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element, we have 

yP(f) = 2caP' (f)(i-t} 
Q « P < I > [ 1 + 5 6 / G - 4 ) ] 

(44) 
l(i-4:)/4r\apit)+1 

It will be seen that the prediction is well satisfied ex
cept for t^Q. 

Rea(0 has its maximum at t ~ 20 tnr
2, though we 

have not traced the fall of Rea(/) in Fig. 1, since, 
because of the large imaginary parts of a and D, it is 
not correct to identify the second zero of ReD with the 
returning trajectory. From (33) we can see that if 
pa{t) has its main weight in the upper part of the strip 
one would not expect this maximum to occur for 
t<Si/2. Our present calculation appears to emphasize 
the region of the double spectral function just above 
threshold, so that our results cease to be correct as 
we enter the resonance region. 

We conclude that it may be possible to "bootstrap" 
trajectories with some hope of obtaining the physical 

parameters for /<0, when all the trajectories are in
cluded, but there is no sign that we shall be able to 
obtain the correct particle masses and widths. It is 
likely that the presence of competing channels is im
portant for higher angular momenta, and this possi
bility is being examined.13 Also it may be necessary to 
iterate the potential14 in order to obtain a better 
approximation to the double spectral functions. 
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The phenomenology of two-step processes of the type A -\-B —> C-\-D, D —• E-\-F is studied for the partic
ular case when among the final particles only F is observed. Formulas convenient for the computation of the 
polarization of F in terms of the parameters describing the production process are presented, and the con
nection between the polarization of F and that of D, when D is not observed, is clarified. Numerical results 
are obtained for the angular dependence of the A polarization in the process K~+p —> 7r°+S°, 2° —> 7+A at 
a variety of incident energies. 

1. INTRODUCTION 

PARTICLES with spin are frequently polarized when 
produced in elementary-particle reactions. As is 

well known, measurement of this polarization provides 
restrictions on the values of parameters, e.g., phase 
shifts, used to describe the matrix element for the 
production process. If the particle is unstable, the 
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§ National Science Foundation Senior Post-Doctoral Fellow, 
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polarization may often be measured from the angular 
distribution of the decay products and sometimes 
from the polarization of one of the decay particles. 

Special circumstances prevail if the produced particle 
is the 2° hyperon, e.g., in the reaction 

K-+p-*T°+?:Q. (1.1) 

The electromagnetic decay of the 2°, via 

2° -+7+A, (1.2) 

involves two more neutral particles, and of the three 
final particles 7r°, y, and A, usually only the A is de-
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tected, in a hydrogen bubble chamber, via the weak 
decay 

A - > * - + # . (1.3) 

Thus, neither the polarization nor the angular distribu
tion of the 2° is directly measurable, and the question 
arises as to how the observation of the decay products 
of the A may be used to gain information on the pro
duction process. 

The purpose of this paper is to study aspects of the 
phenomenology of two-step processes of the type 
A+B -»C+D, D-^E+F, for the particular case 
when only particle F is observed. In Sec. 2 we present 
formulas convenient for the computation of the polari
zation of F in terms of the parameters describing the 
production process. In Sec. 3 we attempt to clarify 
the connection between the polarizations of F and that 
of D when D is not observed, a subject on which some 
confusion has existed in the past. Numerical results 
are obtained for the specific case of reactions (1.1) 
and (1.2) for r}k(0), the energy-averaged polarization of 
the A, for a variety of incident JT-meson energies. 
Section 4 contains a brief concluding discussion and 
summary. Some calculational details are relegated to 
an Appendix. 

2. GENERAL FORMULAS FOR sF(pF) 

Consider a two-body reaction 

A+B-+C+D, (2.1) 

followed by the decay 

D->E+F. (2.2) 

We assume, for the sake of simplicity of notation in 
this section, that particles A, C, and E have spin 0, 
and that particles B, D, and F have spin \ ; it will be 
easy to generalize the results. We are then interested 
in computing the four-vector polarization1 SF of par
ticle F, as a function of its momentum ppy when the 
momenta pc, pD, and pE are not observed. Now, for 
fixed pA and ps, the process (2.1) will give rise to 
particles D with polarization SD depending on PD-SD 
= SD(PD)- The decay of a beam of D particles with 
momentum pn and polarization SD will yield F par
ticles with polarization SF' depending on ^ as well as 
on PD-SF'=SF'(PF,PD)- I t is intuitively clear that 
SF(PF) will be a weighted average of SF (PF,PD), with 
contributions from all kinematically allowed values of 
pn- We first indicate the steps leading to the general 
expression (2.8) for SF{PF), which has the expected 
form. We then obtain the simplified formula (2.13) 
which holds in the c m . system of (2.1). 

