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Starting from the axial-vector current algebra suggested by Gell-Mann and the hypothesis of a partially 
conserved axial-vector current, we derive a sum rule relating X—gjT2 to off-mass-shell pion-proton total 
cross sections. Numerical evaluation gives the theoretical prediction ^ = 1 . 2 4 , in good agreement with 
experiment. A similar sum rule for pion-pion scattering can only be satisfied if there is a large low-energy 
1=0, 5-wave pion-pion scattering cross section. We suggest tests, in high-energy neutrino reactions, of an 
algebra suggested by Gell-Mann for the vector and axial-vector current octets. 

INTRODUCTION 

W ITHIN two years after the discovery of parity 
violation in the weak interactions, the main 

features of ($ decay were clarified.1 I t was found that 
only vector and axial-vector couplings are present. The 
vector coupling constant was found to be identical with 
the vector coupling constant in muon decay; the axial-
vector coupling constant was found to differ by a factor 
gA~ 1.2 from the value expected for a pure V—A inter
action. The identity of the vector coupling constants 
in beta and in muon decay was soon explained by the 
hypothesis of a conserved vector current (CVC).2 The 
value of the axial-vector coupling constant, on the other 
hand, has remained somewhat of a mystery.3 

We give, in this paper, a theory of the axial-vector 
coupling-constant renormalization gA, based on the 
axial-vector current algebra suggested by Gell-Mann4 

and on the hypothesis of a partially conserved axial-
vector current (PCAC).5 In Sec. I, we discuss the 
assumptions made. In Sec. I I , we present two deriva
tions of a sum rule relating \—gA~2 to off-mass-shell 
pion-proton total cross sections. Numerical evaluation 
of the sum rule, in Sec. I l l , gives the theoretical pre
diction gA=1.24. In Sec. IV, we derive a sum rule 
relating 2gA~2 to pion-pion scattering; we find that this 
sum rule can be satisfied only if there is a large low-
energy 7 = 0 , 5-wave pion-pion scattering cross section. 
In the final section, we propose tests, in high-energy 

* An abbreviated version of the calculation of gA has appeared 
in Physical Review Letters [S. L. Adler, Phys. Rev. Letters 14, 
1051 (1965)]. After this calculation was completed, I learned 
of similar work by Weisberger [W. I. Weisberger, Phys. Rev. 
Letters 14, 1047 (1965)]. 

t Junior Fellow, Society of Fellows. 
1 M. Goldhaber, Proceedings of the 1958 Annual International 

Conference on High Energy Physics (CERN, Geneva, 1958), p. 233. 
2 R. P. Feynman and M. Gell-Mann, Phys. Rev. 109,193 (1958). 
3 Previous papers on the axial-vector coupling constant renor

malization include: R. J. Blin-Stoyle, Nuovo Cimento 10, 132 
(1958); S. Okubo, ibid. 13, 292 (1959); J. Bernstein, M. Gell-
Mann, and L. Michel, ibid. 16, 560 (1960); A. P. Balachandran, 
ibid. 23, 428 (1962); H. Banerjee, ibid. 23, 1168 (1962); V. S. 
Mathur, R. Nath, and R. P. Saxena, ibid. 31, 874 (1964); Y. S. 
Kim, ibid. 36, 523 (1965); Y. Nambu and G. Jona-Lasinio, Phys. 
Rev. 124, 246 (1961); Nguyen-Van-Hieu, Nucl. Phys. 42, 129 
(1963). 

4 M. Gell-Mann, Physics 1, 63 (1964). 
6 M. Gell-Mann and M. LeVy, Nuovo Cimento 16, 705 (1960); 

Y. Nambu, Phys. Rev. Letters 4, 380 (1960); S. L. Adler, Phys. 
Rev. 137, B1022 (1965). 

neutrino experiments, of the algebra proposed by Gell-
Mann4 for the vector and the axial-vector current 
octets. The tests make no assumptions about partial 
conservation of the currents. 

