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Starting with the relativistic crossing-symmetric forward scattering amplitude, we constructed previously 
a function g(E) of energy E which is both analytic and univalent (schlicht) in the upper-half energy plane. 
In this paper we exploit the univalence of g(E) to obtain information on the analytic properties of the 
forward-scattering amplitude. Various inequalities satisfied by g(E) are derived, making use of powerful 
theorems on univalent functions. In particular, we have established several theorems which relate the 
asymptotic behavior of the phase of g(E) to that of \g(E)\ itself. We have also obtained several inequalities 
for g(E) which may be useful in an experimental test of the consequences of local field theory. We start with 
only those properties of the forward scattering amplitude that have already been proved in axiomatic local 
field theory. The only extra assumption used that has not yet been proved in field theory is the physical 
assumption that the forward scattering amplitude does not become relatively real in the high-energy limit. 

I. INTRODUCTION 

DURING the last decade many efforts in high-
energy physics have been devoted to the study 

of the analytic properties of scattering amplitudes and 
to the related problems of their asymptotic behavior at 
high energies. These analytic properties are usually 
expressed in terms of dispersion relations and, in some 
cases such as pion-nucleon scattering at fixed scattering 
angle inside the Lehmann ellipse, they were shown to 
follow from the formalism of Lehmann, Symanzik, and 
Zimmermann. More recently, Hepp1 has shown that 
these relations also follow rigorously from the Wight-
man axioms of local field theory. Thus, the validity of 
dispersion relations seems to be deeply rooted in any 
reasonable local field theory. Therefore, any disagree
ment between experiment and the relations implied by 
these analytic properties would be extremely serious for 
local field theory. 

Even though the dispersion relations in principle 
contain all information that has been established, they 
are neither the only tool nor necessarily the best tool 
available to test analyticity or to study the possible 
asymptotic behavior of scattering amplitudes. In a 
recent paper2 we have pointed out how certain theorems 
of geometric function theory do provide alternative and 
in some cases more powerful techniques. 

In the course of this and subsequent works, it has 
become clear that the most powerful theorems of 
geometric function theory apply to functions that are 
not only analytic but also univalent (or schlicht) in a 
certain domain (the upper-half energy plane in our 
case). In general there is no guarantee from field theory 
that the forward scattering amplitude is a regular 
univalent function of the energy variable. However, as 
was pointed out by the present authors, such univalent 

* Work supported in part by the U. S. Office of Naval Research. 
1 K. Hepp, Helv. Phys. Acta 37, 639 (1964). 
2 N. N. Khuri and T. Kinoshita, Phys. Rev. 137, B720 (1965). 

functions can be constructed easily from the scattering 
amplitude.3 

In Sec. II we construct, starting from the crossing-
symmetric forward scattering amplitude, a function 
g(E) [see (13)] which is univalent in the upper-half 
energy plane. We also establish that only two sub
tractions are needed in writing down the forward dis
persion relation. This is a consequence of local field 
theory and the additional physical assumption that the 
forward-scattering amplitude does not become rela
tively real as the energy goes to infinity. A similar result 
was first obtained in Ref. 2, but under more restrictive 
assumptions. In Sec. I l l , theorems on univalent func
tions are used to obtain several useful inequalities 
satisfied by g(E). 

The relation between the asymptotic behavior of 
Rtg(E)/lmg(E) and that of \g(E)\ is studied in detail 
in Sec. IV. The main tool used there is the theorem of 
Ahlfors on the mapping of strips by univalent functions. 
Several theorems are proved which give upper and lower 
bounds for \g(E)\ as E —»+ oo under specified assump
tions about the asymptotic behavior of Reg(E)/Img(E) 
or Reg(E). 

In Sec. V we assume the validity of the Froissart 
bound and study the implications of the theorems of 
Sec. IV on the asymptotic behavior of the forward 
scattering amplitude / (£) . We show, for example, that 
if Re/(£)<0 (i.e., repulsive amplitude) for E>E0) then 
the total cross section is bounded by a constant as 
E —*+ oo. It also turns out that the Froissart bound 
restricts severely the possible asymptotic behavior of 
Reg(E)/Im(E), namely, Reg(E)/Img(E) is essentially 
bounded by C/\nE which goes to zero as E —>+ oo. 

Finally we show in Sec. VI how the theorem of 
Ahlfors can be used to derive two inequalities for the 
function g(E) which may be useful for an experimental 

3 N. N". Khuri and T. Kinoshita, Phys. Rev. Letters 14, 84 
(1965). 
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test of analyticity. Only those quantities that can be 
determined from the experimental data obtained over a 
finite energy range appear in these inequalities. In the 
absence of accurate data it seems hard to decide which 
of these inequalities, or others proposed earlier,8 is the 
best for the purpose of testing analyticity and local 
field theory. We discuss briefly the kind of behavior of 
data on Ref(E) and Im/(E) that will favor the use of 
each inequality. Actual analysis will have to wait for 
the full data. 

Appendix A contains a more detailed discussion of the 
theorems of Meiman given in Ref. 2. It is essentially an 
expanded version of footnote 23 of that paper. In 
Appendix B, considerations of Sec. II on the Greenberg-
Low bound are repeated making use of the techniques 
of univalent functions developed in Sec. IV. Several 
lemmas on g{E) are proved in Appendix C. 

n. CONSTRUCTION OF UNIVALENT FUNC
TIONS FROM THE FORWARD 

SCATTERING AMPLITUDE 

We shall show in this section how one can construct 
from the forward scattering amplitude a function which 
is regular and univalent in the upper-half energy plane. 
For the sake of concreteness we limit ourselves to pion-
nucleon scattering. We shall denote by E the total 
energy of the incident pion in the laboratory system, 
and by f±(E) the forward scattering amplitudes for 
ir±p scattering, respectively. We shall be concerned 
exclusively with the symmetric amplitude f{E) defined 
as follows: 

/ (£) = l[/+(JE)+/-(£)]-nucleon pole terms. (1) 

As is well known from axiomatic field theory, f(E) 
has the following properties: (i) f(E) is analytic in E 
and regular in the cut E plane with cuts running 
from — oo to —/x and from /* to +<*>; (ii) f(E—iO) 
= f(E+iO);(iii)f(-E-iO) = f(E+iO); (iv) unitarity 
requires, besides other properties, that Imf(E+iO) 
should be positive on the cut E>fx and negative on the 
cut E<—fi. In general the discontinuity Imf(E+iO) 
will be a tempered distribution. Thus it is necessary to 
regularize it over a small interval of values of E. We 
shall assume that this averaging is already done and 
Im/(£+#)) is continuous on the real E axis. 

It has been customary to assume that the scattering 
amplitude f(E,cos0), where 6 is the scattering angle in 
the center-of-mass system, is subject to the condition 
(v) | /(£,cos0) | <C|E|N for E ->oo for any cos0 inside 
the Lehmann ellipse. Recently, Hepp1 has shown that 
this property can be proved within the framework of 
Wightman axioms of local field theory. It follows from 
the unitarity condition and (v) that 

\f(E)\<C\E\>(ln\E\Y (2) 

as E —>oo in all directions in the E plane. This property 

was derived for real E by Greenberg and Low.4 It is 
generalized to the case | £ | —»oo making use of the 
Phragmen-Lindelof theorem.5 

The conditions (i)-(v) and (2) are enough to insure 
the validity of the dispersion relation for / (£) with at 
most three subtractions. However, if one adds to these 
conditions the physical requirement that Im//Re/ 
should not tend to zero as E —*+ oo, we can show, as in 
theorem 1 given below, that only two subtractions are 
needed. We wish to stress that the requirement Im// 
Re/4»0 as E —*+ oo has not yet been proved to be a 
consequence of axiomatic field theory. Nevertheless, it 
seems to be a reasonable feature of a theory which has 
an infinite number of open inelastic channels as 
E —>+ oo. We shall now prove the following theorem: 

Theorem 1, If / (£) satisfies the conditions (i)-(v), 
and if there is a positive number a such that 

|Im/(£)/Re/(£)|>tana7r, 0 < a < | , (3) 

holds for sufficiently large real E, then the limit 

lim / dE' 
E~^ Jp E'z 

does not diverge. 
Proof, We consider the function <I>(E) defined by 

fEf(E')-f(0) 
*(£)-/ /a W , (4) 

where the path of integration is taken in the upper-half 
E plane. As is easily seen, the function <f>(E) has the 
following properties: (a) 4>(E) is analytic in the upper-
half E plane; (b) Im<t>(E) increases monotonically for 
real £>ju; (c) from the Greenberg-Low bound (2) we 
have |0(E)|<C(ln|E|)3forlarge | E | ; (d)tf>(£)hasno 
zero in the upper-half E plane outside some fixed semi
circle; and, finally, (e) for real positive E 

Re4>(-E+iO) = Re4>(E+iO), 

I m * ( - £ + » ) = - l i n * ( £ + i O ) + j T / / / ( 0 ) . 

