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The role of the spin-| baryon exchanges in generating the Q~ is examined in the framework of the N/D 
method. The resulting integral equations are solved numerically to show that the baryon exchanges lead to 
an extremely overbound state. A comparison is also made between this and a detenninantal-approximation 
calculation to show that an earlier calculation indicating a resonating Qr state is due to a deficiency in the 
determinantal approximation. 

I. INTRODUCTION 

THE dynamical relationship between the nucleon-
exchange Born diagram in pion-nucleon scatter

ing and the well-known 33 resonance (A7*, 1238 MeV) 
has been a subject of study for a long time. One of the 
earliest approaches was the Chew-Low model1 which 
has been put on a relativistic dispersion-theoretic 
footing by Frautschi and Walecka.2 The essential 
result of these calculations is that the simple nucleon-
exchange Born diagram is primarily responsible for the 
generation of the iV* resonance. In the context of SCTz 
symmetry, however, one has to extend this dynamical 
relationship between the exchange of the nucleon and 
the generation of N*9 and consider the relationship 
between the baryon octet exchange and the generation 
of the baryon decuplet in an S^s-symmetric model. 
It is clear that in such approaches one is faced with the 
problem of considering many coupled channels and so 
is forced to make some simple approximation scheme for 
the dynamics. This was first done by Martin and 
Wali,3 who worked in the first-order determinantal 
approximation and showed in particular that the 
baryon-exchange force was too weak to produce the 
Or resonance at the correct position. This result was, 
however, re-examined by Martin and Uretsky,4 who 
gave up the first-order determinantal approximation 
and showed, by completely solving the dispersion 
equations, that the nucleon-exchange force in w-N 
single-channel scattering leads to an enormous over-
binding in the 33 state. The nucleon force had to be 
cut off at a very low value for generating the N* at 
the correct position. The only flaw in this calculation is 
that it is not faithful to the unitary symmetry scheme, 
for in an S^-symmetric model one does not have 
much reason for neglecting the coupled 2K channel a 
priori, as has been pointed out earlier.3 One may feel 
then that their conclusions are liable to change on 

1 G. F. Chew and F. E. Low, Phys. Rev. 101, 1570 (1956). 
2 S. C. Frautschi and J. D. Walecka, Phys. Rev. 120, 1486 

(1960). 
3 A. W. Martin and K. C. Wali, Phys. Rev. 130, 2455 (1963). 
4 A. W. Martin and J. L. Uretsky, Phys. Rev. 135, B803 (1964). 
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consideration of the coupled channels. A "clean'' case, 
on the other hand, is presented by the 0~ channel 
which is strongly coupled to only one baryon-pseudo-
scalar-meson system, the SK one. The result of a single-
channel calculation in the 0"~ case, is in a certain sense 
therefore equivalent to considerations of all coupled 
baryon-pseudoscalar channels for the resonances N*7 

Fi*, S*. In this note, we wish to re-examine the conclu
sions drawn in Ref. 4, by considering the SK scattering 
in r = 0 , P3/2 state. The exchanges considered will be 
the | + baryons and we will solve the resulting integral 
equations numerically. Our calculations will be Slrz-
symmetric, except of course for kinematical factors. 

H. THE METHOD 

The kinematics of S,K scattering is very similar to 
that of w-N scattering which has been discussed in 
detail by a number of authors. In the following, we 
follow the work of Martin and Uretsky4 and modify 
their equations so as to suit a bound-state problem. 
We reproduce here some of the essential steps. The 
partial-wave amplitude, 

f(W) = ei'sm&/q, (1) 

in the T=0, P^n state is related to the partial-wave 
projections of the invariant functions A(s,t) and 
B(s,t) by 

f(W)= {l6irW2)-1{£(W+M)2-n2JiAi+ (W-M)B{] 
+Z(W-My-n*l£-Ai+ {W+M)Bi\}, (2) 

where 
g 2=[(^2_lf 2 - ju 2 ) 2 -4M 2 M 2 ] /4PF ! ! , (3) 

LAt,B{] 
< 

dxPi(x)ZA{s,t),BWl, (4) 

W is the total cm. energy, M is the mass of the S, M 
is the kaon mass, and A, B are denned by the T-matrix, 

T=-A+ii(q1+q2)B; (5) 

qi and q% are the initial and final meson momenta. The 
amplitude f(W) does not have the proper behavior 
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FIG. 1. The£+baryon-
exchange forces. 