I. ASSUMPTIONS 

The sum rules for gA discussed below are derived 
from the following assumptions: 

(A) The hadronic current responsible for A S = 0 
leptonic decays is 

Jx=Gv cosd(J^+iJ^+Jx
A1+iJxA2) f ( 1 ) 

where Gv is the Fermi coupling constant ( G F ~ 1 . 0 2 
Xl0~b/MN

2) and cos0 is the Cabibbo angle.6 Here 
J\Va is the vector current, which we assume to be the 
same as the isospin current, and J\Aa is the axial-vector 
current. In the Fermi theory, we would have had 

JxVa=i;$Ny\:5Ta4'N'-, (2a) 

(2b) 

Actually, we know that mesonic and other terms must 
be present. Fortunately, in what follows we will not 
have to assume any specific expressions for J\v and J\A 

in terms of particle fields. 
Since the vector current is conserved, the vector 

coupling constant is unrenormalized. The renormalized 
axial-vector coupling constant gA is defined by 

(N(a)\J\\N(q))= (MN/q0)Gv cos6uN(q) 
X (y\+gA7\7f>) r+UN (q). (3) 

(B) The axial-vector current is partially conserved 
(PCAC), 

MNMr
2gA 

d*JxA*= tj>r 

grKNN*(0) 
(4) 

Here gr is the rationalized, renormalized pion-nucleon 
coupling constant (gr

2/4ir^ 14.6), KNNv(0) is the pionic 
form factor of the nucleon, normalized so that 
KNNT(— MJ) = 1, and <t>r

a is the renormalized pion field. 

6 N. Cabibbo, Phys. Rev. Letters 10, 531 (1963). 
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According to Eq. (4), the chiralities 

satisfy 

-xHt)= 
dt grK™*(0) 

d3x<l>T±. (5) 

(C) The axial-vector current satisfies the equal-time 
commutation relations 

LJ*Aa (*),/* Ab 00] I xo-M= - * ( « - y)*°beJiVc (*) • (6) 

This implies that the chiralities satisfy 

[x+(0,x-W]=2/3, (7) 

where 73 is the third component of the isotopic spin. 
The assumptions (A) are the usual ones for the 

leptonic decays. The vector-axial-vector form of the 
leptonic weak interactions is, of course, well estab
lished.1 There is also considerable experimental evi
dence for the hypothesis2 that the weak vector current 
J\Va is the same as the isospin current.7 

The hypothesis (B) of a partially conserved axial-
vector current (PCAC) was introduced by Gell-Mann 
and Levy5 and by Nambu5 to explain the successful 
Goldberger-Treiman relation8 for charged pion decay. 
In addition to predicting the Goldberger-Treiman rela
tion, PCAC predicts an experimentally satisfied relation 
between the pion-nucleon scattering amplitude ArN{+) 

and the pion-nucleon coupling constant gr.
9 

The commutation relations (C) play an essential role 
in the calculation. [Note that Eq. (6) is a somewhat 
stronger assumption than Eq. (7), since even if spatial 
derivatives of the delta function were present on the 
right-hand side of Eq. (6), they would integrate to zero 

in Eq. (7). Only Eq. (7) is actually needed in the 
derivation below.] The hypothesis that Eq. (6) or 
Eq. (7) holds exactly is due to Gell-Mann.4 Gell-Mann 
and Ne'eman have emphasized10 that Eq. (7) is the 
most natural way in which one can make meaningful 
the idea of universality of strength between the weak 
couplings of leptons and baryons, without spelling out 
in detail the construction of J\A from particle fields. 
Gell-Mann has also pointed out11 that Eq. (7), by fixing 
the scale of the axial-vector current relative to the 
vector current, can, in principle, determine the axial-
vector renormalization gA* 

To sum up, Eqs. (1), (3), (5), and (7) are the hy
potheses on which our calculation of gA is based. They 
are mutually consistent, in the sense that there is a 
renormalizable field theory (the a model of Gell-Mann 
and Levy5), in which they are exactly satisfied. 

H. DERIVATIONS OF THE SUM RULE 

We give, in this section, two different derivations of 
a sum rule expressing gA in terms of off-mass-shell 
pion-proton total cross sections. A third derivation has 
been given by Weisberger.12 

A. Method of Fubini and Furlan 

The simplest derivation uses a method proposed 
recently by Fubini and Furlan.13 We take the matrix 
element of Eq. (7) between single-proton states (p(q) \ 
and \p{q')). The right-hand side gives 

<*(?) 12PI *(<?')>= (2x)*(q-q'). (8) 

