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The cross section e++e~~ —> W++W~ -> fj^+Vp+e'+Ve in which er and /i+ are detected in coincidence in 
the colliding-beam experiment is computed with the mass, magnetic moment, and leptonic mode branching 
ratio of the W boson as parameters. The kinematical correlations necessary for the identification and mass 
determination of the W meson are discussed. Numerical examples show that the energy-angle correlations 
of the final e and n are very sensitive to the W mass. The analytical expression for the cross section was ob­
tained by an electronic computer. The characteristics of dynamical correlations were investigated by nu­
merical examples of angular distributions of e~ and ju+ for different values of magnetic moment of W. It was 
found that the rate of increase of cross section with respect to the relative angle between the final electron 
and muon is the most sensitive dynamical correlation needed for the determination of the W magnetic 
moment. We ignore the possibility that W may have form factors and an anomalous quadrupole moment. 
Symmetries in the differential cross section are discussed. Because of one-photon exchange, the differential 
cross section e~~ and /i+ must be symmetric with respect to the plane perpendicular to the incident beam. 
Because of time-reversal invariance, the differential cross section for n+ must be symmetric with respect to 
the plane formed by the incident beam and the final electron. Similarly the differential cross section for e~ 
must be symmetric with respect to the plane formed by the incident beam and the ju+- I t is also shown that 
the charge-conjugate decay mode e++e~—* W+-j-W~ —* ff~-\-Pp-\-e+-\-v9 can be obtained from our result 
by simply putting fx+ —* yT and e~ —* e+ in the final state if one considers only the lowest order process. I t 
is pointed out that the techniques used in this paper can be employed to calculate many other processes in 
which two unstable particles are produced. 

I. INTRODUCTION 

WITH the success of the Stanford electron-electron 
colliding-beam project1 and the building of elec­

tron-positron colliding-beam machines2 at various places 
in the world, it may be useful to consider again the pro­
duction of weak vector bosons which have so far escaped 
detection.3 The cross section e+-\-e~—» W++W~ via 
the one-photon intermediate state has been calculated 
by Cabibbo and Gatto.4 In this paper we would like 
to consider the particular decay modes 

e++e~- w++w- (1.1) 
\ 

in which e~ and JJ+ are detected in coincidence. The 
particular W decay modes given above have the mini-

* Work supported by the U. S. Atomic Energy Commission. 
t Supported in part by the U. S. Air Force through the Air 

Force Office of Scientific Research Contract No. AF 49(638)-1389. 
Computer time was supported by National Science Foundation 
Grant No. NSF-GP948. 

1 C. Barber, B. Gittelman, G. K. O'Neill, and B. Richter, High 
Energy Physics Laboratory, Stanford University, Stanford, 
California. 

2 Stanford, California, U.S.A.; Orsay, France; Frascati, Italy; 
Norvosibirk, Russia. 

* See, for example, G. Bernardini, in Proceedings of the 12th 
Annual International Conference on High Energy Physics, Dubna, 
1964 (Atomizdat, Moscow, 1965). 

4 N . Cabibbo and R. Gatto, Phys. Rev. 124, 1577 (1961). See 
also H. Oberall, Nucl. Phys. 58, 625 (1964). These two papers also 
treated the effects caused by the polarization of one of the W's 
produced. Our paper treats the effects caused by the correlation 
of the polarization of two W bosons. 

mum background problem. Other decay modes of W, 
such as 7T7T, p7r, O)T, etc., are extremely interesting from 
general weak interaction theory5 and can be incorporated 
into our calculation easily. However, there are so many 
ways W can decay into pions that even if w's are de­
tected, it would be much harder to interpret the result, 
aside from the fact that many more pions are produced 
directly via e++e~ —•> y —+ multiple w's. 

Since e~ and /*+ are to be detected in coincidence, they 
are correlated both kinematically and dynamically. The 
kinematical correlations are given by Eqs. (2.20)-(2.28) 
which give the constraints among the final electron 
energy, the muon energy and their relative angle. These 
kinematical constraints are sensitive functions of mass 
of W, and hence they must be used to determine the 
mass of W. There are two other unknown parameters6 

5 H. S. Mani and J. C. Nearing, Phys. Rev. 135, B1009 (1964). 
6 In this paper we adopt the convention of T. D. Lee and C. N. 

Yang, Phys. Rev. 128,885 (1962) in which the W has no anomalous 
quadrupole moment and no electromagnetic form factors. We 
could have included these effects into our formulation easily by 
a computer. I t would just make the expression for C more compli­
cated. According to the usual arguments, W cannot have form 
factors because it does not interact strongly. But it is evident from 
discussion in Sec. IV that there must be some mechanism of damp­
ing at high energies in order to preserve unitarity. Probably every 
particle has some finite intrinsic extension such that its mass and 
charge renormalization constants are finite and the cross section, 
such as discussed in Sec. IV, preserves unitarity at high energies. 
After all, it is very hard to believe that any particle can be truly 
a geometrical point in which all its mass, electric charge, magnetic 
moment, weak charge, etc., are located. In this sense, the measure­
ment of the electromagnetic form factors of the W boson is as 
fundamental as the measurement of electromagnetic form factors 
of electrons and muons. 
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FIG. 1. Feynman diagram for the process 