Let Mi and M2 denote the Feynman amplitudes for 
the processes (2.1) and (2.2), respectively. Then we 

1L. Michel and A. Wightman, Phys. Rev. 98, 1190 (1955). 

may write 
M\=UDO\UB 

and 
M2=UF02UD, 

where 0 i and Oi are formal scalars under proper 
Lorentz transformations, constructed from the relevant 
four-momenta and Dirac matrices. The symbols UB, 
UD, and UF denote Dirac spinors, with WJ5 = W(^B,/JS), 
etc., where u(p,t) is defined by 

AM (p,t) = u (p,t), iy5tu (p,t) = u (p,t). 

Here A is the positive energy projection operator 

A= (p+m)/2m 

and / is the pseudo-four-vector labeling the spin state. 
The differential cross section for reaction (2.1), when 

the spin of D is not observed, is given by 

d<n= (mB/2$) (Trpi)JDi, (2.3) 
where 

$=l(pA-pB)2-tnA2mB
2J/2 

and D\ is proportional to the conventional Lorentz-
invariant volume element in phase space: 

Z>i= (27r)-28(pc+pD-pA-pB)(mD/2EcED) dpcdpD. 

The matrix pi in Eq. (2.3) is defined by 

P^AJAPIA'AD, (2.4) 

where ps is the spin density matrix of the target par
ticle B, related to the polarization four-vector SB of B 
by 

p £ = ! ( i + m s £ ) A i J . 

In Eq. (2.4) we have introduced the abbreviation 

0'=7<>0V 

for any 4X4 matrix O.2 The polarization four-vector 
SD of the outgoing particle D is given by 

^ = T r ( - m 7 M P i ) / T r p i , 

and the corresponding spin density matrix pD is 

PD=i( l+m5i))Ai>. 

The decay (2.2) of D with momentum p& and polari
zation SD gives rise, with a rate dT2j to an F particle 
with three-momentum in the interval dpF- The rate is 
given by 

dT2=(mD/ED) (Trp2)£>2. 

Here, and henceforth, a prime on the integral sign 

2 Our notation is the same as that of S. S. Schweber, An Intro-
duction to Rdativistic Quantum Field Theory (Row, Peterson and 
Company, Evanston, Illinois, 1961). 
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indicates that P F is to be kept fixed during the integra
tion. Di is defined by 

£>2= (27r)-28(pE+pF-pD)(tnF/2EEEF) dpEdpF, 

and p2 by 
p2= AFOIPDOZ AF • 

The polarization four-vector SF of F will depend on 
both pF and pn and is given by 

s/tt=sF
fll(pF1pD) = Ti(-iy,y>ip2)/TTp2. 

We now consider the two-step process. The differen
tial cross section for producing particle F in the in
terval dpF when pn is measured, is 

d(r'=d<ri(dYi/Yd, 

where T2 is the total decay rate, for Z>, moving with 
momentum pp. Thus 

T2=(mD/ED)TD, 

where TD is the decay rate in the rest frame of D. 
When D, or equivalently E, is not observed, dvf —> da 
with 

w/' da= (mB/25TD) / (TrP2)(TrPl)Z)2I>i (2.5) 

The F-particle polarization four-vector SF=SF(PF), 
when J9 is not observed, may be obtained by computing 
^(T(/F), the cross section for producing F with momen
tum in the interval dpF and the spin state labeled by 
the pseudo-four-vector / F . The sum on the intermedi
ate spin states of D must then be performed on the 
product M2M1 coherently, i.e., before taking the ab
solute square. The result is 

where 

SF-SF(PF) 

d<x(tF)=:iO-—tF-SF)d<ri 

= / sr'{prtpD) TrptTrpJ)J)i 

X | / Trp2TrpiZ>2#i] . (2.6) 

Equations (2.5) and (2.6) have been written in such 
a way that they remain valid, for example, for a three-
body decay of particle D, if the phase-space factor D2 

is replaced by the corresponding factor appropriate 
for three-body decay. If the unobserved decay par
ticles have spin, Trp2 should be replaced by 

E T r p 2 , 

where ]T denotes a sum over a complete set of orthog
onal spin states for these particles. 