Now, since Im<t>(E) is positive and monotonically 
increasing for £>/z, l i m ^ - ^ Im<t*(E) is either finite and 
well defined or infinite. We shall show that the second 
possibility leads to a contradiction with the Greenberg-
Low bound (2). 

We assume that limjj-^*, Im<^(£) = oo. If we form the 
function 

G(£)=~1/4>CE), (6) 

we find that G(E) is analytic outside some semicircle in 
the upper half E plane as is seen from (d). Also we have 

limG(E) = 0 (7) 

4 O. W. Greenberg and F. E. Low, Phys. Rev. 124, 2047 (1961). 8 See Ref. 2. 
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FIG. 1. (a) represents a domain in the E plane whose boundary 
consists of semicircles of radius EQ and E and line segments (EQ,E) 
and (—£o, —E). (b) represents a domain in the G plane which is 
obtained from the domain (a) by the mapping G(E). 

by our assumption on <£(£). For large enough real E, 
we obtain from (3) and (4) the inequality 

| ImG(E)/ReG(E) \ > tan™. (8) 

This holds regardless of whether fS>\Ref(E')/E'*\dE' 
converges or diverges, as long as Im<£ (£)—>+ °° as 
E - r + O C . 

Let us now consider the mapping of the region shown 
in Fig. 1(a), where Z£>>£0»Mj into the G plane by 
G(E). The image would look something like the picture 
shown in Fig. 1(b). The images of the segments (Eo,E) 
and (—Eo, —E) will lie, respectively, above and below 
the two straight lines through the origin making angles 
zLira with the real G axis. The point UE is the farthest 
intersection of the image of the large semicircle with the 
real G axis and uo is the nearest intersection of the image 
of the smaller semicircle with the real G axis. The 
inequality of Nevanlinna,6 or the more precise formula 
(A6) due to Hersch,7 now gives 

/*uo du /E\ 
/ > i l n ( — ) , 

JUEPW \EQ/ 

(9) 

The theorem just proved is weaker than the similar 
theorem stated in Ref. 2, where we showed that 
| /(E)|<GE*- ( a /*> for large enough E. However, to 
obtain this strong improvement of Greenberg-Low 
bound, we had to make the extra assumption that f(E) 
does not have violent oscillation as E—>oo. Such an 
assumption is not needed in theorem 1 here. The result 
of theorem 1 is equivalent to a theorem recently ob
tained by Jin and MacDowell.8 Somewhat more refined 
version of theorem 1 will be given in Appendix B. 

From the assumptions (i)-(v) and theorem 1 it 
follows that f(E) satisfies the twice subtracted dis
persion relation 

2E2 r Im/CE') 
/ ( J E ) - / ( 0 ) / < * # , . , „ „ . ( ID 

where p(u) is the shortest distance from the point u on 
the real G axis to the image of the segment (EQ,E). I t is 
clear from (5) and our assumption that Im#(jE)—>oo as 
£~->oo that the images of the segments (E0,E) and 
(—Eo, —E) will be approximately symmetrical with 
respect to the real G axis. We now have 

p(u)>u sixnra, UE<U<UQ. 

Using this and (9) we obtain 

M<c|£| -* s i n™. 
Since us^GQEle^) for some y(0<y<ir), and since 
G= —1/<£, we finally arrive at 

| < £ ( | £ k Y ) | > C ' | E i * ' (10) 

For large enough E this contradicts the bound (c) on $ 
obtained from the Greenberg-Low bound. We have 
therefore to conclude that l im^*, Im<j>(E) cannot be 
infinite. I t then follows that f™ \ Ref(E') | FJ~zdEf must 
also converge since | I m / / R e / | > tanxa for large real E. 
Q.E.D. 

6 See Ref. 2, Appendix. 
7 J. Hersch, Commentarii Mathematici Helvetici 29, 301 (1955). 

IE1 r 

7T J p. E'(E'2-E?) 

Making use of this representation we can easily show 
that the function h(E) denned by 

h(E) = 
f(E)-f(0) 

E 
(12) 

has the properties: (a) h(E) is regular for l m £ > 0 and 
continuous for I m E > 0 ; (0) Imh(E)>0 for I I T L E X ) 
[namely h(E) is a Herglotz function]; (7) h(i\)} X real 
and positive, is purely imaginary; (5) Reh(—E+i0) 
= - R e / / ( £ - H 0 ) and Imh(-E+iQ) = Imh(E+iQ) for 
real E. Thus, if we consider the mapping of the upper-
half E plane by the function h(E), the image will lie in 
the upper-half h plane as is seen from (fi). On the other 
hand, the conditions (i)-(v) do not guarantee that such 
a mapping is one-to-one. Fortunately, however, it is not 
difficult to construct functions from h(E) that have such 
a property. One such function is g(E), defined by 

g(E)- •f 
Jo 

•h{E') 

E 
-dE', l m £ > 0 , (13) 

where the path of integration is taken to lie entirely in 
the upper-half E plane. The integral in (13) is converg
ent at £ ' = 0 since /7(0) = 0 and f(E) is regular near 
£ = 0 . 

To show the univalence of g(E) we first note the 
following properties: (1) g(E) is regular in l m £ > 0 and 
continuous in l m £ > 0 ; (2) Img(E)>0 if l m £ > 0 ; (3) 
g'(E)?*0 everywhere in I I I L E X ) ; (4) Reg(~E+i0) 
= -Reg(E+iO), Img(-E+iO) = Img(E+iO) for all 
real E; (5) for real £ > M , Img(E+iO) is non-negative 
and increases monotonically along the positive real 
axis; (6) Reg(£) is nonnegative and increases monoton
ically in the interval 0 < E<n; (7) g(i\), for real positive 
X, is purely imaginary and increases monotonically 
with X. 

8 Y. S. Jin and S. W. MacDowell, Phys. Rev. 138, B1279 (1965). 
Note that footnote 3 of this reference was written without recog
nition of footnote 23 of Ref. 2. Note also that part of the footnote 3 
of this reference which goes beyond footnote 23 of Ref. 2 and 
Appendix A of this paper is in our opinion not correct. 
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Img 

Reg 

FIG. 2. Schematic drawings of the domain G. (a) represents the 
case g(°o)=<». (b) represents the case g(°°) = finite, (c) is an 
example of an impossible case. 

The property (2) follows from (fi) as is seen by choos
ing the straight line connecting 0 and E as the path of 
integration in (13). The property (3) also follows from 
(13) if we note that g'(E) = h(E)/E. Finally, (6) is 
proved using the dispersion relation (11). 

As is seen from the property (2), the function g(E) 
maps the upper-half E plane into a domain G located in 
the upper-half g plane. We know from (3) that this 
mapping is locally one-to-one everywhere in the upper-
half E plane. The mapping will therefore be globally 
univalent and conf ormal if the boundary curve of G has 
no double points.9 To examine this, let us denote by Ti 
and T2 the images of the negative and positive real E 
axis, respectively. Because of (4), Y* and Ti are sym
metric with respect to the imaginary g axis. We know 
from (6) that the part of Ti corresponding to 0<E<fx 
does not intersect with itself and lies on the positive real 
g axis. For E>fx, g(E) becomes complex and the cor
responding part of r 2 rises monotonically from the real 
g axis according to (5). Thus T% cannot have a double 
point. The same holds for T\. Hence the only remaining 
possibility is that Yx and T* have some common points. 
Because of the mono tonicity and symmetry of Ti and 
r 2 such a common point could be found only on the 
imaginary g axis, see Fig. 2(c). However, a configuration 
like this cannot take place since the mapping is every
where locally conf ormal, g'(E)^0} and since Ti and r 2 

cannot turn back towards the real g axis because of (5). 
Thus Ti and T2 have either no point in common as in 
Fig. 2(a) [ ^ ( 0 0 ) = 0 0 ] , or only one common point 
^ ( C O ) ( < Q O ) on the imaginary g axis as in Fig. 2(b). 
Thus, the boundary curve of G has no double point, 
which proves the univalence of g(E) in the upper-half 
E plane. I t is clear from Figs. 2(a), 2(b) that, for all 
finite real positive E, we have the inequality 

Rzg(E+iO)>0. (14) 

One can check this inequality directly from the dis
persion relation (11). If we divide both sides of (11) by 
E?-, integrate along the radial direction from 0 to E, and 
take the real part, we obtain 

Reg(E) 
1 r 

= - / dE'-
7T J a 

lmf(E') 

E'2 In 
E'+E 

E'-E 
(15) 

9 E. C. Titchmarsh, The Theory oj'Functions (Oxford University 
Press, New York, 1939), 2nd ed., p. 201. 

for 0<arg£<7r . We note that ln | (E'+E)/(E'-E) | > 0 
for any E in the first quadrant and that Imf(E')>0 for 
real E'>n. Thus, Reg(E) is positive for all E such that 
0<arg£<7r /2 . In other words, g(E) maps the first 
quadrant of the E plane into a domain in the first 
quadrant of the g plane. In particular, we obtain (14) 
for positive real E. 

