitude has often been made with fairly satis
factory results,4 and so, as a preliminary to a more 
ambitious calculation, we have tried to find an ampli
tude in which the force from the p trajectory in the 
crossed channels generates an identical trajectory in 
the direct channel. This is not a true bootstrap situation, 
of course, because the potential also gives rise to an / = 0 
trajectory which has not been included in the input, 
but the fact that we have been successful in this more 
limited enterprise is somewhat encouraging. 

In Sec. II we discuss the calculation of the potential 
following the prescription of Chew and Jones, and in 
succeeding sections we write down the N/D equations, 
and consider the parametrization of the residue and 
trajectory functions. The results presented in Sec. V 
show that it is indeed possible to obtain self-consistent 
p trajectories, a(t), and residues, y(t); or at least they 
are self-consistent for t<0. The output trajectories 
have a large imaginary part as Re a approaches 1, 
however, so the physical p can not be observed directly, 
but there is a peak in the cross section. Also the input 
p width is more than twice the experimental value. 
These facts, however, may only be an indication of the 
difficulty of continuing a{t) and y(t) into the region 
above threshold where they become complex, without 
a better representation of the double spectral function. 

Finally we compare the results of this calculation 
with a formula used by Chew and Teplitz6 in relating 
the 7r-7r total cross section to the slope of the Pomeran-
chuk trajectory and the width of the p. 

II. THE POTENTIAL FUNCTION 

In the new form of the strip approximation the 
scattering amplitude is represented by a sum of six 
items from different regions of the double spectral 
functions,6 

A (s,t) = Zi LRitl(s,t)+ £iRi"Ks,u)l 

+E*[^1(«^)+f*X*ll(«,0], (1) 
4 See for example, F. Zachariasen and C. Zemach, Phvs. Rev. 

128, 849 (1962). 
6 G. F. Chew and V. L. Teplitz, Phys. Rev. 136, B1154 (1964). 
6 Most of the formulas in this section are taken from Ref. 2, 

above, where their significance is explained. 
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r / / /W=C2a(/)+i>W(~^)a (^(V /), W 

where the summation is over the various leading In the 7r-7r problem we have the complication of isotopic 
trajectories and &,,,* is the signature factor ( = ± 1 ) of spin, but also symmetry in t and u. I t is convenient to 
the trajectory in question, define 

(2) 
where fiai{I,I) is some element of the usual crossing 

• p (—\ — i'i2q 2) matrix from the I to 5 channels: 

~~7Z, dt'' (3) fl/3 1 5/3 1 
1 l %t 

1 r~Ri(?,s) , 
R<h(s,t)=- / — dt' 

TT J ti t' — t 

=ir4(5)/ — 
J «1 

where this integral exists. For a > 0 w e use the analytic 
continuation 

1/3 1/2 -5 /6 
Ll/3 -1/2 1/6 . 

(9) 

RiHS,t) = $Ti(s)\-
sw.ica.iis) \ Iq, 

f},„ differs by (— l ) 7 , so that only Bip+ exists for even / , 
and only Bt

p- for / = 1. Combining (4) and (7), we 
obtain, after some manipulation, 

dt'\ . (4) -Bip±(s) = 

Here 

r,M.[2a,M+i>.(«)<-?.!)-<". (5) x l r " - ( i ) / " ' **'r.J 1 * ' ) 
me the reduced Dartial-wave amnlitude for *• J-^u—s \ 2qt / We define the reduced partial-wave amplitude for 

complex / by 
/•O fa p 

I m e , ( l + — )\A±(s,t), (6) 
2?. 

i W ) 
I r° dt r / t \ 

= Ime,(l+ ] 
lirJ^q^A. \ 2q*J, 

a form first given by Wong.7 I t has the advantage of 
only requiring a knowledge of A(s,t) for / < 0 , where 
a(t) and y(i) are real. The ± correspond to even and 
odd signatures, respectively. 