In the matrix element of the commutator, we insert 
a complete set of intermediate states, separating out 
the one-nucleon term (to which only the neutron 
contributes): 

r d6k 
(P(q)\bc+(t),X-m\p(q'))= L /T—(^(?)I^WI»(*)><»(*)l3T(0l?(«0> 

spin J ( 2TT) 3 

+ E (P(q)\x+(t)\j)(J\x-(t)\p(q'))-(x+"X-). (9) i^N 

The one-neutron term is easily evaluated using Eq. (3), giving 

r dzk 
E / —ipmx+mn{k)){n{k)\X~{t)\p{q')) 
spin J (271") 

- / • 

(Pk /MN MN\ /k+iMN\ 
(27r)35(q- k) (27r)35(k- q')( )gA2u(qhm[ — )ymu(q') (10) 

(2TT)3 \qQ 

= (27r)35(q-q0^2(l-M^Ao2). 
7 C. S. Wu, Rev. Mod. Phys. 36, 618 (1964). 
8 M . L. Goldberger and S. B. Treiman, Phys. Rev. 109, 193 (1958). 
9 S. L. Adler, Ref. 5. 
10 M. Gell-Mann and Y. Ne'eman, Ann. Phys. (N. Y.) 30, 360 (1964). 
11M. Gell-Mann, Phys. Rev. 125, 1067 (1962). 
12 W. I. Weisberger, Phys. Rev. Letters 14, 1047 (1965). 
13 S. Fubini and G. Furlan, Physics 1, 229 (1965). 
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In the summation over higher intermediate states we make use of Eq. (5), giving 

r^MNM/gAl2 <p{q)\Sdte*.+\j)(j\S*x4>r'\p{q'» 

L grK™*(0) J *N (qo~q3-o)2 
- ( * • + < - + * • - ) . ( 1 1 ) 

From Eqs . (10) and (11), we see tha t there is a family of sum rules, with <?o as a parameter . I n the limit as qo 
approaches infinity, a sum rule for 1—gA~

2 is obtained. Le t us assume tha t the limiting operation can be taken 
inside the sum over intermediate states in Eq . (11). I t is useful to write this sum in the form 

£ = / T~T / dW £ *<W~Mj), (12) 
INT 

where q,- is the total momentum and where " I N T " denotes the internal variables of the system j . We have denoted 
by M, the invariant mass of the system j . The integrations over x and q, can be done explicitly, giving a factor 
(2ir)M(q— q') and constraining q ; to be equal to q. Let us write 

0"l *-*(0) I />(<?)>= ((MN/qo) (MMyiW*, (13) 

so tha t Fj*1 is a Lorentz scalar. Then we have for the summation over higher intermediate states, 

(2^5(q-q') ^T-\ dW £ SQV-MiMMiMj/qMqi-qrir^lFrl'-lFm (14) 

Using the equations 

qj0=(qt?+M/-M^yi\ (15a) 

(2o-f ro) - 2 = (<?o+fco)V(M/-M.v2) ' , (15b) 

the limit as go—*00 of Eq . (14) becomes 

^ZMNgA "I2 fM MNW | [ 9 o+( ? 02+ W '2_Jlf J V2)l /2]2 r ^l2MNgA -f r - MHW [ 
(2x)35(q-q') / dW lim 

LgrK
Ntf*(0)J JMK+M. (W^-Af* 2 ) 2 *°-"° I qoiqf+Wt-M^yi* 

X lim iK-lWM-qjYl-K+lWXq-qjy]], (16) 
go—*» 

where we have defined K±[Wi (q— gy)2] by the equation 

K±£W,(q-qiF]= E WV-MdMJlFft*. (17) 
INT 

Note that K± can only depend on the indicated variables because (i) K± is a Lorentz scalar, and (ii) all internal 
variables are summed over.14 

It is now trivial to take the indicated limits. The limit of the quantity in curly brackets is 4, and the limit of the 
momentum transfer (?-?; ) 2=--[go- {qf+W-M^yvj is 0. Thus we are left with the sum rule 

1 2MJ r« 
1 = / [_K+(Wfi)-K-(Wfi)l. (18) 

gA2 gr2K™*(0)* J M 

4MNWdW 

gA2 gr2K™*(oyjMN+MT (w*-M„*y 

T o complete the derivation, we must express K±(W,0) in terms of pion-proton scattering cross sections. Le t 
vo±(W) denote the total cross section for scattering of a zero-mass ^ on a proton, a t center-of-mass energy W. I t 
is easiest to calculate aoHW) in the center-of-mass frame. If we let k and q be, respectively, the four-momenta of 