For the two-body decay (2.2), we may infer from 
the definitions of p2 and dT2l that 

where q is the magnitude of the /^-particle three-
momentum in the rest system of D and the invariant 
WF is the angular distribution of F in the same system, 
normalized to unity for SD=0. The general form of WF 
is 

WF=1+P'SD-PF, (2.7b) 

where p' is a constant. If parity is conserved in the 
decay, then necessarily p ' = 0 , and WF~ 1. 

Eqs. (2.6) and (2.5) may be rewritten, using Eqs. 
(2.7) and (2.3) as 

SF(PF)= / s/(pFipD)WFdcriD2/ / WFd<nD2, (2.8) 

d<T=(2wmD/fftFq) I WFda\D2. n (2.9) 

We now consider the simplification of Eqs. (2.8) and 
(2.9) in the c m . system of reaction (2.1). 

In the c m . system of the production reaction, D2 

reduces to 

(Sir2)~lmF I PF I EE~lb (ED-EE-EF)dEFdQ,F, 

so Eq. (2.8) becomes 

sF(pF)= / SFf(pF,pD)<riWFdr/ / viWpdr, (2.10) 

where 

and 
dT = EE~ld(ED-EE-EF)dQD, (2.H) 

cri^idari/dttDJc.m.-

Equation (2.9) reduces similarly to 

/ • 

Trp2= (2TMDTD/niFq)WF , (2.7a) 

da/dEFdQF = (mD \ PF | /4TT#) / <TiWFdr. (2.12) 

To proceed further, we note that considerable simpli
fication is achieved by introducing, as polar axis for 
the integration over the angles of particle D, not the 
axis defined by the incident beam pA but rather the 
axis defined by the momentum of particle F. Thus, on 
defining x and (p as polar and azimuthal angles of pD 

with respect to pF, so that 

dQD=sinxdxd(p1 

we may use the 8 function in Eq. (2.11) to carry out 
the integration over x- Since 

EE= ( P F 2 + P I > 2 - 21 PF11 PD I cosx+nts2)1 '2, 

so that for fixed | P F | and | pi> | 

s inx^x=EEdEE / (| p F 11 pD | ) , 

Eq. (2.11) becomes 

dT=(\pF\\pD\)-ld<p. 
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Thus, Eqs. (2.10) and (2.12) become, respectively, and 
8A(A0 = I?A£, (3-3a) 

SFr{pF,pD)uiWF dip I I <TiWFd<p (2.13) where the direction of polarization x is denned by 

***** * - F A A F A / P A / \ F i V > 

da/dEpdOiF— / <JTWF dip. (2.14) and the magnitude of polarization (up to a sign), is 
2TT(EF^~EF^~5) ^o 

and ^ = P ^ X P A / | P A X P A 1 , 

2 T ( J E F
( + ) - £ F ( - ) ) . 

In the last equation we have introduced J£F
(+) and i?A=2irsin0A£A / / (ri(u) d<p, (3.3b) 

EF
(~\ the maximum and minimum values of £> in . , ^° 

the cm. system, which are given by ~i* 

£Fc±) = [£1)(mi>*+m^-if»^)/2wi>»]±&|pi>|/fWD]. «A= 2(TT)-^O|PA| |p2 | sin*x/ fc(«)sinV<*>. (3.3c) 
J o 

3. APPLICATION TO S° -» r + A x is t h e angle between p s and pA, and 

Equation (2.13)-of the preceding section may be used C 0 S X = ( 2£ z £ A - w ^-m A
2 ) /2 |pz | I PA [. 

to obtain an explicit formula for SF\PF) in terms of 
parameters describing the production reaction and pa- The quantities <ri, £S describe the production cross 
rameters describing the relation between SF{PF,PD) and section and polarization of 2° in the cm. system, with 
SD(PD), determined by the dynamics of the decay. The the magnitude of 2° polarization 172= sin0s£s,Ai(^), and 
general analysis is given in the Appendix. Here we shall „ A 
consider specifically the case of 2° production followed u^cow^pA'pz. 

by Equations (3.2) and (3.3) describe the polarization of 
2 _» 7+A. t n e ^ £or a £xe(j p^ Experimentally, it may be measured 