besides mass in our calculation, namely the branching 
ratio R=T(W~>e+v)/Ttot and the magnetic moment 
(l+k)eh/2Wc. The expression for our differential cross 
section is proportional to R2 and hence the relative 
angular distribution depends only upon k, after the W 
mass is determined from the kinematics. Once the mag­
netic moment is determined from the angular distribu­
tion, the branching ratio R can be determined by the 
magnitude of the cross section, without even measuring 
other decay modes of W directly. The angular distribu­
tion depends upon the dynamical correlation. This 
correlation arises from the fact that the two W's pro­
duced are polarized and the polarization of each is cor­
related with the other, and that the angular distribu­
tion of leptons from the polarized W is different from 
that of an unpolarized W. The polarization state of two 
correlated vector particles can be described in general 
by a 9X9 Hermitian density matrix. In a covariant 
description this density matrix is represented by a rank-
4 tensor, each vector index satisfying the usual subsidi­
ary condition for the relativistic polarization vector of 
a particle. The possibility of such a representation comes 
from the requirement that the fourth component of the 
polarization vector vanishes in the rest frame of the 
particle. This covariant density matrix is obtained in 
Sec. 2 and its properties are given there. The analytical 
expression for the matrix element squared (C) was ob­
tained by a computer.7 

7 The computer can take traces of the y matrices, contract 
tenspr indices, use kinematics to reduce the expression in terms of 
a minimum number of invariants, re-express invariants in terms 
of quantities like (E, P, cos0), rearrange the whole expression in 
a dictionary form such as descending powers of each variable, and 
set the mass of the electron m equal to zero, etc. Actually the 
expression for C was obtained directly from the Feynman diagram 
without using any of the intermediate expressions given in Eqs. 
(2.30), (2.32), (2.33), and (2.35). However, the computer was used 
to check all of these intermediate expressions. It was found in addi­
tion that computation time could be saved if these intermedi­
ate expressions were actually used, because symmetry properties 
such as gauge invariance, subsidiary conditions for polarization 
vectors, symmetries under exchange of certain tensor indices, 
etc., were employed to simplify these expressions, whereas the 
computer did not use these properties in the intermediate stages. 
The computer program used to obtain C was constructed by the 
second named author, A.C.H. The analytical expression for C is 
available from the authors upon request. 

In Sec. I l l we discuss symmetries in the cross 
sections. In Sec. IV the differential cross section 
e++e~ —> W++W~ is discussed. In Sec. V the energies 
of the electron and muon are integrated and the charac­
teristics of their angular distributions are investigated 
for an arbitrary set of parameters with the mass of the 
boson W=2 BeV, incident electron energy E—3 BeV, 
magnetic moment &= —2, 0, 2, branching ratio 
R=0.25. We found that the cross section increases 
rapidly as we increase the relative angle #57 between the 
final electron and muon. The rate of increase from 30° 
to 150° is approximately 1 to 10 for k= — 2, 1 to 30 for 
k=0, and 1 to 15 for k=2. Thus the different rates of 
increase in the differential cross section with respect to 
the relative angle between the final e~ and ju+ are the 
most sensitive dynamical correlation for determining 
k. Of course the over-all rate is also a very sensitive 
function of k, but we think it should be reserved to 
determine the branching ratio R unless R can be found 
by some other means. In Sec. VI we discuss some general 
aspects of our calculation and make some additional 
remarks relevant to the planning of the experiment. 

We have tried to write this paper in such a way that 
all the results can be used readily by the experimenters. 
Thus many trivial details are also included whenever 
we think they are useful. 

H. CALCULATIONS 

All the desired information including kinematical 
and dynamical correlations of the problem under con­
sideration can be obtained by computing the Feynman 
diagram shown in Fig. 1, provided one replaces the 
square of each denominator of the W boson propagator 
which occurs in the square of the matrix element by a 
8 function 

\pw*-W2\-2^Trb(prf--W2)/YW, (2.1) 

where W, T and pw are the mass, the total width, and 
the four-momentum of the vector boson. This replace­
ment is allowed if W^>T. Denoting the branching ratio 
of the mode W~ —> e~+ v as R and the Fermi constant 
as G, we have8 

T = r(W-~> e~+ P)/R=gW/6TR=GW3/6^l7rR 

= 1.02X 10rW3/6^2wRMp
2, 

where Mv is the mass of proton and g is the coupling 
constant between W and the leptonic current. From the 
last relation one can obtain criteria under which the 
replacement (2.1) is allowed. For example, for W— 2MP 

and £ = 0 . 2 5 we have r=1 .14X10~ 2 MeV (correspond­
ing to mean life 5X10~20 sec) which is much less than 
W and thus (2.1) is justified. On the other hand, if 
W=100MP and J?=0.001, we can no longer use (2.1), 
but under such circumstances the experiment is un­
feasible, at least for the foreseeable future. 

8 T . D. Lee and C. N. Yang, Phys. Rev. 119, 1410 (1960). 
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We shall try to formulate our presentation in such a 
way that those who intend to design the experiment can 
make maximum use of it. The kinematical correlations 
which are important for the mass determination are 
presented in detail. We shall see that for each choice of 
final electron and muon momenta, there correspond two 
production angles of W's. 

The notations used in this paper are as follows. The 
four-momenta of particles are denoted by pi=initial 
electron, p2=z initial positron, pz=W~~ boson, pt=W+ 

boson, £5= final electron, pQ= ve neutrino, £7=muon, 
and ps— *v neutrino. The masses of the electron, muon, 
and W boson are denoted by tn, n, and W, respectively. 
Ei and i \ represent the energy and momentum of the 
ith particle; the exception is £1=J32=Ez— E*=E. 0# 
is the angle between Pi and Py. 06, <P* and <pn are defined 
in Figs. 2(a) and 2(b). The coupling constants are 
defined as e2/47r=<* and g2/W2=G/v2, where G=1.02 
X10~5/JJfp2. The metric used is such that (pz-pi) 
= EEr-PzP1 cos037. 