The left-hand cut function for a given partial wave 
in the 5 channel is then combining (V.4) and (V.5) of 
Ref. 2, 

1 r° dt r 

, ^»+-L)i 
q?l+A. \ 2<?„

2/J 

x I- I ^ -CZ Rj(s',t)±z Ms;t)2 
l7T J si S — S 3 k 

1 r00 du 

TT J ul U ~U 3 

1 r00 </«' 

±- ~ 

7rJtl i 

K J uxt —t 3 J 

I fSQ—tl ds f8Q~8> 

+- / -T-T, *(1±&)&(/,. 

/•81 (ftt' / tt' \ 

+r"'(/)W i\.(o(-i J 
J-4qt*u'—u \ 2q?/ 

r°° / u' \ du' 
+*/ r « ' ( O P . ( n ( - i - — ) — 

JS1 \ 2qv
l/u—u 

f°° ( u' \ du' 
=F*/ r"'(0i\.<*> - l ) 

M-'-s) 
»r"'(<)r 
sin7ra(/)L 

#r 

+P^(1+i)]} " (-1-2^)<1 

+r»'(/)[»pB(l)(-i--l^ 

Z &[**(«',/)-.R*(«'/)] 
M * 

x 

2qi 

cot|7ra(0 for { = + 1 

— tan§;ra (/) for £ = — 1 

•M-I-JM if (-i-^)>i 

(1±£)-
1 /•4_<1 

/
*-n IV) 

is's)i-q3,*y+i 

x-
p . C - i - / / ^ . . * ) 

- 4 ( - ? s - 2 ) ' + l 

r Private communication to G. F. Chew. See Ref. 2. 

Xf dt'Pat.J-1 — W - 1 - — V (10) 
J*-,' \ 2q,.y \ 2qafi) 

(7) We obtain such a contribution from each trajectory. 
We have made use of the fact that 

R«(-z) = eWi*"Paiz)-(2/T)Qaiz) s inm, (11) 

sw.ica.iis
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and note that 

Im[gi(*)]=iirPi(*) for - K s < + 1 
= -Qi(-z)simrl for z<-\. (12) 

A FORTRAN program has been devised to calculate 
the function Bip for any input 7 and a. To calculate 
both Bip+(s) and Bip~(s) from the exchange of a single 
trajectory, at a sufficient number of values of s to be 
able to solve the N/D equations [^20] , and with a 
sufficient number of values of / to be able to examine 
the output trajectories [^ lO] , requires about 6 min 
on an IBM 7094, if all the terms of Eq. (10) are in
cluded. It is found that the third and fourth terms of 
the right-hand side of Eq. (10), which involve T(t) for 
t>Si, and the final term of Eq. (10), which is the con
tribution of direct channel poles to the left-hand cut, 
are all very small for p exchange, and the results are 
not appreciably altered by neglecting them. In the 
results quoted in this paper these terms were neglected, 
but had they been included the curves of Figs. 1 to 4 
would have been almost completely unchanged. 

We also need to know ImBip(si), and from the first 
term of Eq. (10) we find 

ImB,p(50 = f <ftTlm(?/l+ Y] 
2irqn^J^ L \ 2q9*Jj 

X*T"'(t)Pait) 
V 2q?J 

(13) 

HI. THE N/D EQUATIONS 

By representing the partial-wave amplitudes as1 

AlHs) = qe
ilNi±(s)/DlHs), (14) 

where Ni^is) has the left-hand cut of A^is), and the 
right-hand cut for s>si, and D^s) has the right-hand 
cut for 4<s<si, we obtain the integral equation 

Nl(s) = BS(s)+- / ds' — — 
7T J SQ Sf—S 

XPI(S')NI(S>), (15) 

1 r P i ( * 0 W ) 
with 

1 r81 pitf) 
ZM*) = 1 — / ds'—— 

TT J 8a S' 

(16) 

where 
/ 5 - 4 \ 1 / 2 / s - 4 \ i 

However, Eq. (15) is not of the Fredholm type, 
because Bi (s) is logarithmically divergent as s-+si 

due to the first term of Eq. (10). In fact,8 

1 
Bf(s)- •ImBip(si)\n(si-s) 

and 
$in%(si) = pi(si) ImBi (si), 

(18) 

(19) 

where 5* is the phase shift. 
A method of coping with this singularity by intro

ducing a resolvant kernel has been discussed by Chew.8 

He shows that the solution of Eq. (15) can be written 

J «0 

(20) 
J so 

where Np(s') is the solution of 

/•si 

Np(s) = Bl
p(s)+ ds'Kt'is^NHs'). (21) 

J so 

Expressions have been given9 for Oi{s/) and K{(s,sr) 
in terms of Bip(s), sin25j(.si), and Si. 

