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A factorization condition which must be satisfied by the first n correlation functions for the electro­
magnetic field operators has been used to define wth-order coherence. The first-order coherence condition 
has been shown to imply maximum fringe contrast in interference patterns. In the present paper we in­
vestigate the mathematical consequences of assuming the condition for maximum fringe contrast. By con­
sidering the correlation functions as scalar products and formulating rigorous inequalities for them we are 
able to show that the assumed condition in turn implies factorization of the first-order correlation function. 
By extending the same methods we are able to show that all of the higher order correlation functions factorize 
into forms similar to those required for full coherence, but differing from them through the inclusion of a 
sequence of constant numerical factors. These coefficients are shown to furnish a convenient description of 
the higher-order coherence properties of the field. Their values are presented for some typical examples. 
We derive a number of inequalities satisfied by the coefficients for the case of fields which possess positive-
definite weight functions in the P representation. Some inequalities obeyed by the correlation functions for 
such fields are derived as well. 

I. INTRODUCTION 

TO secure a complete description of the coherence 
properties of an electromagnetic field it is useful 

to distinguish between various orders of coherence. A 
field which possesses mth-order coherence, for example, 
will exhibit particularly simple properties in measure­
ments which detect average rath powers of field in 
tensities or ra-fold products of them. From a historic 
standpoint nearly all of the measurements which could 
be carried out in physical optics were, until recently, 
just measurements of quantities proportional to the 
average light intensity. It is natural therefore that the 
most familiar meaning of optical coherence, the one 
which describes the intensity fringes seen in a multitude 
of optical experiments, corresponds only to the case of 
first-order coherence, m— 1. 

Averages of nonlinear functions of the intensity, on 
the other hand, are measured either implicitly or 
explicitly by a number of techniques which have re­
cently been introduced in optical experiments. In­
dividual moments of the intensity distribution may be 
measured, for example, in photon-coincidence-counting 
experiments, or by making use of nonlinear media, while 
implicit measurements of the full set of moments may be 
made by determining sufficiently accurately the statis­
tical distribution of photons detected by a single 
counter. The higher order coherence properties of the 
field furnish a natural basis for describing the results of 
such experiments. 

The precise definition of the different orders of 
coherence is best stated in terms of a set of quantum-
mechanical correlation functions for the electromag­
netic field. These functions are defined as ensemble 
averages of normally ordered products of equal numbers 
of photon creation and annihilation operators. Their 
definition is presented in further detail in Sec. II 
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together with a review of some of their elementary 
properties. 

The most convenient definition of rath-order coher­
ence, from a mathematical standpoint, takes it to corre­
spond to a simple factorization property of the correla­
tion functions of order up to and including ra. In Ref. 1, 
where this definition was introduced, it was also noted 
that a necessary condition for rath-order coherence can 
be stated in terms of the absolute values of the correla­
tion functions of order <ra. For the case of first-order 
coherence the latter condition corresponds to the re­
quirement of maximal contrast in the interference 
fringes which could be formed by superposing the fields 
occurring at different space-time points. In Sees. I l l 
and IV we shall show that this set of conditions is also 
sufficient to secure rath-order coherence. It may thus 
be used as an equivalent definition of rath-order 
coherence. 

We show further that for a field which has precise 
first-order coherence, all of the higher order correlation 
functions reduce to a factorized form. The factorized 
correlation functions differ from the ones which would 
be required for coherence to all orders only by a set of 
real multiplicative constants. These constants furnish 
an extremely convenient description of the higher order 
coherence properties of a field which has first-order 
coherence. They are measurable through their pro­
portionality to the probability per unit [time]]w for 
detecting ra photons in coincidence by means of ra ideal 
photodetectors. The values the constants take on are 
illustrated for the cases of several special fields. 