Furthermore, in the same manner, one can show that 
RegdEle*6) decreases monotonically to zero as 8 varies 
from 0 to 7r/2 for any fixed | E | . Thus the image of a 
large semicircle in the upper-half E plane centered at 
the origin will have no double point. One can further 
show that it does not intersect r i or IV The theorem of 
Ref. 9 thus guarantees again that g(E) is univalent 
inside any semicircle centered at the origin and lying in 
the upper-half E plane. 

Although the function g(E) defined by (13) is perhaps 
the most useful for our purpose, it is by no means the 
only univalent function that can be constructed from 
the scattering amplitude. Another useful function will be 

gi(E) 
Jo 

h(E')dE', l m £ > 0 , (16) 

which is regular and univalent in the half-plane I m £ > 0. 
Although Imgi (E) is not positive definite in the upper-
half E plane, it does not give rise to any particular 
difficulty. As a matter of fact, if necessary, we could 
also introduce functions of the form 

gn(E) -f 
J a 

T'n- l h(E')dE', n=2,3, (17) 

which are no longer univalent but rather multivalent, 
with a definite multiplicity, in the upper-half E plane. 
Since \ngn(E) is univalent in I m E > 0 , we will have no 
difficulty in treating gn(E) under most circumstances. 

III. SOME INEQUALITIES SATISFIED BY g(E) 

We have seen in the last section that the function 
g(E) defined by (13) is regular, Herglotz, and univalent 
in the upper-half E plane and also symmetric with re
spect to the ImE axis. These properties impose some 
restrictions on the possible behavior of g(E). In par
ticular, univalent functions are known to satisfy various 
sharp inequalities. In this section we shall write down 
some of the inequalities satisfied by g(E). 

For this purpose it is convenient to introduce the new 
variable z defined by 

E-i\ 
z= , X > 0 . 

E+i\ 
(18) 

This function maps the upper-half E plane into a unit 
circular disk, | s | < l , in the z plane with the point 
E=i\ going into the origin 2=0 . We also define, for 
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fixed X, the function 

*>(z)= 
g(ig)-g(tX) 

2i\g'(i\) 
(19) 

Here g'(i\) = dg{E)/dE\B-ik and is not zero for X>0 as 
was shown in Sec. II. Thus <p(z) is regular and univalent 
in the unit disk | z | < 1 and its power series expansion at 
2=0 has the normalized form 

<p (z) = z+ a<&2+a&?+ • (20) 

Since g(i\) is purely imaginary while g'(iA) is purely 
real, <p(z) is real if and only if z is real, |z\ < 1, and has 
the symmetry property <p*(z)= <p(z*) inside the disk 
\z\ < 1 . For such univalent functions the coefficients of 
the power series in (20) satisfy the inequalities10 

\an\<n, ^ = 2 , 3 , (21) 

This puts upper bounds on all derivatives of g(E) at 
E—iX which depend only on X and g'(iX). Although it is 
unlikely that the bounds (21) are of direct practical 
use, except for the case n=2, they might be useful in 
some theoretical considerations. 

In the following we shall concentrate on the proper
ties of g(E) that follow from the inequality | a%\ < 2. One 
of the direct consequences of this property is Koebe's 
theorem.11 This theorem states that, if <p{z) is regular 
and univalent for | z \ < 1 and has the normalized form 
(20), then the image of the disk \z\ < 1 must cover at 
least a disk of radius J in the <p plane. In other words, 

I *>(«*)! > i , O<0<2TT . (22) 

This result can be translated for the function g(E) as 
follows: we draw in the g plane a straight line parallel to 
the Reg axis through the point g(iX) on the Img axis. 
As is shown in Appendix C, this line will intersect with 
the boundary curve T2 of the domain G at one point 
which we denote by g(E\) (see Fig. 3). Here E\ is real, 
positive, and determined uniquely by the equality 

Img(£x+»)Hg( t \ ) | (23) 

for any given positive real X. For this choice of Ex, 
g(E\)—g(i\) is purely real. Thus, using Koebe's 

FG. 3. Definition of g(Ex). g(\) on the 
Img axis should read g(i\) 

theorem and (19), we obtain the inequality 

Reg(Ex+iO)> (1/2X) | / ( iX)-/(0) | 

10 W. K. Hayman, Multivalent Functions (Cambridge University-
Press, Cambridge, 1958), p. 14. 

11 See, for instance, G. M. Golusin, Interior Problems of the 
Theory of Schlicht Functions, translated by T. C. Doyle, A. C. 
Schaeffer, and D. C. Spencer (U. S. Office of Naval Research, 
Washington, 1947), p. 9. 

(24) 

Since (22) is valid for all univalent functions nor
malized by (20), it is quite likely that (24) is not the 
best possible inequality that applies to the specific 
function g(E). In fact, just taking account of the 
symmetry property of g(E), we can easily improve 
(24) by a factor of 2 and obtain 

Reg(Ex+i0)> (1/X) | / (&) - / (0 ) | . (25) 

This follows from a theorem of Szego.11 Applied to the 
function <p(z), this theorem asserts that of two points 
lying on the same straight line in the tp plane going 
through <p=0 and on opposite sides of <p=0, neither of 
which belonging to the map of the unit disk \z\ < 1 by 
<p= (p(z), one at least must be at a distance not less than 
| from the origin <p=Q. For the function g(E) this 
means that either Reg(E\+i0) or —Reg(—E\+i0) 
must be larger than | /(iX)~/(0) | /X. Since Reg(Ex+i0) 
= —Reg(— E\+i0) because of the symmetry, we must 
have (25).12 

The inequality (25) might be useful in an experi
mental test of the analytic properties of / (£) , as was 
discussed in Ref. 3. 

Another consequence of the univalence of <p(z) is 
given by the following theorem13: If <p(z) is univalent in 
| z | < l and has the form (20), we have for | s | =r, 
0 < r < l , the inequalities 

< I *(«)!<• 
(l+r)2 

1-r 

( i -O 2 

1+r 
-<\<f>'(z)\<-

(1+r)3 (1-r) ' ' 
(26) 

1-r 

r(l+r)" 
-< 

<e'(z) 

<p(z) 

l+r 

'r(\~r) 
<-

This theorem gives upper and lower bounds for g(E) 
and g'CE) for all E such that InxE>0. These bounds of 
course depend on g{i\) and g'(i\). They are useful in 
obtaining estimates of g(E) for complex E. 

Finally we should like to quote a theorem due to 
Seidel and Walsh14: If i^(z) is regular and univalent in 
|z| < 1 , the first derivative 4>'{z) satisfies the relation 

lim | tf/(z)!(l- |z |)1 / 2=0 (27) 

for all points e™ of the circumference | z \ = 1 with the 

n The formula (25) may be improved further if more detailed 
information on g(E) is available. For this purpose a generalization 
of Szego's theorem (Ref. 11, p. 9) will be useful. See also G. M. 
Golusin, Geometrische Funktionentheorie (VEB Deutscher Verlag 
der Wissenschaften, Berlin, 1957), p. 143. 

13 See, for instance, Ref. 10, p. 4. 
14 W. Seidel and J. L. Walsh, Trans. Am. Math. Soc. 52, 128 

(1942). 
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exception of at most a set of measure zero, where the 
limit is taken in any angle less than w with vertex in e™ 
and bisected by the radius joining 2 = 0 with z=eia. 
Furthermore, in any such angle the above limit is 
uniform. This theorem shows that, almost everywhere 
on the unit circle | s | = 1, | $' (s) | is substantially smaller 
than the upper bound given by (26). I t will be obvious 
that there is a close relation between this theorem and 
lemma 3 given in Appendix C. 

IV. THEOREMS ON THE ASYMPTOTIC 
BEHAVIOR OF g(E) FOR LARGE E 

In this section we shall study the asymptotic be
havior of g(E) with particular emphasis on the relation 
between the asymptotic behavior of Reg(E)/Img(E) 
and that of | g(E) | . The theorems proved below will be 
used in the next section to study the asymptotic be
havior of f(E). 

One can study the asymptotic properties of g(E) 
making use of the theorems of Meiman which were 
discussed in detail in Ref. 2. However, since g(E) is 
univalent in the upper-half E plane, we have available 
to us more powerful tools such as the theorem of 
Ahlfors discussed below. In this approach there is an 
additional advantage in that some of the assumptions 
made in Ref. 2 can be eliminated or simplified. 

If we impose no restriction on the behavior of 
Reg(E)/Img(E), all we know about the asymptotic 
behavior of g(E) is that 

| g ( £ ) | < C | £ | ( l n | £ | ) 2 , 

which follows from the Greenberg-Low bound (2). 
Throughout this section, however, we shall assume as 
in the last sections that the condition (3) of theorem 1 
is satisfied by / ( £ ) . Then the integral/Ef(E')E f~zdE' 
is convergent as E —•»+ °°. From this it follows that 

| g (E)/E | < constant 
as \E\—»oo. 