Apart from this complication, the determination of 
Ni(s) and Di(s) from Eqs. (15) and (16) is straight
forward. Details of a FORTRAN program for solving 
the equations are available.10 

A pole in the amplitude is represented by a zero of 
the D function, and the trajectory of such poles is the 
function a (s) such that 

DaM(s) = 0. (22) 

Above threshold both D and a have imaginary parts, 
but if these are small it remains approximately true for 
all s that 

Re[Z>Be[«(,)]($)]=0. 

For a Regge pole of the form 

T{s)PaM(\+t/2q.') 
A (Sft)= f 

simra{s) 

the t discontinuity is 

At(s,t)= _ r (*)P a ( . , ( - l -* /2g .») , 
since 

(23) 

(24) 

(25) 

Im[Pa(z)]= -Pa(-z) sinxa for z > l . (26) 

Thus the partial-wave projection of Eq. (24) is 

2qJ 

dt 

2(qs
2)1 

•, (27) 

8 G. F. Chew, Phys. Rev. 130, 1264 (1963). 
9 V. L. Teplitz, Phys. Rev. 137, B142 (1965). 
10 D. C. Teplitz and V. L. Teplitz, Lawrence Radiation Labora

tory Report UCRL-11696, 1964 (unpublished). 
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and combining Eq. (11) with11 

i 

P«(2)Ql(z) = 

and 
/ . 

1 

/ " 
LQMJ= 

(l-a) Q+a+l) 

2/+1 

we find that if a(sn) = l, then 

r(**) 
Bi(s) 

(28) 

(29) 

(30) 

(31) 

fa '(^)[^-5][2a(5«)+l](-9 . f i
2)«c*» 

which, from Eq. (5), 

= y(sn)/a'(sB)\jB—s]. 

Thus the residue of a pole of Bi(s) is 

r Ntis) i = ^ > . (32) 
L(dDi(s)/ds)J8m8B af(sR) 

With this expression we can obtain y(s) from the solu
tion of the N/D equations. 

IV. REGGE-POLE PARAMETERS 

Unfortunately there is very little experimental 
knowledge of the Regge parameters to guide us in our 
choice of trial functions. Within the framework of this 
calculation we know that a and 7 are real analytic 
functions cut from threshold to 00, and so we can write1 

f Pa 
a(t)=ao+ / dtf— 

J to t' 

7(0=70+/ * — 

p«G0 

Pyit'l 

t ' 

(33) 

(34) 

Very little is known about the forms of pa and py except 
that they must be small in the region where resonances 
occur. The strip approximation also requires that 
pa,y(i) be negligible for t>h, so the main weight of the 
p's must lie in the region between the highest resonances 
and the strip boundary. Since we only require a and 7 
for t<0, it is possible to make simple approximations 
to the integrals (33) and (34). 

For a we take a three-parameter form, 

a(/) = a o + a i / ( l - / / k ) , (35) 

however, if we also require a(28)= 1, corresponding to 
the p meson, we can reduce the parameters to two. 

We take 
ah / h \ / / t 

«(0=i 
28 

•°('-ii)/(4)' m 

uBateman Manuscript Project, Higher Transcendental Func
tions (McGraw-Hill Book Company, Inc., New York, 1953), Vol. 
I, Eqs. 3.12(4) and 3.12(6). 

where (\ — a) is the intercept of the trajectory with 
/=0. It was found that a similar pole approximation 
was not suitable for the residue function, since the 
output would not reproduce such a behavior. Instead 
it was found convenient to make use of a formula given 
by Chew and Teplitz,5 

y(tW(t)~(i-t)BaW*(t). (37) 

The difference between our function Bip(t) and the 
function obtained from the exchange of an "elementary" 
(fixed spin) p is not great, and we can approximate 

Bi ( 0« constf H ) 
V 2<7,V 

and obtain 

t \Qia+m*/2q?) 