14 An average over initial proton spin is understood, but is not indicated explicitly. 
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the initial pion and proton, then we have14 

<ro±W-flux=(2^E — -^-^-^(sn-q-k) 

J (2jr)Sviv 2h 
INT 

„ ^ IOVWO)|>(«)>1* 
j^N 2kQ 

Keeping in mind the fact that the initial pion has zero 
mass (&2=0), the following center-of-mass-frame equa
tions may be derived: 

qo+ko=W, qjo^Mr, (20a) 

flux= | k | / * 0 + ! k | /qQ= W/q0; (20b) 

k0= (W2- M^)/ (2W); (20c) 

U\Jr±mp(9))^MvHj\4>,±(P)\p(q)) 
= MT

2{MN/q^F^. (20d) 

Combining Eqs. (19) and (20) gives 

aoHW) = (27rMN/(W*-Mx2)) £ SiW-M^M^F^ 
INT 

= (2TMiV/a^~lf2sr2))ir±(TF,0). (21) 

Comparing with Eq. (18), we get the simple and exact 
sum rule 

1 AMN
2 1 p WdW 

Xl<roHW)-<ro-(W)l. (22) 

While the derivation just given is straight-forward, 
it suffers from the defect of requiring an additional 
assumption: We must assume that the limit q0 —» °° can 
be taken inside the sum over interemdiate states in 
Eq. (11). The next derivation which we give clarifies 
the meaning of this assumption. 

B. "PCAC Consistency Condition" Method 
In two previous papers15 (hereinafter called I and II), 

we showed that the hypothesis of a partially conserved 
axial-vector current leads to consistency conditions in
volving strong-interaction scattering amplitudes. The 
method used is a general one. Suppose that we have 
local field operators j\(x) and d(x) which satisfy the 
equation 

dxj\(x) = d(x). (23) 

15 S. L. Adler, Phys. Rev. 137, B1022 (1965), hereinafter called 
I ; S. L. Adler, Phys. Rev. 139, B1638 (1965), hereinafter called II . 
See also the related papers: Y. Nambu and D. Luri6, ibid. 125, 
1429 (1962); Y. Nambu and E. Shrauner, ibid. 128, 862 (1962). 

Let us take the matrix element of this equation between 
states (0(&F)| and \<x(kr)). We get the equation 

-*(*^*j)x<j8(t jp) | ix(0) |a(t j)> 

= (KkF)\d(0)\a(kI)). (24) 

Let us now consider what happens as (&/?— ki)—>0. In 
this limit, only those pole terms of (/?(&F) \j\(0)\cc(ki)) 
which behave as (£*•--&/)"1 will contribute to the left-
hand side of Eq. (24). It was shown in (II) that these 
singularities arise only from insertions of the vertex of 
jx on external lines of (fi\a). Furthermore, in the limit 
as (&F— ki)—»0, these insertions leave the external 
particles on mass shell. Thus we get a "consistency 
condition" expressing 

lim <fi(kr)\d{Q)\a{ki)) (25) 

in terms of the physical matrix element (p\a). Clearly, 
the same procedure can be applied to the quantities 

j(t)= dzxj4(x,t) and <*(*)= / d'xd(x,t), 

which satisfy the equation 

dj(t)/dt=id(t). (26) 

Of course, the resulting formulas will not be manifestly 
covariant. What was done in (II) was to study in detail 
the case when j(t) is simply the chirality xa(0- We will 
now apply the same method to a somewhat more 
complicated object, 

j(x0) = Jdyo *-«•»<# (<?) | T[x°(xo)X
b(yo)l | N(q)), (27) 

in order to rederive the sum rule for g*. 
Let us consider the quantity T defined by 

T= / dx0 e
il0XQ / dy0 e~ik^ 

X(N(q)\T[x^Xo)xb(yo)l\N(q)) 

= dx0e
il°x°j(xQ). (28) 
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Let us also define Pa(x) by the equation We will introduce the assumption that Pa(x) <£<!>** (x) 

d J Aa(x) = Pa(x) (29) a t a *a t e r s t a € e °f t n e calculation. 
From time-translation invariance, we know that 

so that the chirality x ° W satisfies 
j - j (xo) = e-ik<*zoX constant. (31) 