Let us start by a short discussion of Ahlfors* theorem15 

We consider a simple (schlicht) domain D in the z plane 
(z=x+iy) which is simply connected and symmetric 
with respect to the x axis. Let Zi=Xi+iYi and 
Z2=X2+iY2 be the points on the boundary curve of D 
with the smallest and largest real part, respectively. 
For any x, Xi< x< X^ the vertical line Rez= x will have 

FIG. 4. The domain D of the z plane in (a) is mapped by w(z) onto 
the strip 5 of the w plane in (b). 

16 R. Nevanlinna, Eindeutige Analytische Funktionen (Springer-
Verlag, Berlin, 1953), 2nd ed., p. 93. 

one or more intersections with D, each of which is 
bisecting D into two disconnected parts. Under our 
assumption on D, there is one intersection which crosses 
the x axis. This line segment we denote by 6X and its 
length by 6{x); see Fig. 4(a). The line segment 6X 

divides D into two disconnected parts in such a way 
that X\ and X 2 belong to different parts. We require 
that 6{x) is a continuous function of x for X\<x<X^ 
except at some isolated points. 

Let w=u+iv=w(z) be a function which is regular 
and univalent in D and maps D conformally onto a 
strip 5 defined by \v\ < | a (a>0) in such a way that 
u(Zi) = — oo and u(Z<i) — + oo. In this mapping the line 
segment 6X will be mapped onto a continuous curve Lx 

which connects the two boundary curves v = ± | a . The 
largest and smallest values of u on Lx are denoted by 
u%{x) and U\(x), respectively. [See Fig. 4(b).] The 
theorem of Ahlfors now states that 

cx% dx 
ui(x2)—u%(xi)>a I 4a (28) 

Jxi 6(x) 

holds for any pair of points xi, x% such that 

fXl
xHx/6(x)>2. 

We shall now use (28) to prove several theorems on 
the asymptotic behavior of g{E). We recall that, for 
real positive E, g(E) lies in the first quadrant of the g 
plane. Thus, insofar as Reg(E)/Img(E) does not tend 
to zero as E —>+ oo, we may characterize the asymp
totic behavior of g(E) by the inequality 

Reg(£) 
>tan7ra, 0 < a < f , (29) 

Img(E) 
or 

Reg(E) 
<tan7ra' , 0 < a , < | , (30) 

lmg(E) 

which holds for all real E greater than some positive £ 0 . 
We then obtain the following two theorems: 

Theorem 2. If the function g(E) satisfies (29) for 
E>Eo, g(E) has the lower bound 

\g(E)\>C(E/E0y«, 0<a<h (31) 

for all E sufficiently larger than E<>. 
Proof. We define z and w{z) by 

z = l n ( £ / C ) - i 7 r / 2 , w(z) = lng(E)-iw/2i (32) 
O O , 

and apply Ahlfors' theorem to the mapping z—*w. The 
lines Reg(E)/Img(£) = ±tan7ro: correspond to the two 
straight lines in the w plane which are parallel to the u 
axis (w=u+iv) and separated by the distance a=2a7r. 
We then choose D to be the domain whose boundary 
curve consists of two vertical line segments with 
Rez=xi=ln(Ei/C) and Rez = # 2 = In(ZVC) and two 
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W 
0(x) 

-%r-

FIG. 5. Mapping of the domain D in (a) onto the strip S in (b). 

Jordan curves which are maps of the two parallel lines 
in the w plane, mentioned above, by the inverse trans
formation z=z(w); see Fig. 5. Obviously the length 
6(x) is by definition less than w. Thus we obtain the 
inequality 

Ui(x2)~-u2{x^>2aTr[ 4 ] 

= 2aln(E2/Ei)-SaTr. (33) 

This follows directly from (28). From the definition of 
«i (#2) we know that 

ln\g(\E2\e^)\>Ui(x2)9 e<cp<7r-ey (34) 

where e depends on IE2I and is determined by the 
condition a,vgg(\E2\e

it) = ir/2—aw. In particular, if we 
choose <p=w/2, we obtain from (33) and (34) the 
inequality 

\g(i\E2\)\>C(E2/E1y- (35) 

for E£2>Ei9 where C does not depend on E2. This is not 
yet a lower bound of |g(22)| for real positive E. How
ever, from (C8) we can easily obtain 

\g(E)\>(i/^\img(iE)\ (36) 

for real positive E. Formulas (35) and (36) lead us 
immediately to (31). Q.E.D. 

Theorem 3. If the regular univalent function g(E) 
satisfies (30) for E>EQ, g(E) has the upper bound 

\g(E)\<C'(E/E0y«' (37) 

for all E sufficiently larger than E0. 
Proof. In this proof we still use Ahlfors' theorem but 

we now reverse the definition of z and w(z). We put 

* = l n g ( E ) - t t r / 2 , w(s) = l n ( £ / C ) - t i r / 2 , (38) 

and consider the mapping z—>w. The domain S of 
Ahlfors' theorem in the w plane is now taken to be the 
strip \v\ <7r/2. The domain D in the z plane is bounded 

by two Jordan curves which are the images of the lines 
v= zLir/2 and by two vertical line segments Rez=Xi and 
Rtz=x2. The images of the vertical line segments 
Rez=#i and Rez=x2 are now curves in the w plane 
connecting the lines v=zkw/2, see Fig. 6. Applying 
Ahlfors' theorem to this case, we obtain 

x2—#1 
Ui(x2) — U2(Xi)> 47T. 

2a' 
(39) 

We define real and positive E\ and E2, E<£^E\, by 

l n | g ( £ ! ) l = « i , \n\g{E2)\=x2. (40) 

By definition of u\ and tt2 we also have 

ui{x2)<\n{E2/C), ^ 2 (m)> ln (E i /C) . (41) 

Substituting (40) and (41) in (39) we obtain (37). 
Q.E.D. 

I t would be useful to compare the results obtained so 
far with those that could have been obtained by using 
Meiman's theorem of Ref. 2. One should note that it is 
not necessary here to assume that the boundary curves 
Ti and T2 do not intersect, since this is already guaran
teed by univalence. Also we do not need here any 
regularity assumption on the boundary curves Fi and 
Y2 beyond the very general ones needed for Ahlfors' 
theorem. Furthermore, the above theorems hold for all 
E greater than some fixed energy &>Eo) whereas 
Meiman's theorem gives under similar assumptions a 
result like (31) which is valid only for some E. I t is also 
important to note that the power of E in (31) is better 
by a factor of 4 than what one would have obtained by 
applying Meiman's theorem to the function —l/g(E). 
I t is not possible to improve this power further.15 

As is obvious from (31) and (37), the lower and upper 
bounds for |g(£)l have similar energy dependence. If 
Reg/Img^ tan7ra and a=a', and if one makes certain 
specific assumptions on the smoothness of the boundary 
curves, then the two bounds approach each other as 
E—>+oo and (31) or (37) gives the actual asymptotic 
expression for g(E).u 

Theorem 2 is useful if Reg(E) and Img(E) both tend 
to infinity as £—>+co in such a way that (29) is 
satisfied. If Reg(E) grows less rapidly or is bounded as 
E—*+<*>, the condition (29) is no longer convenient 
since we cannot choose a positive a. In such cases it is 
better to give different characterization of the asymp
totic behavior of Reg(E)/Img(E). For instance, one 
could still get a useful result if Reg/Img satisfies an 
inequality like (29) in which the constant a is replaced 
by a function a(E) which decreases monotonically to 
zero as E —>+ 00. Then the argument of theorem 2 still 
applies and we obtain, for sufficiently large E, the 
inequality 

\g(E)\ >C exp [2a (£ ) ln (£ /£ 0 ) ] . (42) 

FIG. 6. Mapping of the domain D in (a) onto the strip S in (b). 5 S. E. Warschawski, Trans. Am. Math. Soc. 51, 280 (1942). 



F O R W A R D S C A T T E R I N G A M P L I T U D E B713 

In particular we have the following corollary to 
theorem 2: 

Corollary. If g(E) satisfies the inequality 

Reg {E)/lmg (£) > C/ (ln£) % 0 < a < 1, (43) 

for E>E0, then 

| g ( £ ) | > C ' [ l n ( £ / £ o ) T (44) 
for large enough E. Here y is greater than any positive 
number. 

If a>l in (43), the methods discussed so far do not 
give any useful information. The case a = l will be 
treated by a different method in Sec. V. 

To handle the situation where 

RegCE) C 
- < -

Img(£) (\nE)a 
a>l, E>E0, (45) 

we shall make use of Koebe's theorem. We first note 
that, if we choose \ = E, E being real and positive, in 
(19) and (22), we obtain 

\g(E)-g(iE)\>iE\g'm\. 