Then, for either relative parity of 2° and A, f r o m t nf up-down asymmetry, with respect to the A 
production plane, in the distribution of w~ from the 

( W S 2 + ^ A 2 \ parity-nonconserving decay A—» w~+p. If the number 

P? " ~PA) > (3*1) of events is small, a more accurately measurable 
.,, A quantity may be the up-down asymmetry, averaged 

= — 4w I ( 2_ 2\2 o v e r t n e range of energy of the A at the same angle, or 
0 A 2/ ^ A j • perhaps averaged over both the energy and the angle, 

When the 2° is not observed, we get, from Eqs. (2.13) weighted with the corresponding cross section. In these 
and (3.1), cases the relevant theoretical average quantities are, 

SA°(^A) = 0 , (3.2) respectively, 

and 

rE^} da f r*4^-" da 
3 A ( 0 A ) = / VA dEA dEA (3.4) 

J EK{~} dEAdQA J J i?A<-> dEAd£lA 

r / ^ A ( + > da / r rE^+) da 
0?A>= / / VA dEAdUA/ / / dEAdilA. (3.5) 

J J E A ^ dEAdttA I J J £A<-> dEAdQA 

If we now represent a\ and £2 as power series in u [or in Legendre polynomials Pn(u)2 the integrations in (3.4) 
and (3,5) may be carried out. For example, with 

00 

<ri=£ anu
n, (3.6a) 

and 

te=llbnun, (3.6b) 

we obtain the following results for (??A,) retaining only terms with n<3: 

<*>-^(M-^-C^]/(«*?) , (3.7) 
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where the coefficient Ci is given by (we denote |p | by p, from now on) 

C, 
L 4 W mA

2/ \ 

WS4+WA4+4WS2WA2 

and 
pr mAi 

Cx 
r ^2 / 

= K\ (WS 4 +WA 4 +4WS 2 W A
2 ) - ( 

L2wA
2/>2 \ 

4/>s
2 

ms4+WA4+47Ws2WA2 

-ntK •)>®]- (P&Pe), (3.8a) 

4^2 
- W A 

fEx+pzYl 5)ln(^--^jJ, (pz$p.). (3.8b) 

Here K= — Im^m^j {m^— mA
2)3, and />c is the minimum value of ps for which the decay A in 2° —» 7+A all lie in 

a forward cone with respect to ps: £c= (WS2-WA2)/2WA. C2 is related to C\ via 

2 l r rE A ( + ) / r*A(+) -1 

- = - / pAsmAxdEA/ pASin2xdEA , 
1 4Ui?A<-> / ./**<-> J 

so that 
C2/Ci^Ksin2x)n 

The expressions (3.8a) and (3.8b) may be expanded 
as power series in the parameter 5= (m^—m^lm^ and, 
for (3.8b), also in pz/E<&{<\). Thus, 

d = ~ICl-52((WsV5^2)+^)]+OW, 
(P&Pc), 

and 
(3.9a) 

+&(p2/E2Jt)V\+0(P), (Px^Pc). (3.9b) 

Since, for the case at hand, 5~0.08, we have, for 

pz/E^8y 

C**-t(Pz/Ej»); 

for pz=po to 1% accuracy, Ci=—4/15; and, for 
pv^Pc Ci—>—•I, e.g., for p£>2pc, 

C i « - | , (3.10) 
to within 5%. 

To clarify some confusion which seems to have 
existed in the past on the relation between the A and 
the 2° polarizations it is instructive to compare Eq. 
(3.7) with (772), the magnitude of the 2° polarization 
averaged over 0s: 

(17s) = / y2<ndti? I J orî Qs. 

On using (3.6a) and (3.6b) with n<3, we get 

<«>=jK)/(-+f)-
Thus, if Cz<3CCi, one finds 

( ^ A ) / < ^ S ) « C I , 

and if also p£2>pc, from (3.10) 

<»A>«-*<-»*>• (3.11) 

On the other hand, it is definitely not true that 

UV)**-in(f»; (3.12) 

i.e., the (energy-averaged) polarization of the A emitted 
at angle 0, with respect to the incident beam, is in 
general not related to the polarization of a 2° emitted 
at the same angle by an angle-independent factor. It 
is true (and a source of confusion) that, iox fixed ps, 
the polarization of the A averaged over pA, is — J times 
the polarization of the 2°, but this statement, which 
is independent of the production process, can not be 
used to infer (incorrect) Eq. (3.12) or Eq. (3.11), the 
validity of which depends on conditions such as 
C i « C i . 