—X«(x0)= dzxP*(x). (30) 
dxo J Consequently, 

-ikej(x0) = —j(x0)= / dy0e-iko'">(N(q)\—r[x°(*o)x*(yo)]|2V($)> 
dxa J dxo 

= 6-^oxo(^ (g) | Cx°(^o),x6(^o)] I iV(g)>+ r ^ 0 r^3^ e-̂ oi/o<ivr(g) | ^ P - ( ^ x ^ o ) ] | iV(g)>. (32) 

Since the second term on the right-hand side of Eq. (32) is proportional to exp(— ikoXo), we can rewrite it as 

fdyQ fffix e-ik™{- n*+MJ)(N(q) | TlP°(x)xb(yo)l\N(q)). (33) 

We have assumed that we can integrate by parts with respect to the spatial variables x; this can be justified by the 
use of wave packets.16 Combining Eqs. (28), (32), and (33), and then interchanging the order of the integrations 
over #o and y0y gives 

-tft0r= fdxo e«*-™**(N(q) | bca(xo),xb(xo)3\N(q)) 

+ f dxQ e<l»*° fdyo fd*x*-*o»(- nx+Mr
2)(N(q)\ TtP*(x)X

b(yo)l\N(q)) 

= 27r8(k-ko)(N(q) ] [xa(0),x&(0)] \N(q))+ fdyo *-"•»./i(yo), (34) 

ji(yo) = Jd*x eil«*o(- n*+MS){N(q) | TtP*(x)x
b(yo)l\N(q)) 

= eil™»X constant. (35) 

Treating ji(yo) in the same manner as we treated j(xo), we get 

ihji(y«)~M* fd*xeil»*«(N(q)|bcb(yo),Pa(x,yo)l\N(q)) 

+ fd*x fd*y e<l°*»(- nx+MS)(- Dy+MT
2)(N(q)\TlPa(x)P^(y)']\N(q)). (36) 

MT?—IO2J J 
To sum up, we have derived the identity 

-t*o / dxo e*1*** / dyQ e~ih^(N(q) \ T[xa(xo)X
b(y0)l\N(q)) 

«2rf(/0-ko)\(N(q)|[xa(0),x6(0)]\N(q))+( — V - fd*x(N(q)|[x&(0),P°(x,0)]|N(q)}\ 
L \MJl—ko2/iloJ J 

+ , „ , htUhrf 72, V [** [d*y eilQXGr-ik0V0(- D*¥M/K- n,+MJ)(N(q) \ TlP*(x)P»(y)l\N(q)). (37) 
(Mr2—koV(MT

2—/o2) tl0J J 

with 

16 We will never integrate by parts with respect to the time variable. 
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Since we will obtain the sum rule for gA from the part of Eq. (37) which is antisymmetric in a and b, let us drop 
all terms which are symmetric. Because [xfl(^o),x&(^o)]=ico6c/<J, and since dIc/dx0=Q, we have d[x (%o)>Xb(*o)y 
dxo=0. In other words, 

f <PxtP*(x,xQ)iX
bM> fwK**)xa(**)l, (38) 

indicating symmetry under interchange of a and b. Thus we can drop the term proportional to 

(N(.q)\bcb(0),P'(x,0)2\N(q)). 

Let us now consider the antisymmetric part of Eq. (37) for small k<>. At the end of the calculation, we will let 
ka approach 0. On the left-hand side, only diagrams with x* inserted on the external nucleon lines will make a 
contribution of zeroth order in ko, as was shown in (II). This can be seen directly by inserting a complete set of 
intermediate states in the time-ordered product: 

Jdxo fiy*a"'-a—(N{q) | r[x'(*,)x»(yb)] I W > 

= dx0 /^yoe'W-ttoro^r; [(N(q)\xa(xo)\j)(j\xhb<>)\N(.q))0(.Xo-yo) 

+(N(q)\x"(yo)\j)(j\xaM\N(q))e(yo-Xo)-] 

= £ L(N(q)|/«*•((>)|i>0W6«»|N(q)}i(h-Ay)-*-(N(q)|74"(0)|j><j|7«^(0)|N(q))i(k0+ A,)"1] 
J 