We adopt the quantum electrodynamics of vector 
bosons8 by Lee and Yang in which W has an arbitrary 
magnetic moment 911= (l+k)(e/2W)S, the quadrupole 
moment is not arbitrary but is given by Q=— ek/W2. 

For convenience of discussion and computation we 
write the differential cross section in the following way9: 

Ar =(4*)* / 
d?P5d?Ps<FP7d*Ps 

2E& 2E§ 2E7 2E$ 

1 1 TT2 eV 
X- ^(Pi+pi-pi-pt-p^ps) 

(2*-)12 4 T W (2EY 

X6{(pl+ptf-W)6((p7+pa)*--W*)128C=ABC; 

A is a numerical factor and is given by 

A=-
c??16 9c?R* 

(27r)4rW2(2E)« 4(2TT)W4£« 

R is the branching ratio 

Rssr(W--*er+p)/r=giW/r6*-, 

(2.2) 

(2.3) 

(2.4) 

and C is essentially the matrix-element squared with 
propagators and coupling constants taken out and will 
be defined in Eq. (2.29). 

Kinematical Correlations 

B represents the phase space and contains all the 
information about kinematical correlations which are 

8 The factor 128 = 8X4X4 [in Eq. (2.2)] comes from the 
numerical factors in the definitions of C, F, X in Eqs. (2.29), 
(2.32), (2.33). 

FIG. 2. The coordi­
nate system chosen 
to define 067, 06, <pt, fas 
and <pi. 

y (a) 

~y (W 

important in the verification of the existence of W and 
the determination of its mass. 

r fflP* rd?P7 r<PP6 r< 

~~ J 2E,J 2E7 J 2EeJ 

d?Pb fd?P7 r d*P* C&Pz 

2E8 

Xd*(pl+p2— ph— p6— p7— p8) 

xd((ps+ps)2-w2)d«p7+psy-w*) 
(2.5) 

= lP&dEbP7dE7dQf4tt7 j dveddpi+pz-ps-ps-pi)2) 
Jo 

X f dE£((pi+p2-pt-ps)2-W2) 
Jo 

X I d(PG cos06)5((/>5+£6)
2- W2). 

Using the coordinate system shown in Fig. 2, the inte­
grations can be performed by using the 5 functions. 

/ : 

1 
d(Ptcosdt)8((pt+pt)2-Wi)=— if cos06<l, 

2pt (2.6) 

where 

= 0 otherwise, 

W-2Et(fi-Et) 
c o s 0 e = — - — ; : =cos(ir— 06e), (2.7) 

2 £ 6 ( J E - £ 6 ) 

f 1 
/ dEtfidpx+pt-ps-ptY-W^— if E>Eb 

Jo 4£ (2.8) 

= 0 otherwise. 
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The integration with respect to <p% is slightly more comp­
licated because the argument of the 5 function vanishes 
at two points in the range of integration. The matrix 
element squared C depends upon <p§ as well as other 
variables. For the moment we will write C=C((ft) and 
evaluate 

Jo 
d<psC(<pe)d((pi+p2—pb—pfi-piy) 

•f 
Jo 

C(<ps)5(a—b cos(po)d<pQ 

C(<p6)+C(-<ps) 
if |cos^6 | = | a / 6 | < l , 

(2.9) 

(&2__a2)l/2 

= 0 otherwise, 

where 

a = P P + M 2 _ 2EE7+p1Efr
1 (W2- 2EEs) cos067, (2.10) 

and 
b=Wp7Efr1i4Es(E-E&)- W2J/2 sin057. (2.11) 

We choose 

For convenience of discussion let us write 

cos035= (EEh-W
2)/Ef>P* (2-13) 

and 
COS047=C^7- i (^+M 2 ) ] / ^7 i ? 4 . (2.14) 

These two equations can be obtained trivially from 

(pt-p*Y=pt~0 and (p4-p7y=p8
2=0. 

In terms of 035 and 047 we may write a and b in Eqs. 
(2.10) and (2.11) as 

a = - 2P4P7(cos047+cos035 cos057) (2.15) 

b = IPAPI sin035 sin057. (2.16) 

The two values of <pe allowed for each choice of P 6 and 
P7 correspond to two production angles for the W pair. 
To see this we write 

x±^ - P r P 3 ± / £ = - Pi- ( P , + P « ± ) / £ 

= — Eb cos0i5— (£— Eb) cos0ie±, (2.17) 
where 

cos0i6±== — cos0i5 cos06+sin0i5 sin06 cos^6 cos<p7 

ztsin0i5 sin0e sin<p6 sin(p7. 

?r> <P6>0. (2.12) 

(2.18) 

In summary the desired cross section can be written 
in the form 

d<r 9rimi&[C{x+)+C{x-)'] 

dEaiE*Kld$h 512(25r)W4£7P4[cos(047+035)+2 cos036 cos047 cos067+cos067]1/!! 
(2.19) 

where C(x+) and C(#_) correspond to C(ip%) and 
C(— <po), respectively, in Eq. (2.9). 