In Sec. V we derive a number of more specific results 
for a class of quantum fields which are generated by 
radiation sources whose behavior may be described as 
predetermined. These fields are characterized by the 
fact that their density operator possesses a positive-
definite weight function P({ay}) in the representation 
which is diagonal in the eigenstates of the annihilation 

1 R. J. Glauber, Phys. Rev. 130, 2529 (1963). 
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operators.2 For this class of fields we show that the set 
of coefficients we have mentioned earlier forms a 
monotonically increasing sequence, and we derive some 
rigorous inequalities governing its rate of increase. We 
derive in addition certain upper and lower bounds for 
the higher order correlation functions. As a last result 
we show that for this class of fields the combination of 
first- and second-order coherence is sufficient to assure 
coherence to all orders. 

The results of Sec. V are derived only for fields with 
positive-definite P functions. Those are, in fact, pre­
cisely the quantum fields which may be described in a 
natural way as possessing classical analogs. For the 
case of each of the relations derived in Sec. V we give 
examples which show that these relations do not hold 
for quantum fields of more general type. The analysis 
thus serves to illustrate the physical meaning of the fact 
that a much greater variety of states is available to 
quantized fields than to classical ones. 

II. CORRELATION FUNCTIONS AND 
COHERENCE CONDITIONS 

We begin the description of field correlations by 
introducing the familiar operator representation for the 
quantized electric-field vector 

E(r,0 = ;£*(i^*)1/2 

X {atUkWe-^'-aJufWe*"*}. (2.1) 

In this expression the index k labels the normal modes 
of the field. Their number is denumerable if we think of 
the field as enclosed in a finite volume. The functions 
u&(r) form an orthonormal set of vector mode functions 
and the o>k are the corresponding frequencies. The 
operators ak and ak

f are the photon annihilation and 
creation operators for the &th mode. They obey the 
familiar commutation relations 

[>*,«*']= t>*Vjb'+]=0, 
l a k , a k > ^ = 8kk,. (2.2) 

The field operator (2.1) consists of a positive-
frequency part 

E<+>(r,*) = i Zk(bk*kyi*okuk(T)<r*°" (2.3) 

and a negative-frequency part E^fo*) which is its 
Hermitian adjoint. These complex field operators de­
scribe the absorption and emission, respectively, of a 
single photon at the point r and time /. Their commuta­
tors are easily found from those of the ak and a^. 

The state of the field is described by a state vector, 
denoted by \i), or more generally by a density operator 
p={ |i)(t|}av, where the average is taken over an 
ensemble appropriate to the way in which the system is 
prepared. We can express the expectation value of an 
operator 0 as {(i\ 0|i)}av=tr{pO}. The operator p is 

2 R. J. Glauber, Phys. Rev. 131, 2766 (1963). 

Hermitian; it is positive-definite and its trace is equal 
to unity. 

In terms of these quantities the wth-order correlation 
function for the electromagnetic field is defined as 

£ (n)Ml"-Mn,Mn+r"M2n( r^l>* * ' *ntnjn+ltn+V ' '*2nh^) 

= t r{p£ w W(r i , / i ) - . -£ | l .M(r n , / n ) 

X C + ) ( W « + l ) " -Enn
i+)(*2nhn)} • (2.4) 

To write this and other tensor functions of several space-
time variables more compactly we shall introduce a 
simple abbreviation. We let the variable Xj stand for the 
combination of the arguments ry, tj and the polarization 
index /JLJ. Then the correlation function (2,4) becomes 
simply Gin)(xv - 'Xn,Xn+i' - -X2n)- More generally, any 
function in which p variables x occur is to be interpreted 
as possessing p vector indices when written out more 
explicitly. 

The detailed ways in which the correlation functions 
may be measured have been discussed elsewhere.1*3 For 
our present purposes it is sufficient to note that Ga) (x,x) 
is proportional to the average counting rate of an ideal 
photodetector recording photons with a specific polari­
zation at a specific space-time point. The functions 
Qin)(%v . *xnyxn* • • xi) are related in a similar way to the 
delayed n-iold coincidence rate in an experiment with n 
ideal counters.1-3 The function G(1) with arguments 
XZT^XI furnishes a basis for the description of different 
kinds of interference experiments, and its higher order 
analogs can be used to describe combined interference 
and coincidence experiments. 