X2ir8(lQ-ko)(2wy5(0)5(qj~q), (39) 
where 

A,s (qtf+Mf-M^yv-qo. (40) 

Clearly, only the one-nucleon intermediate state (j=N, Ay=0) gives a singularity behaving as &0""1. Evaluation 
of the spin sum, as in Eq. (10), gives, for the left-hand side of Eq. (37), 

{2TrYb^h-h)gAH^*^ (41) 

where O(ko) indicates terms which vanish as ko—* 0. 
Let us now evaluate the terms of the right-hand side of Eq. (37). The commutator of the chiralities is easily 

evaluated, using Eq. (6), giving 

2rf(/o-iW W ? ) I Cxa(0),x6(0)]|i^(g))= (2ir)«(0)*(/o-*a)i€-<ir->. (42) 

In the last term of Eq. (37), let us introduce the PCAC hypothesis, 

MNMr
2gA 

Pa(x)= * ,-(*) , (43) 
grK™*(0) 

giving 

M2 \ / M2 \ r MNgA -f 1 
QXQf-ikQVQ ) ) — / #* \ d'ye"** 

X ( - Dx+Mx2) ( - nv+MS)(N(q) I T C ^ W ^ O r ) ] \N(q)). (44) 

Apart from factors, this is just a pion-nucleon scattering amplitude. In fact, the off-mass-shell pion-nucleon scat
tering amplitudes 

A'^foBjiSMS) and B'»l-K9,n,Mw*J£/)t 
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where Mr* and MJ are, respectively, the masses of the initial and final pion, are defined by17 

fd*xfd*y e-il'*eik-*(- Dx+M. 2 ) ( - n*+Mf)(N(q$ | r[<^«(*)**660]\N(qd) 

^-i(2T)%qi+k-q2-l)aMN/ql(i)(MN/q2o)y12 

XUN(^2){[A'*<-> (v,vBtf*iJi*f)"-ikB*N(_) (v,vu,ilf/^kf^OSC^r^+isospin symmetric}**(gi), 

vB = k>l/(2MN), v=-k-(qi+q2)/(2MN). 

The term B can be separated into pole terms,17 and a nonpole part which we label B: 

The integral in Eq. (44) is identical with Eq. (45), with 

Z=(0,tf0) = A=(0,i*o), Jlf,*=Af/=*o; VB=*-kt/(2MN\ v=qok0/MN, 

Combining Eqs. (44), (45), (46), and (47), we find that Eq. (44) becomes 

(45a) 

(45b) 

(46) 

(47) 

f 2MN* 1 

I gr2KNNr(0)2 V 
+0(W), (48) 

with p=qoko/Mtf. The term proportional to —g^M^I 
q<? arises from the Born term in Eq. (46) when the sub
stitutions of Eq. (47) are made, and just cancels the 
similar term in Eq. (41). Thus, in the limit as ka—» 0, 
we obtain from Eq. (37) the Lorentz-invariant identity 

1 -2J4V 

where 
gA2 «rfJF™*(0)* 

G(0), (49) 

G(v) = v-l[A *"<-> (vflflfi)+vB*N*-> (vflflfl)! 
= v~l[A **<-> (v,0flfi)+vB*N^ (^,0,0,0)]. (50) 

We are able to drop the bar on B because the Born 
term {VB— v)~~l+ (VB+v)~~l vanishes identically at *>#=(). 

Equation (49), which follows solely from the assump
tions of Sec. I, is our final result. From the crossing and 
analyticity properties of ATN(r~) and BrNC~\ we know 
that G(v) is an even function of v and is analytic in the 
v plane, apart from cuts running from zk[Mr+MT

2/ 
(2MN)2 to ±00. Let us assume that G{y) satisfies an 
unsubtracted dispersion relation in the variable v. Then 
we may write 

2 r00 dv 
G ( 0 ) = - / — ImCfr). (51) 

IT J M ' MT+MTV(2MN) V 

It is easily verified that 

ImG (v) = § (cro~— a0+). (52) 

Changing the integration variable from v to the center-
of-mass energy W [y= (W2—MN2)/(2MN)'3, and com
bining Eqs. (49), (51), and (52) leads to the sum rule 
of Eq. (22). Thus, the assumption that the limit go—»°° 

may be taken inside the sum over intermediate states in 
the method of Fubini and Furlan is equivalent to the 
assumption thai G{v) obeys an unsubtracted dispersion 
relation. 