Combining this with (C8), we find 

Reg(E)>(l/2^)E\g' (iE)\. (46) 

On the other hand, from (C8) and (45) we derive 

C 
( l - - ~)lmg(E)<lmg(iE). 
\ (1ILE)V (llLE)a 

Inequalities (46) and (47) lead us to 

(47) 

g'HE) 

g{iE) 
<-

2V2 1 Reg(E) 

l-C(\nE)-a EImg(E) 

2vlC C 
<- <-

£ ( ( 1 I L E ) « - C ) E(\nE)a 
(48) 

for sufficiently large E, where C is a suitably chosen 
finite constant. Integrating both sides of (48) from E0 

to E, we therefore obtain 

gm 
\g(iEo) 

For a> 1 this gives 

< e x p 
rE C'dE 1 

JEoE(\iiE)a\ 
(49) 

gm 
g(iEo) 

<exp ( C 

[ ( l n £ ) i - -
11—a 

(lmEo)1-0] . (50) 

Now we know from (47) that Img(E) is bounded as 
E-++ oo if Img(iE) is bounded. Using (45) and (50), 
we therefore obtain: 

Theorem 4. If g(E) satisfies (45) for E>E0, a> 1, then 
\g(E)\ is bounded as E —>+ oo and Reg(E)-+ 0 in that 
limit, 

For the case a= 1 we have from (49) the upper bound 

\g(E)\<C"(\nEr, (51) 

where C" is defined in (48). 
Another way of characterizing the asymptotic 

behavior for the case a = 0 is to consider the situation 
where for all E>Eo 

Reg(E)>6 . (52) 

b is some positive constant. In this case we can apply 
Ahlfors' theorem to the mapping z —> w where we now 
set 

s = l n ( £ / C ) - t t r / 2 , w(z)=-ig(E). (53) 

By an argument very similar to that of theorem 2, we 
obtain 

Img(iE)> (2b/ir)ln(E/E0)+const (54) 

for all E sufficiently larger than Eo. Using (C8), we 
therefore obtain: 

Theorem 5. If Reg(£) satisfies (52), then |g(2£)| n a s 

the lower bound 

| g(E) | > (2b/ir)\n(E/Eo)+const (55) 

for all E sufficiently larger than £ 0 . 
Similarly, as an analog to theorem 3, we have 

Theorem 6. If Reg(E) satisfies the inequality 
0 < R e g ( £ ) < 6 ' for all E>E0, then for sufficiently large 
E we have 

| g(E) | < (2bf/w)ln{E/E0)+const. (56) 

Finally, we consider the case where Reg(E)/ 
Img(E)—*Q as E—>+<*> but Reg(E) diverges at the 
same time. We can now choose the variables as 

z=ln(E/C)-iT/2, w(z) = Z~ig(E)J/\ V>1. (57) 

Here w(z) is defined by that branch in which [Img(E)~]1/v 

is real and positive. For large enough E we have 

w(z)~[Img(E)Ji*-
Rtg(E) 

v [ Img(E)] 1 - 1 / » > 
(58) 

Since w(z) is univalent in I m E > 0 , we can apply 
Ahlfors' theorem to this case. Suppose we found a v such 
that v>\ and 

Reg(£) 
>b, E>E0. (59) 

v[Img{E)J-1'* 

Then theorem 5 gives us for E2Z>E<, 

ZImg(E)2u'>(2b/Tr)ln(E/E0)+const 
or 

Img(E)>C[ln(E/Eo)J. (60) 

Conversely, if we can find a v> 1 such that 

Reg(E) 

, [ I m g ( £ ) ] \l-llv 
<b', E>E0, (61) 

file:///l-llv
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FIG. 7. Schematic drawing of 
Re«i the image of the upper half E 

plane by the mapping gi(E). 

then, for ES>E$, we have 

Img{E)<C'[\n(E/Eo)y. (62) 

Most results obtained so far in this section are useful 
when g(E) diverges as E goes to infinity. This would be 
the case for example when the total cross section tends 
to a constant as E —>+ °° • To obtain some information 
about f(E) in the case where g(E) tends to a constant 
as E—>+oo [i.e., <rtQt(E) approaches zero faster than 
(ln£)~°, a> l j , it is more advantageous to look at the 
function gi{E) defined by 

gi(JS)=/ h(E')dE'= ~—dE. (63) 
Jo Jo Ef 

If g(oo) is bounded, we need only one subtraction in 
writing down the dispersion relation for f(E). Never
theless, this dispersion relation has the same form as 
(11), and h(E) defined by (12) is still a Herglotz func
tion. It is then easy to show that gi(E) is regular and 
univalent in the upper-half E plane. The function gi(E) 
is real and monotonically increasing for 0<£<*x, and 
Imgi(E) increases monotonically as E increases from 
ix to + oo. Thus, if we map the upper-half E plane into 
the gi plane, the image T2 of the positive real E axis will 
lie in the upper-half gi plane and that of the negative 
real E axis will lie symmetrically below the real gi axis 
(see Fig. 7). We have no specific restriction on the sign 
of Regi(£). It may take both positive and negative 
values for E>p. 

With the help of Ahlfors' theorem we can easily 
obtain the following theorems : 

Theorem 7. If gi(E) satisfies for all E>E0 the in
equality 

Regi(E)/Imgi(E)>tsJiiraf - * < « < * , (64) 

we have 
\gi(E)>C(E/E0)

1*** (65) 

for all E sufficiently larger than E0. This theorem can be 
proved by the same method as that of theorem 2 except 
that we have to use (C18) instead of (C8) in the last 
step. 

Theorem 8. If gi(E) satisfies for all E>E0 the in
equality 

Reg1{E)/Img1(E)<t^nTaf
 t - $ < « ' < $ , (66) 

we have 
\gl(E)\<C(E/Eo)1^ (67) 

for all E sufficiently larger than EQ. 

For a, a'>Oy these theorems have essentially the same 
content as theorems 2 and 3. However, for a, a '<0 they 
give new information. Note also that 

a'>-i(l+ V E»Eo, (68) 
\ ln(£/M)/ 

according to (C16). 

V. FROISSART BOUND AND THE ASYMPTOTIC 
PROPERTIES OF g(E) AND f(E) 

In order to discuss physical implications of the results 
obtained in Sec. IV, we shall assume now that the 
scattering amplitude f(E) satisfies the Froissart bound 

| / ( E ) | < C | £ | ( l n | £ | ) 2 (69) 

for all energy E greater than some fixed Ei. Then g{E) 
is subject to the condition 

|*(E) |<C(ln |E | ) ' . (70) 

First we note that, if (70) is valid, the theorems of 
Sec. IV put severe restrictions on the possible asymp
totic behavior of the ratio Reg(E)/lmg(E). For 
example, one immediately sees from theorem 2 and its 
corollary (44) that, if Reg(E)/Img(E)>C(lnE)~a, 
0<<z<l, for all E>Eo, then g(E) grows more rapidly 
than the right-hand side of (70). Thus such an asymp
totic behavior for Reg(E)/Img(E) must be excluded if 
(70) is valid. 

This result can be improved further by noting that, if 

Reg(£) 37rln(ln£) 
> 

lmg(E) 2 InE 

holds for E>Eo, we are already in contradiction with 
the Froissart bound. This is easily shown using (42). In 
fact even better results might be obtained if we can 
estimate the integral of (28) more accurately than we 
did in Sec. IV. Instead of pursuing this line further, 
however, we shall give here a result obtained by 
utilizing the univalence of g(E) in a somewhat different 
manner: 

Theorem Q. If g(E) satisfies the inequality 

Reg(E)/Img(E)>C/lnE (71) 

for all E>E0, then we have 

\g(E)\>C'QnE)<»<*t (72) 

where C\ is a sufficiently large fixed constant. 
Proof. According to lemma 3 of Appendix C, 

|Reg(JE)| is bounded from above by Ci(£)|£g'(£) | , 
where d(E) is finite for all E except possibly for those 
corresponding to very high and narrow peaks of 
Imf(E)/Er. For any fixed positive constant Ci, consider 
the set R(d) of all points of the real E axis satisfying 
Ci(E)<Ci. Obviously R(Ci) consists of a finite or 
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infinite number of open intervals of the real E axis, 
grows monotonically as C\ increases, and covers the 
whole real E axis in the limit Ci= oo except possibly for 
a set of measure zero. Thus, if we choose a sufficiently 
large Ci, R(Ci) covers most of the real E axis. On such 
a set JR(Ci), we obtain from (71), (C8), and (C19) the 
inequality 

&>E—J—. (73) 
\g(iE)\ CiE(C+lnE) 

If we integrate both sides of (73) over the intersection 
of the interval (EQ,E) and the set R(Ci), the result will 
not be substantially different from that of integration 
over the interval (Eo,E) insofar as C\ is sufficiently 
large. Thus we obtain 

\g{iE)\>C"{\nE)<"c\ 

Making use of (36) we arrive at (72). Q.E.D. 
Obviously this theorem is rather weak if we have to 

choose a large C\. Of course, if Imf(E)/E? is a slowly 
varying function of E almost everywhere, we can choose 
a small C\ as is seen from the considerations in Appendix 
C. In any case, theorem 9 makes it clear that the condi
tion (71) is already inconsistent with (70) if the con
stant C is larger than 3Ci. To be consistent with the 
Froissart bound, there must therefore be at least an 
infinite sequence of points {£»}, £*—>+ <*> as i —>oo, or 
an infinite sequence of intervals on the positive real E 
axis for which 

Reg(Ei)/lmg(Ei) < C/hxE4 (74) 

holds for an appropriately chosen finite constant C. 
This is as far as we can go without making any specific 
assumption on possible oscillations of Reg(E) as 

As is seen from theorem 3 and others, the smaller is 
the upper bound on Reg(E)/Img(E), the slower is the 
growth of \g(E)\ as E—*x>. Thus, for instance, if (74) 
holds for all E>E0, g{E) is bounded by (ln£)c ' accord
ing to (51), where C'=2v5C. If g(E) satisfies an even 
stronger condition such as Reg(E)/Img(E)<C(hiE)~a, 
a>l, for all E>Eo, then |g(22)| is bounded by a 
constant in the limit E —»+ oo, according to theorem 4. 
This would correspond to a total cross section that 
vanishes faster than 1/lnE as E —>+ oo ,17 Thus, if the 
total cross section should approach a finite constant 
value at very large energy as is strongly indicated by the 
experimental data, Reg(E)/Img(E) must tend to zero 
as E—»+°° not much faster or much slower than 
C/lnE. 