The allowed range of E&, E7, d£l$, and d£l7 of the cross 
section can be obtained from the inequalities in Eqs. 
(2.6), (2.8), and (2.9). From Eqs. (2.6) and (2.8) we 
obtain 

UE+P,)>E5>UE-Pi) (2.20) 
and 

i(E+P4)+n2(E-P4)/2W2>E7>UE-P*) 
+S(E+P4)/2W2. (2.21) 

These two inequalities give the energy ranges of the 
electrons and muons if they are not detected in coinci­
dence. The kinematical constraints due to coincidence 
are imposed by Eq. (2.9) which can be written as 

COS(047+035) + 2 COS035 COS047 COS067+COS2057>O. (2.22) 

From Eqs. (2.13) and (2.14), we see that 035 and 047 

are related to energy of the electron Z25 and of the muon 
E7i respectively. Thus Eq. (2.22) gives the range of 
one of the variables (Z£5,Z£7,057) when the other two are 
fixed. The three situations are described below. 

1. For a given £ 5 and E7, which necessarily must 
satisfy Eqs. (2.20) and (2.21), the range of 057 is given by 

\CQSufr7) max,min. = = — cos047 cos036±sin047 sin035 (2.23) 

(where + goes with max and — with min), or 

| T T - (035+047)| <057<7T- I 047~035| . (2.24) 

2. For given £5 and 057, the range of 047 is given by 

(cos047)max,mm= — cos035 cos057±sin035 sin057. (2.25) 

E7 max,min can be obtained by letting (cos047) 
= cos047 in the following expression: 

max, mm 

E 7 = 
E(W2+fi2)+P4 C O S 0 4 7 ( ( I F 2 - M

2 ) 2 - 4 M 2 P 4 2 sin2047>1/2 

2CE2-P4
2cos2047) 

(2.26) 

3. Similarly, for a given E? and 057, the range of 035 C&Omax.min can be obtained by letting (cos035) 
is given by = cos035 in the following expression: 

(cos035) /max,mm" 
: — cos047 cos057±sin047 sin057. (2.27) E 5 =IF 2 / 2 (£ -P 4 cos035) . 

max,mm 

(2.28) 
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The relations (2.23)-(2.28) can also be obtained by 
drawing pictures. Suppose the electron with energy Z£5 
is moving along the —2 direction. From Eq. (2.13), the 
W~ meson (P3) must be on a cone around JP5 with angle 
035 given by (2.13). Let us invert this cone and call it 
cone CL3 as shown in Fig. 3. Let the muon momentum 
P7 be on the xz plane and draw a similar cone for W+ 

meson from Eq. (2.14) and call it C4 as shown in Fig. 3. 
In order that Pg and P7 be detected in coincidence, P% 
and PA must come back to back, which means that the 
two cones CL3 and C4 must intersect. In general there 
are two lines of intersection between the two cones 
CL3 and C4, which correspond to two angles of produc­
tion for W+ for each set of P5 and P7} as mentioned 
previously. From the picture it is obvious that the condi­
tion for the intersection of the two cones is given by 
Eq. (2.24) and two other relations obtained by permu­
tations 057 <-> 035 and 057 <-» 047, respectively. 

To illustrate how sensitive these kinematical correla­
tions are to the W mass, we give the following example. 

Numerical Example (Determination of W Mass) 

Suppose E = 3 BeV, W= 1.5 BeV or 2.0 BeV, £5= 1 
BeV, and 057=71— %w. From Eq. (2.13) we obtain 

035=43.8° for W =1.5 BeV 
= 63.6° for TF=2.0BeV. 

From Eq. (2.25), 

[COSUi'j) max, m in = 

(0.96,0.24) for TF=1.5BeV, 

and 

(cos047)max,min= (0.834,0.060) for W= 2.0 BeV. 

Therefore, 

(£7)max,mm= (2.96,0.49) BeV for PF=1.5BeV, 

and 

(£7)max,min= (1.76,0.552) BeV for W=2.0BeV. 
From this example we can see that the mass of W can 

be determined easily from kinematics alone. 

Dynamical Correlations 

The function C represents the matrix elements squared 
and can be conveniently written as 

C = fa,V,*fiV,a'yYwXaa>. (2.29) 

tttp is the tensor obtained by taking the trace of the 
initial electron-positron system, 

^ = — Tr (—p2+tnh»U>i+mhp 
~4(pup%,+pi,fo-2&g„) (2.30) 

^r z _^ 

V ^ N 

\ yXf^\ " " N ^ . ConeC_3 

Cone C4 ^ \ Q > » . n \ ^ \ p y 

P 5 

FIG. 3. Kinematical correlations. Two lines of intersection be­
tween cone C* and cone C-z give the two possible directions of 
the W+ boson produced for each choice of final electron and muon 
momenta. 

where pi=pi-y and 

Vm$ is the yW~W+ vertex, 

Vna^gafiipA-pz)^ (l+k)pZ^a 

- ( l + % 4 « ^ . (2.31) 

Yfip is I the trace of the fx++ v system and the square 
of the numerator of the W+ boson propagator: 

? > = - 1 Tr[(-^7+M)(l+7«)7rf^i'(l-75)] 
X (p«p4iW-*-g») (fiwpuW-t-gw) 

= (W*-,x>)(p4fipwW-*-gw) 
-€pw(P*-pi)w-2-p7p] 
X \J«> fa • pdW-*- ̂ ] - 2iufi*>pi*p4h. (2.32) 

Xaa> is the corresponding expression for the e~+v 
system, 

Xaa' = - \ Tr [ -^ 6 ( l+7 5 h 7 (^5+w)7y ( l -7 s ) ] 
X (p*ap*yW-2-gaS) (Pza>Pty>W-*-ga,y,) 