where Wo is the subtraction point and the integral 
over the physical cuts is defined as 

f ...dW'=f "--.dW+f --dW, (13) 

required for a function for which an N/D representation 
can be written down. From considerations of the 
behavior of the function at P F = ± ( M + M ) and at 
W —* oo we consider the amplitude, 

h(W) = p(W)f(W), (6) 

in an N/D form. The kinematic factor p(W) is given by 

p(W) = W*/(W+M+vi)ZW2- ( M + M ) 2 ] . (7) 

The baryon-exchange contribution to the functions A 
and B can be worked out by the usual rules. The 
result has been given by Choudhury and Pande5 and 
by Kane.6 The contribution to the amplitude h(W) is 
given by 

hB°™(W)=(W/8(W+M+n¥(W-M-p.)q2) 

+gA2(W-M^Ql(aA)} + {{W--My-p?} 
X{g22(W+M2)Q2(a2) 

+gK2{W+MMak)}-], (8) 

where the coupling constants g£ and gs2 can be worked 
out by invoking SUz symmetry as 

g 2
2 =3 g , _^ , gt?=-\{i-±m«-N\ (9) 

in terms of the pion-nucleon coupling constant and F-D 
mixing ratio. The Qi functions are the usual Legendre 
functions of the second kind with the arguments 

<*A,S= 1 + (2M2+2fx2-W2-MA^)/2q2. (10) 

MA, MZ are the masses of the A and the X particles 
exchanged in the Born diagram (Fig. 1). We write the 
amplitude in the form, 

h(W) = N(W)/D(W), (11) 

N(W) = hB(W)+ 

and 

D(W) = l-

7 
w J v 

XUB(W') 

7. 

dW'q(JV')N(W') 

p.c. (W'-W)p(W') 

W-WQ] 

~W* 

W~Wo r dW'q(W')N(Wf) 

\k*(JV) 
?'-w0\ J 

c (W'~-W)(W'-WQ)p(JV') 

with 

with D having the unitarity cut and N having all the 
other cuts of h(W). Using the analytic properties of 
h(W) and unitarity, one gets the integral equations 

(12) 

5 S. Rai Choudhury and L. K. Pande, Phys. Rev. 135, B1027 
(1964). 

6 G. L. Kane, Phys. Rev. 135, B843 (1964). 

q(~W') = q(W'). 

If one solves the integral equation for the N function 
numerically, the D function can be evaluated through 
integration. Since the experimental mass of the Or is 
1685 MeV, one looks for a bound-state condition in 
the EK scattering, i.e., D(W) = 0 for W<M+p.. 

In the r = 0 state, the dependence of hB(W) on the 
mixing parameter / is very weak. The plausible values3*7 

of / lie within the range of 0.25</< 0.4. To get a 
feeling for the dependence on / , let us consider the 
degenerate case (M^Mz), whence the over-all cou
pling constant is proportional to 

g ' ~ 3 - ! ( l - 4 / ) * , 

and this varies from 3 to 2.88 as / is varied from 0.25 
to 0.4. We therefore fix the value of / at 0.35. 

m. RESULTS AND DISCUSSION 

The integral equation for the function N(W) was 
inverted numerically on the IBM 1620 computer. The 
results are independent of the subtraction point as they 
should be. Once the N function was known, the integra
tion for the D function was carried out numerically 
and a zero was looked for in the D function in the real 
region corresponding to the 0~ pole. As expected, the 
Or comes out to be enormously overbound. To estimate 
the amount of overbinding, we cut off the baryon-
exchange forces and studied the position of the it" 
pole as a function of the cutoff. As the cutoff was 
varied from 20 pion masses to about 34 pion masses, 
the Q~ changed from a resonating state to a strongly 
overbound state, the correct Or mass being reproduced 
for a cutoff of about 26 pion masses as shown in Table I. 
We thus conclude that the inference drawn by Martin 

TABLE I. The Or position as a function of the cutoff. 

Cutoff 
(pion mass) 

Exact 
calculation 

(MeV) 

Determinantal 
approximation 

(MeV) 

20.0 
23.5 
27.0 
30.5 
34.0 

1850 
1785 
1625 
1425 
1225 

1832 
1817 
1795 

7 A. W. Martin and K. C. Wali, Nuovo Cimento 31,1324 (1964); 
J. M. Cornwall and V. Singh, Phys. Rev. Letters 10, 551 (1963). 
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and Uretsky that the nucleon-exchange force leads to 
strong overbinding holds even when all S£/3-coupled 
channels are taken into account. 