Of course, if Eq. (3.12) is used only to infer Eq. 
(3.11) by integration over 0, no appreciable numerical 
error is ultimately made, provided that the conditions 
for the validity of (3.11) are satisfied. For the reaction 
K~+p-^T°+X° studied by Watson, Ferro-Luzzi, and 
Tripp3 in the range (^x)iab=300 to 500 MeV/c, one 
finds ( V C i ~ l % , and p?>pc~S0 MeV/c. Using (3.9a) 
we find less than 5% deviation from (3.11) in this 
region. 

To illustrate the use of Eq. (3.4) we have computed 
fjA(8) for (pK)lab=350, 400, and 450 MeV/c using the 
results of the phenomenological analysis of Watson 
et ah Figure 1 shows r\A(d) versus 0, for solutions I and 
V of these authors, corresponding respectively to even 
and odd relative 2-A parity. [The 2-A parity is of 
course now known to be definitely even4; an odd-
parity solution has been included to indicate the sensi
tivity of 7}\(d) to the assumed parity.] It is clear that 
the measurement of T?A(0) can provide important re
strictions on any phase-shift analysis of the initial 
reaction and can more or less replace direct measure
ment of 7?so(0). Of course, if enough events are available 
still more information concerning the production re
action would in principle be gained from a determina
tion of ?U(0,£A)- We hope that the results of this sec
tion will prove useful in the phenomenological analysis 
of 2° production reactions. 

3 M. B. Watson, M. Ferro-Luzzi, and R. D. Tripp, Phys. Rev. 
131, 2248 (1963). 

4 H. Courant et al., Phys. Rev. Letters 10, 409 (1963). 
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The energy-averaged A polarization TJA(B) versus cos0, 
p c m . system, computed at (/>jriiab = 450, 400, and 350 

Solutions I and V refer to two choices of phase shifts 
by Watson et al. (Ref. 3). 

4. SUMMARY AND DISCUSSION 

In Sec. 2 a two-step process of the type A-\-B—+C 
+ D , D —> E+F was studied in some detail for the case 
of spin-0 A, C, and E particles and spin-! ^> A a n ( i 
F particles. The four-vector polarization SF(PF) of 
particle F, when none of the particles C, D, or E is 
observed, was expressed as a covariant integral, Eq. 
(2.8). It should be emphasized that Eq. (2.8) is valid 
whatever the spins of the other particles may be pro
vided that : 

(i) dai is interpreted as the differential cross section 
for producing particle D in the element of solid angle 
dQ,D with particles A and B in given states of polari
zation ; 

(ii) SF(PFJPD) is the polarization four-vector of F 
resulting from the decay of D, with momentum pn, 
and in the state of polarization (statistical spin state) 
arising from the production process; and 

(iii) WF is the angular distribution of the F particle 
resulting from the same decay as seen in the rest 
system of the D particle. 

If the spin of F is greater than one-half, SF(PF) and 
SF'(PF,PD) in Eq. (2.8) may be replaced by the corre
sponding polarization tensors of higher order. The 
simple modifications necessary when D decays into, 
say, three particles, were also indicated in Sec. 2. For 
a two-particle decay, considerable simplification was 
achieved by evaluating SF(PF) in the cm. system of 
the production reaction and choosing as integration 
variable the azimuthal angle <f> of pD with pF as polar 
axis. The resulting equations [Eqs. (2.13) and (2.14)] 
are especially convenient for calculational purposes. 
General formulas expressing SF(PF) in terms of the 
parameters of the production process, when F and D 
have spin | , are given in the Appendix. 

The case of 2° production followed by 2° —> 7+A was 
considered in detail in Sec. 3. It was shown that although 
the ubiquitous factor — | does not relate rjA(6) to 77s(0), 
the relation (5?A)=— K^S) is approximately correct 
for p?> (ws—WA)A~75 MeV/c, mainly as a result of 
the relatively small value of 5= im^—m^jm^. 

Measurement of 7jA(0) will provide additional re
strictions on any proposed phase-shift analysis of the 
reactions K~+p - » 7 ^ + 2 * , related to K~+p -> 7r°+2° 
by charge independence. The predicted values of 
iu(0) for ££=350, 400, and 450 MeV/c, using solutions 
I and V of Watson et al., are shown in Fig. 1. 