~{W*-m>){pZapZaW-*-gaa,) 
~4Lpza(prp,)W-*~pha-] 
XlPza<(prps)W-*-psa,l 

-\-2ieCada'p5cpZd. (2.33) 

The analytical expression for C was obtained by a 
computer. We set the mass of the electron m=0 for 
simplicity. C is first written as a function of invariants 
M2, W\ {pi+piY, pvph, pvp7, p2-p5, p2.ph pyp7y and 
pvpz. It was found that the expression simplifies 
greatly and also exhibits the symmetries of the problem 
more clearly if one uses the variables E} E5, E7i x, y, z, 



B726 Y . S. T S A I A N D A. C . H E A R N 

TABLE I. Differential cross section for e+-\-er —» W++W~ 
at£=3BeV, PF=2BeV. 

e 
(degrees) 

dcr/dtt 
(10-83 cm2/sr) 

0 
30 
60 
90 

0 
30 
60 
90 

2.33 
2.77 
3.65 
4.10 

0 
0.1 
0.307 
0.401 

and u defined by 

( # i + ^ ) 2 = ^ = 4 £ 2 , 
Pi-pi=E(Ei-P% cosdu)=E(E5-y), 
pi-p7=E(E7-P7 C0sOl7)sE(Et-s), 
p2-pb^E(E5+y), (2.34) 
p2-pi=E(E1+z), 
pvpi=E(Ez+x), 
pvp7=Eb(E7—p7 cosd57)=E5(.Ei—u). 

All the quantities except x in the above are directly 
measurable experimentally. As shown in (2.17), x is 
not an independent variable but takes two values x± 
which are expressible in terms of observable quantities. 

It should be noted that if other decay modes of W's 
are to be considered we need to change only the expres­
sions for Xaa

f and F^ ' . The expression for t^VpatiV'vary 
remains unaltered. By explicit calculation we obtain 

Pact' 00' = I^FKna&V„«' p' 

— 2{\+k)[E2{gafipAa'pZP+ga>{i>pl<xpZt) 

+gat(Q>pd(PwQa>-p4a>Qe>) 

+ *«'/»' (Q' Pd (puQa- pAaQ$)~] 

+ (l+k)2[E?(pZf>pia>gaf}> + p4ap3(>>g«>fi 

— pWpSfi'gaa'-" piapia'gw) 

— (pt&*-p4j>0)(Pv>Q*'-p*a'Qr)l. (2.35) 

The density matrix of the W pair produced is actually 
defined as 

Dyy'H' = Paa'fifi* {pZapZyW-2— gay) {pZ«>pZy> W~2— ga>y.) 
X(p4ep«W-*-g»)(p4fi'PAvW-*-gfi.v). (2.36) 

We have merely incorporated the last four factors 
into the definitions of X and F to make the writing 
more compact. The rank-4 tensor D has the following 
properties: 

HI. SYMMETRIES IN THE CROSS SECTION 

(a) The parity-violating effect of the weak interac­
tion does not show up in the differential cross section. 
Since only Pi, P2, Ps, and P7 are measured experi­
mentally, the only pseudoscalar quantity one can 
construct is 

**vaepup*p*apifi= 2ET?v (P« x P7). (3.1) 

But this quantity is not time-reversal invariant, hence 
will not appear in the cross section. The absence of 
such a term in the cross section implies that the dif­
ferential cross section for P7 must be symmetric with 
respect to the P1-P5 plane, and the differential cross 
section for P5 must be symmetric with respect to the 
P1-P7 plane. 

(b) The cross section must be symmetric with respect 
to the plane perpendicular to the incident beam. This 
is the consequence of the one-photon exchange model. 
This must be so because of the fact that /M„ is symmetric 
with respect to the interchange pi <-» p2, and hence C 
must also be invariant under this exchange. The only 
other places where pi and p2 occur are in the flux factor 
and the d function, both of which are invariant under 
the exchange pi <-» p2. Thus the differential cross section 
should not be able to tell the sense of the current of the 
incident beam. 

(c) The differential cross section for the process 

e++er w++w- (3.2) 

M +*V 

is identical to the one we are considering [Eq. (1.1)]. 
This can be proved by the following steps. 

1. The mass of p. inside the trace of (2.32) does not 
contribute. 

2. The expression of matrix-element squared C for 
(1.1) can be written as 

C=iDyy>H>(p6+pi, p7+p8) Tr[>e(l+76)77My] 
XTr[> 8( l - 7 6)76Ma'] , (^3) 

where D (pz,p4) is the density matrix defined by Eq. 
(2.36). Since D is symmetric under 7 <-> 7' and b <-> 6', 
C is symmetric under 75 <->— 75. 

3. Let us denote e+ by p5, yr by p7, ve by ph and i>M 
by p& for the process in (3.2). 

Then the matrix element squared can be written as 

C' = *Dyy'&v(p7+p8, Pb+pe) Tr£pi(l+y6)yyp7yY2 
XTr[>e(l-75)7«fc7«']. (3.4) 

Now 

1. It is symmetric under simultaneous exchange of Dyy'**'\P?+P*> P&"\~P<d—Dst'yy'(p&+pa, p7+ps) 
two indices 7 «-> 7' and 8 <-> d'. 