A field is said to have wth-order coherence1 if there 
exists a single function S(x) such that for all arguments 
Xj and for all n<m the correlation functions factorize 
according to the scheme 

n 
Gin)(xi- • -xnixn+ • • •x2n) = Il <S*fe)<Sfe+„). (2.5) 

It follows immediately from this definition that the 
absolute value of G(n) obeys the relation 

In 
|G(n)(*l- • 'Xn,Xn+l ' ' ^2n)I 2=II G™ fa,Xj) . (2.6) 

y-i 

That conditions of this type are necessary for coherence 
can also be understood from the physical meaning of the 
functions involved. For n=l, Eq. (2.6) contains the 
statement that the interference patterns obtained by 
superposing the fields from two different points, have 
the greatest possible contrast. The higher order condi­
tions (2.6) relate similarly the quantities which are 
measured in combined interference and coincidence 
experiments, and are thus more directly accessible to 

3 R. J. Glauber, Quantum Optics and Electronics, Les Houches 
1964, edited by C. deWitt, A. Blandin, and C. Cohen-Tannoudji 
(Gordon and Breach Science Publishers, Inc., New York, 1965), 
p. 63. Some analogous results have also been obtained by P. L. 
Kelley and W. H. Kleiner, Phys. Rev. 136, A316 (1964). 
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experimental test than the factorization conditions 
(2.5). It is therefore interesting to examine whether the 
conditions (2.6) for all n<m are also sufficient for 
wth-order coherence, i.e., whether they imply the 
mathematically more useful statement (2.5). In the next 
section we shall prove that this is indeed the case. 

Similar problems have been considered by Parrent4 

and by Mandel and Wolf5 for a classical theory of 
coherence. They treated only the first-order scalar case 
and discussed a correlation function defined as a time 
average rather than an instantaneous ensemble average. 
Their definitions thus limit their treatments to fields 
which are statistically stationary in time. The physical 
meanings of their definitions of coherence, which they 
restrict to quasimonochromatic fields, are substantially 
different from ours. We shall not go into these ap­
proaches here, but we may note that they also led to a 
factorization theorem for the first-order correlation 
function, which is similar in part to the one we find 
for G«K 

III. CORRELATION FUNCTIONS AS 
SCALAR PRODUCTS 

The correlation functions defined in the last section 
are of the general form tr {pA^B}, where A and B are 
certain products of annihilation operators. Since p is a 
positive definite Hermitian operator, we can show that 
the form tr{pA^B), which we denote for brevity by 
(A ,J3) fulfills the familiar axioms of a scalar product 

(A, X5+MC) = X(i4,5)+/*(^,C), (3.1a) 

04,5)= ( iM)*, (3.1b) 

(A,A)>0. (3.1c) 

From these axioms, one easily derives6 a generalization 
of Schwarz's inequality, which states that for any two 
operators A and B, we have 

(AJ)(B,B)>\{A,B)\*. (3.2) 

The only difference between Eqs. (3.1) and the usual 
definition of a scalar product is that we allow the 
possibility that (A ,A) — 0 for A 9*0. As a consequence of 
Eq. (3.2), we see that, for an operator A with (A,A) = 0 
and an arbitrary operator J5, we have (A ,B) = (B}A) = 0, 
or, more explicitly, 

tr{fiA*B} = ti{fi&A} = 0. 

If, in particular, the space in which the operators are 
defined has a denumerable basis | #„), n— 1, 2, 3 • • •, we 

4 G. B. Parrent, J. Opt. Soc. Am. 49, 787 (1959). For some re­
lated results see also C. L. Mehta, E. Wolf, and A. P. Balachan-
dran (to be published). 