?PV (<7P2) m 

7(0 = <*'(flP-O 
,Q«(i)[l+56/(f-4)] 

[(i-4)/43a(»+1 

(38) 

(39) 

where c is some constant. This parametrization has 
the advantage of relating the parameters of 7 to those 
of a, leaving only two further variables, c and L Also, 
7 is a slowly varying function of both i and t. Our 
program thus consists of varying the four parameters 
a, ts, c, and i until self-consistency is achieved. From 
(31) the width of the p will be 

[ 7 ( « , W ( « , 2 ) ] & P V < 1 = 1.1347(28)/a/(28). (40) 

However, this involves the use of the functions above 
2=0, where we can no longer rely on them. 

V. RESULTS 

A search was made for a self-consistent set of parame
ters for the p with the various choices of s\. We use 
£11==f> £= — 1, and solve the N/D equations for A~. 
It was found that a flat input trajectory gave a steep 
output trajectory and vice versa, so it was fairly easy 
to make a search, varying a and tB until both input and 
output trajectories had the same shape. The slope of the 
output trajectory is certainly not independent of the 
form of the input residue function, but with our parmet-
rization the main t dependence of (39) is in a, so that in 
choosing a we have approximately fixed 7 except for 
the overall constant c. Other forms of residue function 
gave much less good results. 

By adjusting c one can alter the height of the output 
trajectory until it coincides with the input. Finally i 
can be varied to try to make the input and output 
residues as similar as possible, though this requires a 
compensating adjustment of c. 

There is no unique self-consistent solution. It is 
possible to obtain near self-consistency with various 
combinations of Si in the range 150 to 300 m*2, a from 
0.2 to 0.35 (i.e., intercept of 0.8 to 0.65), and i from 
Isi to Isi, taking c to be the dependent variable. In 
view of the large amount of computer time involved, 
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FIG. 1. The input and output trajectories 
a pin=0.330+0.420/ (1 - tpS). 

and the lack of correspondence to the real world through 
the neglect of the force from other trajectories, we did 
not carry out an exhaustive search, and quote here just 
one of our better results, without claiming that more 
perfect self-consistency, or a closer approximation to 
the physical p, can not be obtained. 

With si=200 mr
2, it was found that there is good 

self-consistency if a=0.25, /#=75, c=107, and 2=60. 
Thus 

a(0 = 0.330+0.420/(l-//75) (41) 
and 

3370 Q«(0(2) 
7(0== }L±1 ( 6 o-0 . (42) 

(75-/)2 (14)*<»+1 

In Fig. 1 we plot ai„(/) and compare it with aout(/). It 
will be seen that they agree very well for /<0. But 

140 

larger width, because we have not included the forces 
from other trajectories, but the magnitude of the dis
crepancy is a little disturbing. In Fig. 4 we plot the 
partial-wave cross section for /= 1. Despite the absence 
of a zero of Re[[.Di(s)] there is a peak at slf2=5.S mv 

(mp=5Amr), but its full width at half-maximum is 
«S mr. Our intercept a(0) = 0.75 is rather higher than 
experiment indicates («0.5),12 but we have not been 
able to produce self-consistent trajectories with suffi
cient slope to pass from 0.5 at t= 0 to 1.0 at t= 28. This 
is possible with more rapidly varying residue functions, 
but such residues can not be made self-consistent. 

FIG. 2. y/a' for the p and P trajectories. The prediction for P 
is based on Eqs. (43) and (44). 

above t=Q they begin to diverge, and in fact Re[Z>«(,y)] 
ceases to have zeros for a>0.85. In Fig. 2 we show 
(y/a')in and compare it with iVa/ReZV output. Again 
very good agreement is found except near /=0, where 
the output diverges considerably from our smooth 
input curve. Figure 3 gives the values of y^ and 7out 
corresponding to Figs. 1 and 2. Since the potential 
depends on y(t) and a(t) only for /<0, we regard this 
as a self-consistent solution, but it is clear that our 
results can not be continued into the physical region. 