2. It is invariant under exchange pi <-> p2. 
3. It is symmetric under simultaneous exchange 

pz <-* ph b <-» 7 and bf <-> y'. 
4. It satisfies the subsidiary condition pzyDyy>w — Q. 

from the symmetry property No. 3 of D. Rearranging 
the dummy tensor indices and remembering the sym­
metry under 75<->—75, we arrive at the desired result 

C=C. (3.5) 
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The processes (3.2) and (1.1) are related by the charge 
conjugation. The theorem we have just proved combined 
with the in variance under pi <-> p2 of C shows that the 
charge conjugation violating effect of the weak inter­
action does not show up in the differential cross section. 
Experimentally this theorem implies that if the de­
tectors can distinguish between e and p but cannot dis­
tinguish the sign of their charges, one will get exactly 
twice the coincident counting rate we have given in 
this paper.10 

(d) If E— W2>n then the mass of the muon can be 
ignored from our consideration. Under these conditions 
the four leptonic decay modes of W pair will all have 
the same differential cross sections. 

IV. CROSS SECTION FOR e + + e - - * W++W-

For completeness we give the differential cross section 
for this process summed over the polarization of the W's. 

e4 1 1 [<PPZ fdzPi 
da = / / 

(2TT)2 32E2 (2E)4 J 2EZ J 2E4 

X dKpl+P*- PZ~ P&Paa'W (pZapZa'W-2- gaa.) 

X(p0p4fi>W-*-gw). (4.1) 

From the above we obtain the differential cross section 

da o?Pz 

— = {474£2sin20 
dtii 32y2W2 

+[4(l+&)2-2(l+&2) sin20>2+3 sin20], (4.2) 

where y = E/W and 0= (1-7~2)1/2. Notice that this 
cross section has a maximum at 0=90° and is symmetric 
with respect to 90°. 

The total cross section is 

<r= (Tro?pz/3y2W2)ly*k2+ (k2+3k+l)y2+%]. (4.3) 

Equation (4.2) agrees with the result obtained by 
Cabibbo and Gatto4 if one lets their form factors be 
equal to unity, identifies their JJL with our k and puts their 
anomalous quadrupole moment e=0. The numerical 
examples of (4.2) and (4.3) are given in Tables I and 
II, respectively. 

As pointed out by Cabibbo and Gatto, the expres­
sion for the total cross section (4.3) cannot possibly be 
right at high energies because it violates unitarity. The 
unitarity relation says that the sum of total cross sec­
tions of all channels from electron-positron annihilation 
via a single time-like photon intermediate state cannot 
exceed 37T/4E2, because the initial total angular mo­
mentum of the electron-positron system must be unity. 

10 Y. S. Tsai, Stanford Linear Accelerator Center Report No. 
SLAC-PUB-117, 1965 (unpublished), to appear in Proceedings of 
International Symposium on Electron and Photon Interactions 
at High Energies, Hamburg, Germany, 1965 (to be published). 
If radiative corrections are included in the reaction e+-f-e~ —> y —• 
A++B~ in the center-of-mass system, there will be more B~ 
coming out along the direction e~ than A+. This phenomenon is 
very similar to the difference between e+p and e~p scatterings 
where e+p in general has a larger cross section at a fixed angle 
than e~p if higher order terms are included. 

TABLE II . Total cross section for e+-\-e~~ —> W++W~. 

E (BeV) 

3 
4 
10 
100 

3 
4 
10 
100 

3 
3 
3 
3 
3 

W (BeV) 

2 
2 
2 
2 

2 
2 
2 
2 

2 
2.2 
2.4 
2.6 
2.8 

k 

2 
2 
2 
2 

-1 
-1 
-1 
-1 

0 
0 
0 
0 
0 

<r (10"82 cm2) 

4.41 
9.24 

54.7 
5240.0 

0.343 
1.08 
11.8 

1310.0 

0.289 
0.191 
0.116 
0.060 
0.020 

The cross section (4.3) increases with energy as y2 

at high energies if k^O and stays constant if ^=0 in the 
asymptotic limit. The cross section reaches its unitarity 
limit at an energy equal to 

£=(1)1/2(137/^)1/2^ if kj*0, 
and 

£ = f ^ X 1 3 7 if £=0 . 

The energies at which these limits are reached are 
considerably higher than those of the various colliding 
beam machines proposed. Nevertheless, it is still a 
serious defect of the theory. It is not immediately 
obvious that by considering the higher order electro­
magnetic effects this difficulty can be circumvented.6 

V. NUMERICAL EXAMPLES OF THE 
DIFFERENTIAL CROSS SECTION 

e++e- —»e-+vc+t*f+vM 

In order to facilitate the design of the experiment, it 
is useful to know approximately how the electrons and 
muons are distributed and what their energy and angu­
lar correlations are. We were told by David Ritson that 
a spark chamber with nearly 4TT solid angle can be used, 
and that the muon energy can be measured with a high 
accuracy from its range and the electron energy can be 
measured from its shower production. We have inte­
grated the expression (2.19) with respect to the energies 
of the muon and electron, and have obtained da/dQ&dQ7 

numerically by a computer. 

da 9fQ2m2R2 r (^)max /.(-B5)max 
= / dEl dR 

dQOh ( 2 T ) 2 5 1 2 £ W ^ 4 J (E7)min J (E&)min 

C++C. 
X — . 

[cOs(047+036) + 2 COS035 COS047 COS067+COS2067]
1/2 

The limits of integrations are: 

max.min 

( £ 6 ) m a x , m i n = W ^ / 2 [ £ - i > 4 ( c O S 0 3 6 ) m a x , m i n ] , 

where (cos036)max,mill= — cos047 cos067±sin047 sin^?; the 
upper sign goes with "max" and the lower with "min." 
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TABLE III . Differential cross section for e++e~ -* fjt
++e-+pli+Ve at £ = 3 BeV with W = 2 BeV, i?=0.25, and k= - 2 , 0, 2. 