6 L. Mandel and E. Wolf, J. Opt. Soc. Am. 51, 815 (1961). 
6 See, e.g., R. Courant and D. Hilbert, Methods of Mathematical 

Physics (Interscience Publishers, Inc., New York, 1953), Vol. I, 
p. 2. For the case that A and B are products of photon annihilation 
operators, (the case to which we will apply the theorem) a proof of 
(3.2) is contained in the Appendix of Ref. 1. 

can choose for B the operator |qn)(qm\ • Then it follows 
that the nm matrix element of Ap and of pA* must 
vanish for all n and m, a condition which implies the 
operator relations 

Ap=PA*=0. (3.3) 

This result can be applied to the case in which the two 
members of the inequality (3.2) become equal. If A and 
B are operators which satisfy the relation 

(A,A)(B,B)=\(A,B)\2 (3-4) 

and (B,B)7*0, we clearly have 

/ (B,A) (B,A) \ 
[A B, A £ ) = 0. 
\ (B,B) (B,B) I 

Application of Eq. (3.3) then shows that the density 
operator obeys the identities 

r (B,A) I r (A,B) i 
A B P = J A* & = 0 . (3.5) 

L (B,B) J L (B>B) J 

If, for example, we let A=E(+)(xi) and B=Ei+){x^)J 

we see that the scalar product {A ,i?) is simply the first-
order correlation function G{1) (x\,x%). The Schwarz 
inequality (3.2) for this case is 

G<1> (x1,x1)G^(*,,*,)> |G«>(*i,*,) |2 . (3.6) 

The condition that the two members of this inequality 
be equal, 

G(1) (*i,*i)G(1> (***») = I G(1) (*i,*i) 12, (3.7) 

is the condition for maximum fringe contrast noted in 
Eq. (2.6), for n— 1. The restriction that it imposes on 
the density operator may be found by noting that Eq. 
(3.7) takes the form of Eq. (3.4). Hence, if we choose 
XQ to be a coordinate for which 

tr{AEM(*o)£(+)(*o)} = G(1)(*o,*o)^0 (3.8) 

and let X2=x0, we find from Eq. (3.5) the relations 

G(1)(*o,*i) 
£ ( + ) (*I)P = £ ( + ) W P , (3.9a) 

Ga)(x0,xQ) 

G(1) (*I,*») 

PJE<-> fa) = pE<-> (*,). (3.9b) 
Ga)(x0,xQ) 

These relations must hold as identities for all x\\ they 
imply rigorous restrictions on the density operator 
which will be discussed further in a forthcoming 
paper.7 For the present, however, we will confine our­
selves to discussing the restrictions they imply upon the 
form of the correlation functions. 

If we apply the identities (3.9a, 3.9b) to the definition 

7 U. M. Titulaer and R. J. Glauber (to be published). 
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of Ga)(xhx2) we find the relation 

tr{AE<->(*0£(+)(**)>! 

[G^fo,*,)? 
Xtr{pE^(xo)E^(xQ)}. 

The correlation function, in other words, obeys the 
functional equation 

G<1>(*i,«b)G(1>(*o,*») 
G « W , ) = (3.10) 

G(1)(#o,*o) 

for all xi and x2 and all XQ for which G(1) (#0,#0)5^0. 
Let us now define the complex function S(x) as 

S(x) = G<« (*o,*)CG»> (xo^o)]"1/s • (3.H) 

With this definition we can formulate our result as 
follows: There exists a complex function S(x) such that 
for all xi and x2 we have 

GW(*i,*,)=«*(*i) «(**), (3.12) 

which is exactly the condition (2.5) for first-order 
coherence. Since it is obvious that this factorization 
condition in turn implies the condition (3.7) we see that 
the two conditions are equivalent. 

The definition (3.11) of Six) would seem to imply a 
dependence of the way in which the form (3.12) 
factorizes on the arbitrary choice of the reference point 
XQ. We shall show, however, that if condition (3.12) 
holds for all pairs of arguments this dependence can only 
be a trivial one. Let us suppose that Ga)(xi,x2) has a 
second factorized form in which S(x) is replaced by 
Sf(x). Then we have the relations (valid for all x\ and x2) 

or 

S,*(x1)S
,{x2)=S*(x1)S(x2) 

S'*(x1)/S*(x1)=S(x2)/S'(x2). 