17 When g(E) tends to a finite limit as E —>+ <», one can gain 
more detailed information on the scattering amplitude by studying 
gi{E) denned by (63) rather than g(E) itself. According to 
theorem 8, if Regi\E)/Imgi(E)<ta.mra', which for negative a 
means | Re#i (E) \ /Imgx (E) > | tan***' |, then | gi (E) | is bounded 
by C|£|1~s ,a '1. This result is equivalent to the one obtained by 
theorem 1 of Ref. 2. Theorem 2 of Ref. 2 can be reproduced in the 
same manner. 

The theorems of the previous section lead us to other 
interesting results if we make the physical assumption 
that Ref(E) has a definite sign beyond some energy E\. 
For example, if Re/(£)<0 for all real E>Eh Reg(E) 
is monotonically decreasing for E>Ei. Hence 

Reg(£)<Reg(Ex), E>EX. 

According to theorem 6 we thus have the upper bound 

| g(E) | < (2/V)Reg(£1)ln£+const (75) 

for all E2>Ei. This means that the total cross section 
must be bounded by some constant for almost all E in 
the sense that fEl

EZ(r{E')/E'~]dE'< C lnfi as E ->+ oo. 
This result is valid irrespective of whether Re/(£) 
oscillates or not as far as it is negative for E>Ei. Ob
viously we do not have to assume the Froissart bound 
in this consideration. 

On the other hand, if Re/(£)>0 for E>Eh then 
Reg(E) is monotonically increasing and thus 

Reg(E)>const, E>E\. 

Following theorem 5 we have 

| g(E) | > (2/7r)Reg(E1)ln£:+const. (76) 

Thus, in this case, the total cross section cannot go to 
zero smoothly as £—>+°°. Conversely, if the total 
cross section diverges in such a way that Img(E) 
>C(ln£)", v> 1, it is impossible to find a finite constant 
C* such that Reg(E)<C holds for all large E (see 
theorem 6). This means that Reg(E) must tend to 
infinity. In such a case Ref(E) cannot stay negative for 
all large E. 

These results show that there is a strong correlation 
between the sign of Rtf(E) and the boundedness of the 
total cross section at high energies. [Note, however, 
that f(E) differs from the actual forward scattering 
amplitude by nucleon pole terms which tend to a 
constant as E •—>+ oo.] 

VI. POSSIBLE EXPERIMENTAL TEST OF 
ANALYTICITY AND CROSSING 

One of the main purposes of the present series of 
investigations is to find out devices by means of which 
we can test experimentally theoretical predictions of 
local field theory. In Refs. 2 and 3 we proposed several 
inequalities which may be used for this purpose. Besides 
some quantities that are not sensitive to high-energy 
data, these inequalities contain only those quantities 
that can be determined from the experimental data of 
forward scattering amplitude at finite energies. In this 
section we shall give two more inequalities of this kind 
which are byproducts of Ahlfors' theorem. 

We recall that the function g(E) for real E>ix is fully 
determined by a measurement of Ref(E) and Imf(E) 
over physically accessible energy range, if the constants 
gQj) and /(0) are found by some means. These con-
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stants can be estimated using the dispersion relations. 
For £ < J U the dispersion relation is known to work well 
and not sensitive to the actual value of the total cross 
section at very high energies. 

We shall assume in the following that Reg(E) and 
Img(E) have been measured for all energies in the range 
Ei<E<E2, where E£$>Eh and that the function g(E) 
for real E, plotted in the w plane, looks like the curve 
in Fig. 8(b), where we put 

s = l n ( £ / / i ) - t t r / 2 , w(z)=-ig(E). (77) 

In drawing this curve we have assumed that Reg(E) is 
nonincreasing [i.e., R e / ( £ ) < 0 ] for large E, although it 
is not absolutely necessary for our purpose. The data 
available at present is not qualitatively different from 
this figure.18 

Let us now consider the mapping by w(z) of the 
domain D in the z plane [see Fig. 8(a)] onto the strip 
of width 2 Reg(E2) in the w plane shown in Fig. 8(b). 
The domain D is bounded by two vertical line segments 
with Rez=ln(£i//x) and Rtz=\n{E2/p) and two Jordan 
curves which are maps of the boundary lines Imw(z) 
= ±Reg(E 2 ) of the strip by the inverse transformation 
z=z(w). The images of the lines Rez=ln(Ei/fx) and 
Rez=ln(i<VAt) are represented by the curves in the w 
plane connecting —ig(Ei) with —ig(-Ei) and — ig(E2) 
with —ig(—E2). We may now apply Ahlfors' inequality 
(28) to this mapping by putting a=2Reg(E2), 
#i=ln(£ i / / i ) , #2=ln(£2/M), and d(x)<w. Thus we 
obtain 

u1(x2)-u2(xl)>2 R e g ( £ 2 ) [ ( l / 7 r ) l n ( £ 2 / £ i ) - 4 ] , (78) 

where m, u2 are denned in the same manner as in (28). 
By definition 

ui(x2)<Img{E2). (79) 

We are thus left with the job of estimating u2(xi). In the 
case considered here, namely that of Fig. 8(b), it will be 
advantageous to take E\ as small as possible. For 
instance, we may choose E\ which corresponds to the 
intersection of the line Imw(z) = Rtg(E2) with the low-
energy data curve. If E\ is small enough, we obtain 
u2(xi) = \g{iE\)\ which can be easily estimated. From 

, " ^-Tr,-iq(-E?) 

L r̂5^ !̂ 
~eu> 

p̂ ĵ 
Rew 

-iQ(E2) 

FIG. 8. The curve in (b) is a schematic drawing of the experi
mental data of w(z) = —i g(E). The domain D in (a) is mapped 
onto the strip S in (b) by w(z). 

18 Preliminary calculation of Reg(E) and Img(E) based on the 
available experimental data has been carried out by E. Paschos. 

(78) and (79) we therefore obtain 

Img(£ 2 )>2 Reg(£2)[ ( l /7r ) ln(E 2 /E 1 ) -4]+^ 2 (x 1 ) , (80) 

where u2(xi) may be ignored for large E2. This in
equality would be most useful if the data are such that 
Re/(22) is negative but approaches zero at high energies. 
Then beyond certain energy Reg(E) does not decrease 
rapidly. 

The inequality (80) can be somewhat improved if we 
use instead of (28) the more accurate formula 

"X2 dx 4 
In2 

6(x) T 
ui(x2) — u2(x1)>a\ / 

+M,-,BK-'/."li)]l(81) 

due to Teichmuller.19 In the case where E2/E{S>\ this 
formula gives us the inequality 

r l E2-SEi 4 I 
Img(£ 2 )>2 Rtg(E2)\ - In ln2 , (82) 

LT Ei x J 
where u2(xi) is ignored. 

We also note that, if Reg(E) is not monotonic, we 
have only to replace in the above argument the quantity 
Reg(E2) by the smallest value of Reg(E) in the interval 
Ei<E<E2. 

We can obtain another useful inequality by switching 
the definition of z and w in (77). Namely we put 

z=-ig(E), w (z) = In (E/n) -iir/2. (83) 

The domain D is now of the form indicated in Fig. 9(a). 
The function w(z) maps D into a strip S of width w in 
the w plane, shown in Fig. 9(b). In applying (28) we 
note that x2=Img(E2), xi=Img(Ei), and a=w. Thus 
we obtain 

UI(X2) — U2(XI)>TT\ U, img(Ei) 8(x) 
(84) 

If we choose £i(>/x) close enough to n, we find that 
M2(xi) = ln(Ei/fi). We also have 

ui(x2)<ln(E2/fi). (85) 

Thus, choosing Ei=n, we obtain from (84) and (85) the 

| * i 

-9(x) 

Row 

u 
FIG. 9. The curve in (a) is the same as the curve in Fig. 8(b). The 

domain D in (a) is mapped onto the strip 5 in (b) by w(z). 
19 See Ref. 15, p. 100. 