In conclusion, it should be pointed out that Eqs. 
(2.13) or (3.4) may be useful for two-step reactions in 
which more than one of the final momenta can be 
measured, e.g., if charged particles (or resonances) 
are produced, but the number of events is small. A 
summation over the other momenta is then advantage
ous for improving the statistics. 
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APPENDIX: DEPENDENCE OF $F(PF) ON PARAM
ETERS OF THE PRODUCTION PROCESS 

Consider a two-body reaction, involving particles of 
arbitrary spin, 

A+B-+C+D, (Al) 

but with the initial particles unpolarized. The cm. 
differential cross section a\ then depends only on the 
total cm. energy W and on the cm. scattering angle 
0D, and is conventionally written, at not too large W, 
as a power series (in practice, a polynomial) in COS^D, 
i.e., 

where 
n=-0 

U^COSOD^PA'PD, 

(A2) 

and the a« are functions of W only. If particle D has 
spin ^, and if the reaction (Al) conserves parity, the 
four-vector polarization SD has, in the cm. system, 
necessarily the form 

SD = (0,si>), 

with the three-vector s& perpendicular to the produc
tion plane. Thus SD=VDW, where t\B is the magnitude 
of the polarization (up to a sign) and w= (PAXPD)/ 
|p^tXpi>|. VD is generally written in the form 

t]D = sin0/>£D (u)/<ri (u) (A3) 

with £D (U) assumed expandable as a power series in u, 

&(«) = 
n==0 

and the bn dependent on W only. 
In order to exhibit explicitly the dependence on 

{dnfin} of the effective polarization SF(PF) of the 
spin-J particle F, arising from the decay D —> E+F, 
we consider first, in part (a), the general form of 
SF'(PF,PD), the polarization of F when pD is measured. 
In part (b), this form is combined with the results of 
Sec. 2 to obtain an explicit formula for SF(PF), in the 
cm. system of the reaction (Al), valid for both of the 
two possibilities for the spin of E (0 or 1). In part (c) 
the result of (b) is applied to the case where E is a 
photon, relevant for 2° production, followed by the 
decay 2°—» 7+A. 

(a) General Form of SF'(PF>PD) 

From the definition of sp' in Sec. 2 it follows that 
SF must transform as a four-vector under proper 
Lorentz transformation, and satisfy the condition 

pF-SF=0. (A4) 

When the spin, if any, of particle E is not observed, 
the only available four-vectors are pF, pn, and the D-
particle polarization four-vector SD. The only non-
vanishing and nonconstant scalar product which can 
be formed from these four-vectors is PF-SD. However, 
since SF* is the ratio of two linear inhomogeneous 
functions of SD, using Eqs. (2.7a) and (2.7b) for the 
denominator in the expression for SF, we see that the 
most general form of SF' may be taken as 

SF'(pF,pD)=(l + p,SD'pF)-lL{SD-pF)(apD+PpF) 

+8sD+a'pD+P'pFl, (A5) 

where a, fi, 8 and a', fi', p' are constants whose value 
depends on the dynamics of the decay. Since SD'PF is 
a continuous variable, Eq. (A4) implies the pair of 
equations 

apF - pDJrfimF2+8= 0, 
and 

a'pF'pD+P'mF
2 = 0, 

relating a, 0, 8 and a', fi\ respectively. 
If parity is conserved in the decay SF must change 

sign with a change in sign of SB, SO that then a'=fi' 
= p'=0. If the decay is electromagnetic, with E a 
photon, then one finds 5=0 also, so that Eq. (A5) 
reduces to 

where 
SF'(pF,pD)=:a(sD'pF)(pD — hpF), 

X= ( W F 2 + W J ) 2 ) / 2 W F 2 . 

(b) Explicit Form of SF(PF) 

(A6) 

It is convenient to define the azimuth <£ of po with 
respect to pp in such a way that <£=0 when pn lies in 
the plane containing pF and p^ and 6D>0F, with 

CO$6F=PF'PA. 