From the second form of this identity we see that there 
must exist a constant X such that Sf{x) = \S(x). Further­
more, from the first form of the identity we see that 
| X | 2 = 1 . For first-order coherent fields a change of the 
point x0 can thus only correspond to multiplying S(x) 
by a phase factor. Such a phase factor clearly cancels in 
the calculation of any correlation function. 

IV. APPLICATION TO HIGHER ORDER 
CORRELATION FUNCTIONS 

Although Eq. (3.7) is a condition imposed only on the 
first-order correlation function, its consequences include 
a remarkable sequence of identities which must be 
obeyed by the higher order correlation functions as well. 
These identities allow us to reduce the G (n ) for arbitrary 
arguments to a standard form. To derive those identities 
we begin by letting XQ again be a point for which 
G(1) (^0,^0)5^0. We then observe that the operators 
E{+)(xj) all commute with one another, as do the 

£(->(#,). If we now apply each of the identities (3.9a) 
and (3.9b) n times to the definition of the wth-order 
correlation function given by Eq. (2.4), we find 

tr{PE<->(*i). • •£^(*»)£ ( + ) (*M-i) - * -£ (+)(*2n)} 

n G(1>fe,o;o)G(1>(xo,^+n) 

i«i G(1>(*o,*o) G(1)(*o,*o) 

XtT{PLE^(xo)lnLEw(xo)ln). 

By using the definition (3.11) of the field S(x) we can 
reformulate this result as 

G(n)(xV • 'Xn,Xn+V ' 'X2n) = gnHj S*(xj)S(xj+n) (4.1) 

with 

g»=G<*>(*0- ' -*o,*o- • •*o)[GG>(*o,*o)]-B. (4.2) 

The quantities gn may be regarded as constants in 
Eq. (4.1) since they are independent of xv • -x2n. I t is 
easy to show that the gn cannot actually depend on the 
choice of XQ either. To see this we need only note that 
G (n) is independent of XQ and recall that in the last 
section we showed that products of the fields S(x) such 
as the one occurring in Eq. (4.1) are independent of x0 

as well. The gn are simply a set of constants determined 
only by the state of the field; it is evident from Eq. (4.2) 
that they are real and non-negative. 

We have shown that for any field which possesses 
first-order coherence, the higher order correlation func­
tions must factorize into the forms given by Eq. (4.1). 
These forms are quite similar in structure to those which 
define higher-order coherence [cf. Eq. (2.5)], and differ 
from them only through the inclusion of the factors gn. 
I t is clear, from the assumption of first-order coherence, 
e.g., from Eq. (3.12), that gi= 1, but the gn for n^ 1 only 
assume the value unity for special choices of fields. If, 
for example, the field is one for which the conditions 
(2.6) on the absolute value of G (n ) are fulfilled for n<tn, 
then we see that | gn|

2= 1 for n<m. Since the gn are real 
and positive we must in fact have gn— 1 for n<m. The 
conditions (2.6), in other words, are sufficient to require 
that the correlation functions fall into precisely the form 
needed for wth-order coherence. The case of full 
coherence corresponds, of course, to g„= 1 for all n. 

I t is possible at present to generate electromagnetic 
fields which possess the property of first-order coherence 
to an excellent approximation, i.e., fields for which the 
factorization condition (3.12) holds for quite large space-
time separations of x± relative to x2. Since for such fields 
the constants gn should play an important role in the 
description of higher order coherence properties, we 
shall make a number of comments on the values they 
may take on. 