F O R W A R D S C A T T E R I N G A M P L I T U D E B717 

inequality 

ln(£2 /M)>H / 4 • <86) 
Uo e(x) J 

Here 6(x) is given by the data and is equal to 2 Reg(Ex). 
Again Teichmuller's inequality (81) improves (86) by 
allowing us to replace 4 inside the bracket of (86) by 
(4A)ln2. 

It is clear that (86) can be violated if the total cross 
section at high energies behaves roughly like a constant 
and if at the same time Re/(£) remains negative and 
large. For in such a case Img(E2) will grow as ln£2 and 
6(x) will be a decreasing function of x. 

As was mentioned in the Introduction, it is not easy 
to decide at present which one of the inequalities (80), 
(86), or others proposed earlier3*20 is the most useful 
since it will depend on the detailed features of the data 
over the energy range Ei<E<E%. Here we shall simply 
point out that (80) and (86) are complementary in the 
sense that while (80) gives an upper bound for Reg(E) 
[assuming that Img(E) is known], (86) gives essentially 
a lower bound for Reg(E). 
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APPENDIX A: REMARKS ON MEIMAN'S 
THEOREMS 

In Ref. 2 we studied the high-energy behavior of the 
forward scattering amplitude making use of the 
theorems derived by Meiman.21 In the proofs of these 
theorems given by him and also in the Appendix of 
Ref. 2, a strong, though not unreasonable, assumption 
was made concerning the absence of violent oscillations 
in the amplitude at large energies. (See, for example, 
footnote 23 of Ref. 2.) As one can see from theorem 1 
of the present paper, however, such an assumption is 
actually not necessary to prove that only two sub
tractions are needed in the forward dispersion relation. 
Other results of this paper also show that major con
clusions of Ref. 2 can be derived without using this 
assumption. 

To see how much of these results can in fact be ob
tained within the framework of Ref. 2, it is sufficient to 
replace Meiman's theorem by theorem A given below. 
This theorem is weaker than Meiman's theorem but 
holds even if the scattering amplitude has violent 
oscillations. We shall first discuss theorem A and then 
state more precisely what we mean by "violent 
oscillation." 

We consider a function 4>{E) which is regular and 
20 A. Martin, Phys. Letters 15, 76 (1965). 
21 N. N. Meiman, Zh. Eksperim. i Teor. Fiz. 43, 2277 (1962) 

[English transl.: Soviet Phys.—JETP 16, 1609 (1963)]. 

bounded by a polynomial of E in the region ImE>0 of 
the complex E plane. On the real axis it is assumed to 
be continuous and have the symmetry property 

<t>(-E+i0)=4>*(E+i0). (Al) 

Furthermore we assume 

lim <KE+iO) = 0. (A2) 
JB-H-oo 

Thus <j>(E) maps ImE>0 into a domain of the <£ plane, 
a neighborhood of E= <*> being mapped into a neighbor
hood of <£=0, which is perhaps many-sheeted. The 
upper edges of the semireal axes (0, — oo) and (0, + °°) 
are mapped onto the curves Ti and T2 symmetrically 
located with respect to the real 0 axis. We shall assume 
that there exists some real large EQ such that, for 
E>Eo, Ti and T2 have no common point except the 
point <f>=Q. We further assume that for all E>EQ 

| Im0(£)/Re0(£)|>tanxa, 0 < a < § . (A3) 

Then, without any further restrictions on Ti and T2, we 
obtain: 

Theorem A. If the function <f>(E) has the properties 
described above, we can find a sequence of real intervals 
11, 72, • • *, In, • • • such that 

\<t>(En)\<C(E0/En)« (A4) 

holds for £ n £ / n , n= 1, 2, • • •, where C is independent 
of En and En —»oo asw —+00. 

The proof of this theorem follows closely that of 
theorem I in the Appendix of Ref. 2. It shows that, 
given any real interval (EQ,E), there is an £' , EQ<E'<E 
such that the inequality 

\4>{E')\<C'{E»/Efy (A5) 

holds. Obviously we can choose as E' the point at which 
\4>(x)\ takes its least value in the interval E0<x<iE. 
E* thus denned is a (discontinuous) function of E which 
increases indefinitely to <*> as E—>°o because of the 
property (A2) of the function <£(£). Since <£(£) is 
continuous in E for real E, the inequality (AS) can be 
satisfied in a small neighborhood of E' if we choose a 
somewhat larger C . This completes the proof of 
theorem A. 

We note that the power of E0/En in (A4) is improved 
by a factor of 2 compared with Ref. 2. This is obtained 
by using a better estimate of the harmonic measure due 
to Hersch7 according to which the formula (A6) of 
Ref. 2 can be replaced by the stronger inequality 

f*2 ds FT ~] 
/ > - In tan - (1 - mw) . (A6) 

Jn p(s) L.4 J 

In order to make (A4) hold for all E>E0 as in 
Meiman's theorem, it is necessary to impose some 
restrictions on the boundary curves Ti and T2, or, in 
other words, to exclude certain types of violent oscil-
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lations of <f>(E) for large E. For instance we may require 
that, for a sufficiently large constant C, <f>(E) satisfies 
the "smoothness" condition 

max^n<£<^n+1(0(£)/^(En+1)| < C (A7) 

for any n>no>0, where E\y E2, ••*, En, • • • is the 
sequence for which (A4) holds. Then we obtain from 
(A4) and (A7) the relation 

k ( £ ) I ^CC'iEo/E^yKCC'iEo/E)*. (A8) 

This shows that Meiman's theorem is valid even if the 
boundary curves Ti and T% oscillate as far as the oscil
lation is mild in the sense of (A7). 

If the oscillation is not so mild, we may no longer 
assume (A7). However, we may still obtain a useful 
upper bound on <p(E) if we can replace C in (A7) by 
some known function of E. For example, if 

mdXBn<B<BnME)/<t>(E»±i) I <C'(ln£«;K p>0, (A9) 

holds for all n>m, we obtain 

\<t>(E) I <CC'(£0/£)a(ln£)*\ (A10) 

A condition like (A9) may be a reasonable one to make 
in the case where the Froissart bound is assumed to hold 
as in Sec. II of Ref. 2. However, for Sec. I l l of Ref. 2 
where only the Greenberg-Low bound was assumed, 
(A9) may have to be replaced by an even weaker one. 
Of course, theorem 1 of the present paper does not make 
use of any extra assumptions like (A7) and (A9). 

It is worthwhile to emphasize again that some of the 
results of Sec. II of Ref. 2 follow from theorem A and 
the inequality (A4) alone. This is because they are 
proved essentially by producing contradictions, and 
having (A4) on a sequence of points is enough to pro
duce such contradictions. 

APPENDIX B: REMARK ON THE 
GREENBERG-LOW BOUND 

We should like to give here an alternative proof of 
theorem 1 on the improvement of the Greenberg-Low 
bound making use of the techniques of univalent func
tions. We assume that f(E) satisfies conditions (i)-(v) 
of Sec. II. We also assume for the moment that the 
dispersion relation for f(E) does actually require three 
subtractions and that it diverges with two subtractions. 
We thus write 

2£4 r" dE'Imf(E') 

It is easily seen from (Bl) that the function H(E) 
defined by 

H(E)^U(E)-f(0)-if''(0)&l/I? (B2) 

is a Herglotz function. 

We now consider the function 

G i ( E ) = f H(E')dE'. 
Jo 

(B3) 

This function has a property very similar to that of 
gi(E) defined by (63). It is univalent in the upper-half 
E plane and theorems 7 and 8 apply to it just as well 
as to gi(E). Under our assumption about the necessity 
for three subtractions fE lmf(Ef)E'-HEf diverges as 
E—> 00. If we now make the assumption made in 
theorem 1, namely, that for real E>Eo 

| Im/(£)/Re/(E)|>tan7ra, 0 < a < § , (B4) 

then we get a contradiction as in theorem 1. In order 
to see how this contradiction comes about, we first note 
that if f* Im/CE')£' ~zdE' diverges as E ->+ 00, (B4) 
leads us to 

tanx (a- J) < ReGi {E)/lmGx (£) < tanTr (§ - a) (B5) 

for E2>EQ. We can now apply theorem 7 and obtain for 
large enough E 

\Gi(E) I >C(E/E*y+^*-» = C(E/E«y«. (B6) 

This will contradict the Greenberg-Low bound if a>0, 
since the latter requires that 

|Gi(£)|<C(ln£)3 . (B7) 

Thus f* Imf{E')E' -*dE' cannot diverge as E -> + 00 
if a>0. We then find from (B4) that 

fE\Ref(E')\E'-*dE' 

cannot diverge too. This proves theorem 1. 
By an argument similar to that of theorem 9, it may 

be possible to show further that the Greenberg-Low 
bound can be satisfied only if 

ImdiEyi-ReGtiE^KC/lnE (B8) 

for almost all real E greater than some E\, where C is a 
certain positive number. 