On defining a unit vector i , perpendicular to the F 
particle-production plane, by 

^ = ( P ^ L X P F ) / | P ^ X P F | , 

and a unit vector #, perpendicular to pF but in the 
production plane, by §= ( P F X ^ V I P F X ^ | , it follows 
that 

pD = (sinx sin^)^- (sinx cos<£)#+ COSX^F , (A7) 

and 

w— [(cosx sin0j?+sinx cos0i? cos^)f 
+ (sinx sin<£)£i X #]/sin0i>. (A8) 
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We now assume explicitly that <r\ and £D depend 
only on W=COS0D, as is necessarily the case when the 
initial particles are unpolarized. Then 

/•2x 

/ Oi or £D) sin<£ d<j>=0, (A9) 
Jo 

so that on substitution into Eq. (2.13) we find, using 
Eqs. (A7), (A8), (A9), and (2.7b), that 

sF^afED+prEF, (AlOa) 
and 

Si?=lfo~1[a|pFl |p2>|sin2xsin0F(£o— £2) 
+ 5 (cosx sin0F £o+sinx COS#F Li)2x 
+ M 0 ~ 1 [ - a'\pD\ sinx M{]{) 

+ [ a ' | P i > | c o s x + ^ | p F | ] ^ F . (AlOb) 
Here 

1 r2* 
Ln = — / £D(u) cosn<t> d<t>, (Alia) 

2T J 0 

1 r2* 
Mn=— I <ri(w)cosn<£ d</>, (Allb) 

2w Jo 

and the variable u is related to <f> by 

u— cosx COS^F—sinx sin0F cos<£. 

On substituting the expansions (A2) and (A3) into 
Eqs. (Alia) and (Allb) , one gets 

00 00 

Ln— X) bmKmn, Mn = £ dmKmnj 

where 
1 r2* 

i^mn = / Um COSn<i> d<t> . 
2TT J 0 

On expansion of um by the binomial theorem one finds 
that 

m 

Kmn= ( - 1)»E (cos0F cosx)m-'(sin0F s inx)« m n <», 

where 

KmnM=lml/jl(m-j) QL(j+n-1) 11/(i+i»)! I ] , 
0 ' + » even); 

= 0 , ( y + » o d d ) . 
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For even n, the function Kmn is a polynomial of order 
m in COS0F, as well as in cosx. 

The differential production cross section, Eq. (2.14), 
becomes, in the present notation, 

da/dEFdttF = (EF^-EF^)~lMo. 

We now consider in more detail the case where E is a 
photon. 

(c) Application: D —* y+F 

The most general form of O2 (Sec. 2) when particle 
E is a photon is, for a parity-conserving electromagnetic 
decay, and for, say, even relative parity of D and F, 
0 2 = (const) k e, where k = pD—pF is the photon mo
mentum and e is the four-vector photon polarization, 
with e-k = 0. From the definition of sF

f one then 
obtains, on calculation of the traces, summed over the 
7 polarization, the result5,6 

s/(pFjpD) = oLo(sD'pF)(pD-\pF), (A12) 

where A is defined by Eq. (A6) and ao~—^mi>mFl 
(WD2— mF

2)2. The same result holds for odd relative 
parity of D and F, in which case O2 —> 7s02. 

Equation (A5) therefore holds with a = a 0 , P= —Aao> 
and $ = a ' = j 3 ' = p ' = 0 , so that from Eqs. (A 10a) and 
(AlOb) one obtains sF°{pF) = 0 and 8F(pF) = r)F£. Here 
77 F, the magnitude of the polarization, is given by rjF 

= smdF%F/Mo and £F = a0\pF\ |pi)|sm2x(£o— £2), with7 

cosx= (2EFED—mF
2—mD

2)/2\pF\ | p D | . 

These results give Eqs. (3.2) and (3.3) of the text. 

6 In agreement with the result of L. Michel and H. Rouhanine-
jad, Phys. Rev. 122, 242 (1961). [Equation (A.21) of this reference 
is incorrect since the kinematical and dynamical weight factors 
present in our Eq. (2.8) are missing.] 

6 In the rest system of the D particle Eq. (A12) reduces to 

S F ' = — K+(8D-q)q, S ' F ° = — JT_SD-$, 

where q is a unit vector in the direction of the F particle momentum 
and K±—(mj^±:mj^)/2fnDfnF. Unless ntF—ntD, SF ' differs from 
the three-vector polarization P obtained from a noncovariant 
treatment [R. Gatto, Phys. Rev. 109, 610 (1958)], which is 
P = —(sD'§)q. However, the (invariant) degree of polarization 
(—st*)ll% is equal to | S D - § | , which coincides with | P | . 

7 When niE?*0t the numerator in the expression for cosx 
contains an additional THE2 term. 