From our definition of gn and the discussions in Ref s. 
1 and 3 it is clear that g« is proportional to the proba­
bility per unit [ t ime]" of detecting n photons with an 
idealized photodetector. If the density operator is such 
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that the number of photons in the field cannot exceed 
some value M, then, of course, gn=0 for n>M. In 
particular, if exactly M photons are present in a single 
mode of the field, we easily find from the commutation 
rules of the mode amplitudes that 

gn=MlMn(M-n)Q~1 for n<M. (4.3) 

A particularly important case for which the coeffi­
cients gn are known is formed by the fields generated by 
chaotic sources, a class which includes thermal ones. For 
such fields, it is shown in Ref. 2 that 

gn=nl. (4.4) 

In the next section we shall demonstrate that for a 
category of fields which may be thought of as generated 
by classical sources, the coefficients gn always form a 
monotonically increasing sequence. 

We conclude this section with an observation about 
photon coincidence experiments such as those performed 
by Hanbury Brown and Twiss. When the separation of 
the two counters used in such experiments is quite small 
compared to the coherence length of the field (and when 
their relative delay time is small compared to the 
coherence time) the number g%— 1 furnishes a measure1'3 

of the difference between the observed and the ac­
cidental coincidence rates. The quantity analogous to 
g2~ 1 in classical electromagnetic theory is proportional 
to the variance of the energy density of the field and is 
intrinsically positive. From the preceding discussion, 
however, it is clear that g^— 1 is by no means necessarily 
positive [e.g., for the case (4.3) it is not ] . The Hanbury 
Brown-Twiss effect assumes the particular form ob­
served for natural light sources because of the particular 
statistical mixtures of quantum states which such 
sources tend to produce. Artificial sources could in 
principle produce fields with coincidence rates smaller 
than the product of the individual counting rates. 

V. FIELDS WITH POSITIVE-DEFINITE 
P FUNCTIONS 

In this section we derive some relations obeyed by the 
correlation functions for a special class of fields corre­
sponding to sources with predetermined behavior. In 
order to give a mathematical characterization of these 
fields we first consider a particular set of states, the 
coherent states [{a*}), which have been discussed in 
Ref. 2. These are simultaneous right eigenstates of the 
full set of annihilation operators and have complex 
eigenvalues ak corresponding to the ak. Thus they are 
also right eigenstates of the positive frequency part of 
the field at any point x. The latter property is expressed 
by the relations 

£ ( + )(x) | {«*}>= «(*,{«*» i {«*}>, (5.1a) 

<{a*} |£<->(*)= S*(x,{ak})({ak} | (5.1b) 
with 

^(rA{a*}) = *E*(i*«*)1 /^t«^(r)r-'-*'. 

The latter equation illustrates our convention regarding 
the meaning of the variable x. 

We now consider fields which can be described by 
means of a density operator of the form 

p= Jp({ak}) [ {ak})({ak} | I L <Pak (5.2) 

with a positive-definite weight function P({ak}) which 
has, at most, 5-type singularities. In this integral the 
differential d2ak stands for dRe(ak)dIm(ak). Since all 
our integrals will be taken over the full set of amplitude 
variables {ak} we shall simply write a in the remainder 
of this section instead of {ak} and d2ct instead of JJ[k d

2ak. 
The function P(a) has to be normalized so that 
y*P(a ) J 2 a= l . Density operators of the type (5.2) can 
be shown2 to furnish a description appropriate for any 
field generated by a prescribed charge-current distribu­
tion. They also describe the light emitted by a com­
pletely chaotic source, a model appropriate for virtually 
all known natural light sources. 

The representation (5.2) has the pre-eminent ad­
vantage of permitting us to express the correlation 
functions as integrals over P(a) : 

G<»>(*r • • * * ) = / P ( a ) I I 8*(xha)8(xj+n,*)d2*. (5.3) 
J y=i 

This expression for G (n) as an integral, rather than the 
more general form of scalar product considered in Sec. 
I l l , makes it possible to derive a number of inequalities 
which need not hold for more general quantum mechani­
cal fields. 