It is interesting to find out the reasons why, in the 
previous 5/73- symmetric calculations of Martin and 
Wali, the Or turns out to be a resonating state rather 
than the overbound state that we are obtaining. We 
present also in Table I, the results of a first-order 
determinantal calculation with our amplitude side by 
side with our exact results for some of the cutoff values. 
It is clear from an examination of the table that the 
determinantal approximation (which was used in Ref. 
4) grossly underestimates the attraction caused by the 
baryon exchange. The difference between our results 
and those of Ref. 3 can thus be ascribed to the defi
ciencies of the determinantal approximation. 

THE A-hyperon ft decay (A—> p-\-e~-\-v) has been 
experimentally studied in hydrogen1,2 and heavy-

liquid3*4 bubble chambers. At least two counter experi
ments are currently in progress.5 The low branching 
ratio, A—*pe~v/all A—IO"3, makes the spark-chamber 
counter experiment very attractive, yet it has the 
drawback that the kinematical reconstruction of the 
neutral A is usually ambiguous or has large experimental 
errors. The first disadvantage can be overcome by 
studying the distributions of the transverse components 
of momenta of the decay particles relative to the 
A direction. Such quantities are kinematically invariant 
and can be analyzed directly in the laboratory system.3 

In this note, we present distributions of other 

* Supported in part by the U. S. Atomic Energy Commission. 
1 F. S. Crawford, Jr., M. Cresti, M. L. Good, G. R. Kalbfleish, 

M. L. Stevenson, and H. K. Ticho, Phys. Rev. Letters 1, 377 
(1958). 

2 V. G. Lind, T. O. Binford, M. L. Good, and D. Stern, Phys. 
Rev. 135, B1483 (1964). 

3 C . Baglin, V. Brisson, A. Rousset, J. Six, H. H. Bingham, 
M. Nikolic, K. Schultze, C. Henderson, D. J. MiUer, F. R. 
Stannard, R. T. Elliot, L. K. Rangan, A. Haatuft, and K. Mykle-
bost, Nuovo Cimento 35, 977 (1965). 

4 R. P. Ely, G. Gidal, G. E. Kalmus, W. M. Powell, W. J. 
Singleton, C. Henderson, D. J. Miller, and F. R. Stannard, Phys. 
Rev. 137, B1302 (1965). 

5 S. Frankel and W. Wales; C. Rubbia and H. Sens, quoted in 
Ref. 3. 

In any complete analysis, one has to consider the 
exchanges of other resonating states like p, N* etc., in 
addition to the baryons considered. Any such calcula
tion however, necessarily brings in extra parameters 
and it is difficult then to make any precise statement 
about the position of the resonance unlike in the 
present calculation where only the exchange of spin-J 
baryons is considered. 
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kinematically invariant quantities, i.e., the momentum 
components of decay particles along the spin of the A 
hyperon. The polarization of the A hyperons produced 
by associated production, 7r~-\-p-+A+K0

y near the 
XK threshold is known to be large, i.e., PA =—0.91 
dzO.10.6 Therefore, in practice, these invariant quanti
ties are the momentum components of the decay 
particles perpendicular to the A production plane, i.e., 
parallel to (princidentXpA). To determine these invariant 
quantities, one needs to know only the A production 
plane. On the other hand, the determination of the 
transverse components of momenta of the decay 
particles requires the knowledge of the direction of the 
A momentum. In a typical experimental arrangement, 
one could measure the A production plane more ac
curately than the direction of the A momentum by 
almost one order of magnitude. We define the momen
tum components of decay particles along the spin of the 
A hyperon as />«=p*o,A, /*=1'<7A, arid ^«=VCTA, where 
p, 1, and v are the momenta of proton, electron, and 
neutrino (either in the A center-of-mass system or in the 
laboratory system), respectively. orA is the unit vector 
for the polarization of A, and is normal to the A pro
duction plane. 

6 Average value used in Ref. 2. 
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The distributions of several kinematical quantities are presented for the polarized A hyperon undergoing 
0 decay. The basic couplings are assumed to be vector and axial-vector, and all the "induced" couplings are 
neglected. Special emphasis is placed on the kinematically invariant quantities and their asymmetries with 
respect to the polarization of the A hyperon. 