0u 

30 

30 

30 

30 

30 

30 

30 

60 

60 

30 

60 

90 

120 

150 

180 

30 

067 

d*<r/dQM in 10"34 cm2/sr2 

jfc=-2 £ = 0 k = 2 

30 
60 
90 
120 
150 

30 
60 
90 
120 
150 

30 
60 
90 
120 
150 

30 
60 
90 
120 
150 

30 
60 
90 
120 
150 

30 
60 
90 
120 
150 

30 
60 
90 
120 
150 

30 
60 
90 
120 
150 

30 
60 
90 
120 
150 

0.01289 
0.03293 
0.07312 
0.1180 
0.1286 

0.01289 
0.03244 
0.07099 
0.1138 
0.1262 

0.01277 
0.03074 
0.06501 
0.1028 
0.1185 

0.01251 
0.02755 
0.05438 
0.08622 
0.1119 

0.01215 
0.02335 
0.04188 
0.06914 
0.1049 

0.01187 
0.01967 
0.03194 
0.05485 
0.1003 

0.01164 
0.01813 
0.02790 
0.04807 
0.09963 

0.01165 
0.02765 
0.07355 
0.1401 
0.1545 

0.01035 
0.02819 
0.07326 
0.1365 
0.1505 

0.0009347 
0.001503 
0.002514 
0.01035 
0.03207 

0.001017 
0.001658 
0.002940 
0.01107 
0.03294 

0.001194 
0.002013 
0.004616 
0.01295 
0.03576 

0.001380 
0.002537 
0.005730 
0.01503 
0.03796 

0.001542 
0.002919 
0.006471 
0.01626 
0.03947 

0.001644 
0.002867 
0.006852 
0.01682 
0.04014 

0.001678 
0.002931 
0.006914 
0.01694 
0.04018 

0.001510 
0.002040 
0.002229 
0.008009 
0.02390 

0.001583 
0.002292 
0.002870 
0.009516 
0.02596 

0.02537 
0.05245 
0.1166 
0.2412 
0.4519 

0.02524 
0.05153 
0.1152 
0.2394 
0.4606 

0.02440 
0.04632 
0.1084 
0.2338 
0.4632 

0.02331 
0.04206 
0.1000 
0.2293 
0.4722 

0.02227 
0.03757 
0.08857 
0.2083 
0.4715 

0.02125 
0.03492 
0.07688 
0.1968 
0.4688 

0.02099 
0.03260 
0.07121 
0.1907 
0.4681 

0.02018 
0.04634 
0.1183 
0.2642 
0.4502 

0.02051 
0.04713 
0.1169 
0.2645 
0.4529 

015 <Pl 

60 

60 

60 

60 

60 

90 

90 

90 

90 

60 

90 

120 

150 

180 

30 

60 

90 

057 

<P(T/d£lvtKh in 10"34 cmVsr2 

k=-2 £ = 0 k = 2 

30 
60 
90 
120 
150 

30 
60 
90 
120 
150 

30 
60 
90 
120 
150 

30 
60 
90 
120 
150 

30 
60 
90 
120 
150 

30 
60 
90 
120 
150 

30 
60 
90 
120 
150 

30 
60 
90 
120 
150 

30 
60 
90 
120 
150 

0.01039 
0.02886 
0.07039 
0.1258 
0.1442 

0.01033 
0.02669 
0.06162 
0.1095 
0.1337 

0.01008 
0.02133 
0.04725 
0.09086 
0.1295 

0.009372 
0.01565 
0.03325 
0.07827 
0.1255 

0.009078 
0.01027 
0.02720 
0.07256 
0.1265 

0.008996 
0.01791 
0.05041 
0.1166 
0.1570 

0.009320 
0.01993 
0.05411 
0.1173 
0.1535 

0.009833 
0.02390 
0.06151 
0.1207 
0.1476 

0.009237 
0.02625 
0.06544 
0.1220 
0.1435 

0.001773 
0.002866 
0.005507 
0.01276 
0.03009 

0.002008 
0.003421 
0.006828 
0.01535 
0.03290 

0.002141 
0.003256 
0.007305 
0.01590 
0.03371 

0.002184 
0.003705 
0.007076 
0.01524 
0.03274 

0.002188 
0.003630 
0.006905 
0.01474 
0.03219 

0.002078 
0.003087 
0.005153 
0.01024 
0.02387 

0.002137 
0.003274 
0.005709 
0.01162 
0.02571 

0.002259 
0.003643 
0.006789 
0.01421 
0.02904 

0.002318 
0.003311 
0.007211 
0.01533 
0.03125 

0.02039 
0.04514 
0.1177 
0.2630 
0.4517 

0.01937 
0.04165 
0.1096 
0.2549 
0.4607 

0.01778 
0.03783 
0.09436 
0.2378 
0.4574 

0.01654 
0.03101 
0.08047 
0.2141 
0.4506 

0.01567 
0.02756 
0.07099 
0.2100 
0.4528 

0.01535 
0.03372 
0.09572 
0.2477 
0.4409 

0.01575 
0.03593 
0.1014 
0.2507 
0.4442 

0.01681 
0.03949 
0.1113 
0.2617 
0.4513 

0.01748 
0.04094 
0.1154 
0.2663 
0.4549 

The result of the computation is shown in Table III. 
The unit of the cross section is 10~34 cm2/sr2. 