One such inequality can be derived by considering 
real-valued functions A (a) and B(ct) which satisfy the 
relation 

D 4 ( a ) - ^ ( S ) ] [ 5 ( « ) - 5 ( 0 ) ] > O (5.4) 

for all a and (J. For such functions one can easily prove 
the following generalization of the Tchebycheff in­
equality fusing positive definiteness and normalization 
of P ( a ) ] 8 

P(a)A(a)B(a)d2a 

>jP(a)A(a)d2afp(§)B(§)d2§. (5.5) 

Condition (5.4) may be fulfilled by choosing A (a) and 
B(a) each to be a power of the same positive function 
| <§(#,«) |2. The integral of the nth. power of this expres­
sion, taken over P (a ) , is just equal to the correlation 
function Gin)(x- —x), with all of its In arguments set 

8 G. H. Hardy, J. E. Littlewood, and G. Polya, Inequalities (Cam­
bridge University Press, Cambridge, 1952), 2nd ed., pp. 43, 168. 
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equal. Now if we let A(a)=\S(x,a)\2m and B(a) 
= \8(x,ct)\2(n-m) where n>m>0} the inequality (5.5) 
implies the relation 

G<*>(*- • -x)>G™(x- • -*)G (B-m)(*- • •* ) . (5.6) 

If both members are divided by [G(1) (#,#)]*> we find 
the inequality 

gn>gmgn (5.7) 

for the coefficients gn. If we let m= 1, in particular, and 
recall that g i= 1, we see that 

gn>gn-l, (5.8) 

or the constants gn form a monotonically increasing 
sequence. We note in particular g2>l , which means 
that, for the class of fields under consideration, the 
coincidence rate in a Hanbury Brown-Twiss experiment 
always exceeds or equals the product of the individual 
counting rates as the separation of the detectors ap­
proaches zero. 

Another sequence of inequalities can be derived from 
the Schwarz inequality expressed in the form which 
applies to integrals of complex functions, 

J P(«) \A (a) ] 2d2cc I P(ff) \B(9) 12d2§ 

> / p « :)i4*(a)J5(a)d2o (5.9) 

If we now substitute A(a) = l8(xJcc)~]n~mLG(1)x,x)2~n 

and J5(a) = [<§*(^,a)]w[<S(x,a)]n and recall the defini­
tion (4.2) of gn, we see that 

gn—mgn+m^Lgn • 

(5.10) 

This inequality shows that 

\ (lngn+m+ Ingram) > lngn, (5.11) 
or lngn is a convex function9 of n. The convexity 
property permits us to show that for n>l>0 and m>0 
we have9 

/ hign+m+tn lngn_j> (l+m) \ngn. (5.12) 
If we let l=n— 1 in this relation and write p=n+m, 
then by recalling that g i= 1 we find the inequality 

gp>gn{p~1)l{n~l) for p>n. (5.13) 

This relation sets lower limits to the rapidity with which 
the gp increase. I t shows furthermore that, for any field 
which does not possess second-order coherence, i.e., for 
which g2> 1, the gp increase without bound as p —» oo. 

We turn next to the consideration of some bounds on 
the values of the correlation functions of the form 
G{n)(xv - -xn,xn- - -#i), i.e., on the values of the ^-fold 
coincidence counting rates. For this purpose we can use 

9 Reference 8, p. 70. 

the inequality 

n fp(a)\s(*„a)i^*«>[/^wnisfe,«)N2«], 

which is a simple consequence of the Holder inequality,10 

as stated for integrals. When expressed in terms of 
correlation functions this relation becomes 

I I G<»>(*y- • 'Xi)>lG^(Xl' ' -Xn,Xn- • • X^]* . (5.14) 

For fields with first-order coherence the inequality 
reduces to an equality. 

A slightly more general inequality can be derived 
when we combine Eq. (5.14) with the inequality 

G ( n ) ( # r • 'Xn,Xn- • -Xl)GM(Xn+V • 'X2n,X2n' ' -Sn+l) 

>lG<»>(*r- .**n) | a 

which has been derived from the Schwarz inequality in 
Ref. 1. In this way we find 

In 
I I G^(xr - •*,)> |G<">(*,- • ̂ 2n ) | 2 n . (5.15) 
y-i 

This relation leads, for example, to a simple property of 
linearly polarized fields which are invariant under space-
time translations. For these fields the G(w)(#y • -x3) are 
independent of Xj as long as the vector index it specifies 
corresponds to the direction of polarization. The in­
equality (5.15) then implies for all Xj 

G<»>(*r • -xj)> |G<»>(*r • •*,«) | , (5.16) 

i.e., the absolute value of G (n ) reaches its maximum 
when the In arguments xj are all equal. 