APPENDIX C: LEMMAS ON g(E) AND g^E) 

We shall first prove several lemmas on g(E) making 
use of the formulas 

1 rM Im/CE') 
Reg(£)=- / dE' In 

T J, £'2 

"B Im/(E') 

E'+E 
(CI) 

E"z \E'—E\ 

CE Im/(E') 
Img(£ )= / dE' , (C2) 

JM E'2 

2 r00 Im/CEO /E\ 
Img(*£)=- / dE tan-1! — ), (C3) 

w Jp E'2 VEV 

for real positive E7 which can be derived easily from 
the formulas (11) and (13). 
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Lemma 1. For any given real positive X, there exists Similarly, we have 
a real positive E\ such that „ , _ . „ ,„. , .._. 

H Reg(£)+Img(£)-Img(i£) 
Img(£x) = Imf(iX)=(l/i)g(iX) (C4) Im/(£') ( 2 

Proof. Consider the integral J„ 

img^x; = img^A;=(.i/vg^A; ^ * ; B imf(E>\, 2 /E\] 
holds. > / dE'—l—— 1 — t a n - i f - ) 

Proof. Consider the integral Ja E'% I IT YEV J 

Intf*)-/^ ^ - ^ - t a n - ^ - ) . (C5) +-JE
 dE-^-\^E-2 tan \i;j|' (C11) 

TVT .• ^ . r /vrvx • •.• J /o/ \ x. _ ,A /T7/\ where the right-hand side is again positive because of 
Noting that Im/(E') is positive and (2/T) tan l(X/E') ,~gv 0 -p -^ & ir
is positive and less than one for all E' in the interval ^ J ' ;i '. ' . . z ^ j r J L / U \ U t 
, v . N , ^ . For the function gi(E) defined by (16), we have for 
fo+oo), we obtain positive real E 

/ dE~~V, t a n V W < / dE~^~* (C6) Regl(£)=-/ J E ' - ^ - A n — , (C12) 

Since the function CE Im/(E') 
I m g l ( E ) = / dE' — , (C13) 

r* Imf(E') J" E' 
/ dEf~W~ 1 f°° Im/(E') E 2+£' 2 

^ * gl(iE) = — dE1 In . (C14) 
. . , . „ . 7riM E' E'2 

is continuous, positive, and monotomcally increasing 
for /x<E <+oo , we can find a positive real Ex such Obviously, Imgi(E) is positive and monotonically in-
that fi<E\< + oo and creasing, and gi{iE) is real, negative, and monotonically decreasing as E increases. From the inequality 

/ dE t an- 1 — = / dE' - — . (C7) \fE I m / (E ' ) f E2 E'2l 
J, E'2 T \E'J J, E'2 Regl(E)>- / dE1—— In + m — 

TJU E' I E 2 - ^ 2 E2) 

It foUows from Lemma 1 that, if Jmg(i\) -» + <*> as >- T dE'^^—^ln— (CIS) 
-> + °°, Img(Ex) must necessarily go to infinity, too. T J jg E ' 

Lemma 2. For any real positive E, we have the w e 0 D t a m 

inecluality Refl(£)> ~ l n f - W x ( £ ) . (C16) 
| Img(*£)-Img(£) |<Reg(£) . (C8) x V/i/ 

Noting that 
Proof. Our proof is based on the inequality ~ /r-\i /-p\ 

l n ^ > 2 t a n v n for ,>y>0) (C9) J_fdEwwXri__IL 
* - y w w„ £' \E'*-. \E"-E*\ 

(C17) 

which can be easily obtained by expanding both sides we can also derive the inequality 
in power series in y/x. Now, from (CI), (C2), and (C3) 
WC ° b t a i n Regi (E)+- ln(^) lm^(E)> \gl(iE)\ (C18) 
Reg(E)+Img(iE)-Img(E) T W 

1 fE Im/(E') f E+E' /E\ ) b y a m e t h o d s i m i l a r t 0 (C15)-
> ~ J dE' E,2 | l n ^ Z ^ + 2 ^ \ W J Lemma 3. For any real positive E, Reg(E) is bounded 

M from above as follows: 

= 1 f , £ ^ ( l n ^ _ 2 t a n - ^ \ l ( C 1 0 ) Kei(E)<Cl(E)E\g>m\, (C19) 
7T JM E/2 I E—E' \ E / J where Ci(E) is finite for all E except possibly for those 

corresponding to very high and narrow peaks of 
where the last term is positive according to (C9). Tm/(E)/M 
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Proof, For O<0<7r, RegiEe*) can be expressed as 

\E'+Eeid\ 
Reg(Eeid)-- •V 

» I m / ( £ ' ) 
dE'— -In 

E'-Eeie 

as is seen from (15). Using the expansion 

In 
E'+Ee* 

E'-Ee* = E 
oo 1 flEE' cos0\2n+1 

/LEE' cos0\z 

1 \ E?+E'2 ) n=o2w+l \ E?+E'2 

(C20) 

(C21) 

which is convergent for O<0<7r, we may put (C20) in 
the form 

1 
R e g ( £ ^ ) = Z a2n+i(E)(cos6yn+\ (C22) 

where 
«=o 2n+1 

i r 
am(E) = - / dE'-

7T J a 

I m / ( E ' ) / 2 £ £ ' 

£ ' 2 XJP+E'* 
(C23) 

Since Imf(E') is positive, am(E) are all positive and 
decrease monotonically as m increases. Thus the series 
(C22) converges for all values of cos0 in the range 
—1< cos0<l . Furthermore, even at cos0=dbl, the 
series may converge if am(E) decreases sufficiently 
rapidly as m increases. To find out how rapidly am(E) 
decreases, let us examine the difference 

a2n+i(E) — a2n+z{E) 
i r 

= - I dE' 
w J n 

Imf(E') 

E'2 

K 2EE' \ 2 n + 1 / 2EEr \2»+3l 
) - ( ) • (C24) 

&+EV \E?+E'2J J \E?+E'V \E?+E'2J 

Making use of the obvious inequality 

xm-xm+2>k2xn for k2<\-x2<\, 

> 0 for 0 < l - x 2 < £ 2 
(C25) 

where k is a positive constant less than 1, we see that 
the integral in (C24) is bounded from below by 

k2 r lmf(Ef)/ 2EE' \2n+1 
& f 

IT J u 

dE 
E'2 \E2+E'2J 

k2 r 

7T J E 

E+ Imf(E')/ 2EEf 
k2n+l 

dE 
E'2 XEt+E'2) 

where 

E±=E -
/lztk^i2 

\1=F£/ 

(C26) 

(C27) 

Thus, we obtain a positive lower bound for a2n+iCE) 
— a2n+z(E) if we can make the second integral definitely 

smaller than the first one by a proper choice of k. For 
this purpose we note that, if &2=2/(2w+3), the factor 
[2EEf/(E?+E/2)Jn+1 in the second integral of (C26) 
varies gradually from 1 at E—E1 to 

\E?+E±
2/ \ 2n+lJ 

-<2n+l)/2 

(C28) 

at £ ' = £ ± . More generally, for k2= l/(qn) where q is a 
positive constant, e~l in (C28) is replaced by e~~1/q. 
From (C27) we also obtain 

£ + - £ _ 1 
~ — . (C29) 

2E qn 

Suppose that we have chosen E that does not corre
spond to the maxima of Imf(E)/E2. Then, for fixed 
# (>1) , we can always find a finite positive integer 
no=no(E) such that the average value of Imf(E)/E2 in 
the interval (E—E/qno, E+E/qno) is of the same order 
of magnitude as the average value of Imf(E)/E? in the 
interval (E—E/n^ E+E/no). For such a choice of ^0, 
we find that the second integral of (C26) for n>no is 
smaller than the first one by a factor of order l/q. 
Even when E is at the maximum of Imf(E)/E2

y we 
can find a finite no insofar as the width of this peak is 
not infinitesimally small. In all these cases we can obtain 
from (C24) and (C26) the inequality 

a2n+z{E)<a2n+i(E) 04) (C30) 

for n>fio, where C is a positive constant independent 
of w ( 0 < C < f ~ 1 < l ) . This leads us to 

a2n+i(E) a 
— < — , n=n0, tto+1, • • • , (C31) 

02no+i(£) n° 

where C" is another positive constant. From (C22), 
(C31), and the fact that a2n+i(E) decreases mono
tonically for increasing n, we obtain 

lim | Reg(£e*) | < C i ( £ ) a i ( £ ) , (C32) 

where 
n o - l 1 

Ci(2?)= E 
i a 

n=0 2ft+1 n~nQ 2fl+ 1 flC 
(C33) 

Obviously C\(E) is finite if n0 is finite. According to the 
above argument this means that C\(E) is finite for all 
E except possibly for those corresponding to very high 
peaks of Imf(E)/E2 with infinitesimally narrow widths. 
Noting that <n(E) = E\g'(iE)\, we obtain (C19). 
Q. E. D. 