We make the following comments and observations 
on Table III. 

(a) Because of the symmetry with respect to 
^7 «_> — >̂7> w e computed the cross section only from 
<P7=0 to 7r. This symmetry is due to the time-reversal 
in variance as discussed in Sec. I l l (a). 

(b) The cross section is symmetric with respect to a 
simultaneous exchange: 

0i5 <->*•— 0i5, 

This is due to the symmetry with 

change Pi <-> P2 as discussed in Sec. 111(b). Because of 
this symmetry we took 0i6 from 0 to Jr. 

(c) The values of the differential cross section at 
057=0° and 180° were not given in Table III, because 
of the limits of the £ 5 integration pinch [i.e., (E5)max 

= (£s)min] and at the same time the denominator of the 
integral vanishes at these two points. However, by 
taking the limit, the integrals at these two points give 
finite numbers as shown in Table IV. In general the 
cross section increases rapidly with 057 from 0° to 180°. 
The rate of increase depends critically upon k. For 
&= —2, the ratio of the cross section at 067=3OO to 
057= 150° is approximately 1/10 or 1/15 depending upon 

respect to the inter- whether 0U=3O° or 0U=9O°; for ^=0 the correspond-
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TABLE IV. An example of the behavior of the differential cross 
section near 0B7=O and 180°, for £ = 3 BeV, W = 2 BeV, £=0.25, 
£=-2,016=30°, ^7=30°. 

057 (degrees) da/dam, (10-*4 cmVsr2) 

1 
5 

30 
90 

150 
170 
179 

0.009584 
0.009852 
0.01289 
0.07312 
0.1286 
0.1392 
0.1422 

ing ratio is 1/33 or 1/13; and for k= 2 the corresponding 
ratio is 1/18 or 1/28. In the absence of dynamical cor­
relations all these ratios should be identical for all k. 
Thus we conclude that the effect of dynamical correla­
tions is strong and should be utilized advantageously to 
determine k (and the anomalous quadrupole moment if 
it is there). 

VI. DISCUSSION 

(a) All of our considerations will be only of academic 
interest if there is no W meson, or if its mass is so large 
that it cannot be produced in the foreseeable future. 
However we believe various considerations made in 
this paper can be applied to many other similar problems 
which involve creation of unstable particles by e++e~~ 
collisions. For example 

<?-+*?+--> A+A 

\ r + + p . 

This reaction gives the electric and magnetic form 
factors of A for a time like momentum transfer. 

(b) We have completely ignored the fact that some 
extra photons are always emitted either from initial or 
final charged particles (the so-called radiative correc­
tions). If a photon is emitted from the initial system, 
the virtual photon in our problem will no longer be a 
pure time-like vector (2£,0), but will acquire a certain 
energy and momentum distribution. As a result the 
kinematical correlations we have discussed will no longer 
have a sharp edge at the boundary, but will be smeared 
by some radiative tail. In general the radiative tail 
smears the particle energy on the low energy side. Thus 
it will change, for example, (E7)min to a lower value but 
will not affect (2£7) max in the numerical example given 
in Sec. 2. Since (E7)m&x depends very critically upon W 
for fixed Z£5 and 057, we conclude that the mass deter­
mination via kinematical correlation will not be af­
fected by the radiative corrections. If the radiative cor­
rections are included then the symmetry under Pi <-> P2 

will also be violated by a few percent.10 

(c) The major background to the process considered 
is expected to be due to the accidental coincidence from 

two reactio 

and 

ns 
e*-+e~—> e++e-

e++e-->M++M~-

Neglecting the radiative corrections and possibili­
ties of form factors, their cross section can be written, 
respectively,11 as 

d<r r<? w2rl+cos4(§0) 2 cos4(|0) r0 mrr 

rfQ(e-) 8 EL sin4(|0) sin2(|0) 

l+cos20-i 

da rQ
2m2/ w2\1/2rl+cos20 m2 "| 

= (1 ) +—sin 2 0 . (6.2) 
(u+) 8 &\ E?J L 2 IE2 J dQ(ji+) 

At 0=90° and E=3 BeV, we have 

d<r/dQ(e-) = l2.5XlQru cm2/sr 

da/dttfa+) = 1.4X 10-34 cm2/sr. 
and 

Compare these with the result of our Table III at 
015=90°, 057=150°, ^7=90°, with £ = - 2 and W=2: 

J o - / ^ 6 ^ = 0.1435X10-34 cm2/sr2. 

The accidental coincidence is proportional to the 
product of (6.1) and (6.2) if one detects e~ and /*+ or 
e+ and yr and therefore it is completely negligible. 
However, if W really exists, then one would expect the 
(e+e~), Ou+/i~), (e~ii+) and (e+fi~) decay modes of the W 
pair to have almost identical probability. Turning the 
argument around, the near identity of all these four 
decay modes will serve as an additional proof that W's 
were actually produced. The radiative corrections to 
processess (6.1) and (6.2) will then be the major back­
ground for the (e+e~) and G-t"V~) decay modes, respec­
tively, of the W pair. The main effects of radiative cor­
rections to processes (6.1) and (6.2) are: (1) the final par­
ticles will no longer all come out exactly back-to-back, 
and (2) their energies will be smeared. These effects are 
all rather easy to calculate10 and in general the cross 
sections drop down very quickly as one deviates from 
the elastic kinematics. Thus in principle there is no 
major difficulty in distinguishing the processes (6.1) 
and (6.2) from the (e+e~) and G*V) decay modes of 
the W pairs. 
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