For correlation functions of even order we can also 
state a lower limit for the coincidence rate. This may be 
done by substituting in the Schwarz inequality, Eq. 
(5.9), the functions 

^ ( « ) = 1 
and 

B(«)=n«*fe,«)«fe+-,«). 
y-i 

We then find 
G ( 2 n ) ( # l " 'X2n,X2n'--Xi) 

> \G^(xv • ^ n ^ n + r • -s2 n) |2. (5.17) 

An interesting property of the fields under considera­
tion is that the combination of first- and second-order 
coherence implies coherence to all orders. To show this 
we note that as a consequence of first-order coherence 
the correlation functions all factorize and we need only 
consider the coefficients gn which characterize the field. 
Second-order coherence implies g2= l , which in turn 
implies that GW(xQJxoixo,Xo) = [GW(xoJxQ)J. The latter 

10 Reference 8, p. 140. 
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relation is the statement 

jp(a) | «(*0,a) 14<f2a-[G<1>(*o,*o)]2 

= IP(«){ | £(«,,«) 1«- [G«> (xo,Xo)y)d*a 

= 0 , 

which may also be written in the form 

f P(a){\ <S(^o,a) |2-G ( 1 )(^o^o)}^2a=0. (5.18) 

If we now define the scalar product of two functions 
/ ( a ) and g(a) to be 

(/(«),g(a))=y"p(«)/*(«k(«M2«, 

then we see that Eq. (5.18) states that the norm of the 
function 

f(a)=\6(xo,a)\*-G™(xofr) 

vanishes. This is a situation we have already en­
countered in Sec. I I I . Application of the Schwarz in­
equality, Eq. (3.2), shows that the scalar product of any 
other function g(ct) with it vanishes. We have shown, in 
other words, that 

f p ( « ) g * ( « ) { | 5 ( ^ , a ) | 2 ~ G ^ ( ^ o ^ o ) } ^ 2 a = 0 , 

or that | 8(xo,u)\2 can be replaced by Ga)(xo,xo) in all 
integrals taken over the weight function P (a ) . In 
particular evaluation of the correlation function 
GM(XQ- • •#<}) in this way yields 

G<»>(*r • ^o) = [G^>(a:o^o)]n J P(*)d*a 

= [G(1)(*o,*o)]n. (5.19) 

By referring to the definition of the gn, Eq. (4.2), we see 
that this relation implies gf t= 1 for all n and thus full 
coherence of the field in question. 

As a final remark we wish to emphasize once more 
that the results we have derived in this section are only 
valid for fields which have a positive-definite P(a ) and 
need not hold for more general types of fields. I t is not 
difficult, in fact, to find among the more general fields 
explicit counterexamples for each of the relations 
proved. We note first that the inequalities (5.8) and 
(5.10)-(5.13) fail to hold for fields with a finite number 
of photons present; this can be seen for example from 
Eq. (4.3) when only a single mode is occupied. For any 
w-photon state, the inequality (5.17) is clearly dis­
obeyed, since the left-hand side is always zero while the 
right-hand side is not. The inequalities (5.14)-(5.16) 
cannot hold for a field that is constructed as the super­
position of n one-photon wave packets which have no 
spatial overlap. Once again, for this case, the left-hand 
sides of the inequalities vanish while the right-hand 
sides can be made different from zero. Finally, if we con­
sider the state 2-1/2|vac)+2-1>2|2A;), where [2*) is a 
state with just two photons present in a particular mode 
k, then this state is easily shown to have first-order 
coherence, and further to have g2 equal to unity, but 
nevertheless to be far from fully coherent since all the 
gn for n> 2 are equal to zero. 
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