From (40) the input width of the p is 1.95 mr, or 
about 2.5 times the generally accepted experimental 
width. It is not really surprising that we require a 

0.05 

— 1 — i — i — I — i — r — 

-100 - 50 

Mm,z) 

FIG. 3. The residue function y for the p and P trajectories. 

VI. THE 7 = 0 CHANNEL 

Though we have not included the Pomeranchon 
force, we do of course obtain a trajectory in the 7=0 
channel (A+), the principal difference from 7=1 being 
that crossing matrix element P11' is now 1 instead of \. 
In fact, with the neglect of the terms mentioned as 
being small at the end of Sec. II, this is the only 
difference. Figures 1-3 also include the results for this 
7 = 0 output. It will be seen that a(0) is slightly greater 
than 1, the unitarity limit, but this is not surprising in 
view of the large p width we have used. There is no sign 
of a secondary P trajectory. 

The P trajectory is almost exactly parallel to the p, 

ap(*)«ap(*)+0.320. (43) 

Using this expression for ap, we have compared, in 
Figs. 2 and 3, the output values of y/ol and y with the 
prediction of (39). Remembering the crossing matrix 

FIG. 4. The 7= 1, />-wave cross section in millibarns versus energy. 

12 R. J. N. Phillips and W. Rarita, Phys. Rev. 139, B1336 
(1965). 
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element, we have 

yP(f) = 2caP' (f)(i-t} 
Q « P < I > [ 1 + 5 6 / G - 4 ) ] 

(44) 
l(i-4:)/4r\apit)+1 

It will be seen that the prediction is well satisfied ex
cept for t^Q. 

Rea(0 has its maximum at t ~ 20 tnr
2, though we 

have not traced the fall of Rea(/) in Fig. 1, since, 
because of the large imaginary parts of a and D, it is 
not correct to identify the second zero of ReD with the 
returning trajectory. From (33) we can see that if 
pa{t) has its main weight in the upper part of the strip 
one would not expect this maximum to occur for 
t<Si/2. Our present calculation appears to emphasize 
the region of the double spectral function just above 
threshold, so that our results cease to be correct as 
we enter the resonance region. 

We conclude that it may be possible to "bootstrap" 
trajectories with some hope of obtaining the physical 

parameters for /<0, when all the trajectories are in
cluded, but there is no sign that we shall be able to 
obtain the correct particle masses and widths. It is 
likely that the presence of competing channels is im
portant for higher angular momenta, and this possi
bility is being examined.13 Also it may be necessary to 
iterate the potential14 in order to obtain a better 
approximation to the double spectral functions. 
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Polarization of a Decay Particle in a Two-Step Process: 
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The phenomenology of two-step processes of the type A -\-B —> C-\-D, D —• E-\-F is studied for the partic
ular case when among the final particles only F is observed. Formulas convenient for the computation of the 
polarization of F in terms of the parameters describing the production process are presented, and the con
nection between the polarization of F and that of D, when D is not observed, is clarified. Numerical results 
are obtained for the angular dependence of the A polarization in the process K~+p —> 7r°+S°, 2° —> 7+A at 
a variety of incident energies. 

1. INTRODUCTION 

PARTICLES with spin are frequently polarized when 
produced in elementary-particle reactions. As is 

well known, measurement of this polarization provides 
restrictions on the values of parameters, e.g., phase 
shifts, used to describe the matrix element for the 
production process. If the particle is unstable, the 

f Supported in part by the U. S. Air Force. 
t Based in part on a Ph.D. thesis submitted by MHC to the 

University of Maryland in 1963. 
* Present address. 
§ National Science Foundation Senior Post-Doctoral Fellow, 

on sabbatical leave from the University of Maryland, 1963-64. 

polarization may often be measured from the angular 
distribution of the decay products and sometimes 
from the polarization of one of the decay particles. 

Special circumstances prevail if the produced particle 
is the 2° hyperon, e.g., in the reaction 

K-+p-*T°+?:Q. (1.1) 

The electromagnetic decay of the 2°, via 

2° -+7+A, (1.2) 

involves two more neutral particles, and of the three 
final particles 7r°, y, and A, usually only the A is de-