There is evidence that an unsubtracted dispersion 
relation for G(v) is valid. First of all, provided that the 
Pomeranchuk theorem is valid, the integral in Eq. 
(22) is convergent. Secondly, Amblard et ah and 
Hohler et al. have shown18 that the forward charge-
exchange scattering amplitude 

4»*(->(„, -MT
2 /(2M*), M „ ¥ x ) 

+vB*»<r-Kv, -Mr*/(2MN), Mr,Mr) 

satisfies an unsubtracted dispersion relation. It would 
be surprising if this result were changed by the ex
trapolation of the external pion mass from Mv to 0. 
Clearly, if a subtraction were required, the sum rule 
for gA would be useless. 

By writing a dispersion relation for the last term in 
Eq. (37), without assuming the PCAC hypothesis, one 
gets a sum rule relating 1—gA2 to cross sections measur
able in high-energy neutrino experiments. This sum 
rule is discussed further in Sec. V. 

m . NUMERICAL EVALUATION 

Because Eq. (22) involves off-mass-shell pion-proton 
scattering cross sections, a little work is necessary to 
compare it with experiment. Let us split the right-hand 
side of Eq. (22) into the sum of three terms: 

l-gA~2= (4iWVW) (Rx+Rt+R9), (53) 

17 G. F. Chew, M. L. Goldberger, F. E. Low, and Y. Nambu, " B . Amblard et at., Phys. Letters 10, 138 (1964): G. Hohler, 
Phys. Rev. 106, 1337 (1957). G. Ebel, and J. Giesecke, Z. Physik 180, 430 (1964). 
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with 

1 r00 dv / MT
2 \ 

* i = — / - ImGf v, , I f „ M T ) 
TTJ Mr V \ 2MN / 

= - ( - V - ^ 2 ) 1 / 2 ^ + W - ^ W ] , (54a) 

I r™ dv / MT
2 \ 

R%=- / — ImG( y, , M „ , M T ) 
wJ Mr V \ 2MjV / 

ImG0>,O,AfT ,MT), (54b) 
/(2Afjv) V 

(54c) 

1 r*> 

I f <fr r 

gfrA0|0)T 
JF™*(0)*J' 

G(y,v2,,Jf/,Jf , 0 s ^ D * '**-> (VSBMSMJ) 

+ vB^^(vyVBjMri
1Mrf)l' (S4d) 

There is a definite reason for splitting things up this 
way. Numerically, we find that \R1\>\R2\>\RZ\. The 
dominant term, Ri, involves only the physical pion-
proton scattering cross sections o-*, and thus can be 
reliably determined. The terms R2 and Rz are correc
tions, which take into account the fact that the sum 
rule involves the forward charge-exchange scattering 
amplitude, with both external pions of zero mass. The 
term R2 can be calculated in terms of pion-nucleon 
scattering phase shifts. Since it is dominated by the 
(3,3) resonance, it can be fairly reliably calculated. The 
term Rz is less well known, because a model is needed 
to calculate the off-mass-shell partial wave amplitudes. 

We get the following numerical results19 

giving 

( 4 ^ / ^ ) ^ - 0 . 2 5 4 , 

( 4 ^ ^ / ^ ) ^ = 0 . 1 5 5 , 

(4M*Vgf
2)J?3= - 0 . 0 6 1 , 

g / h e o r y = 1 . 2 4 . 

(55) 

(56) 

A reasonable error estimate, based upon the variations 
among the several calculations of R2 and Rz discussed 
below, is ±0 .03 . The best experimental value is20 

gA^^=lA8db0.02. (57) 

Thus, the sum rule agrees with experiment to within 
5%. 

I t is interesting that the region around the 600- and 
900-MeV pion-nucleon resonances makes an important 
contribution to the sum rule. If only the contribution of 
the (3,3) resonance is retained, we get the result gA 

= 1.44. In other words, the (3,3) resonance does not 
exhaust the sum rule. 

The remainder of this section deals with the details 
of the numerical evaluation 

A. Calculation of Ri 

As stated above, Ri is calculated directly from the 
physical pion-proton total cross sections <r±. Values of 
<j± from 0 to 110 MeV were taken from the smoothed 
fit of Klepikov et al.21 From 110 to 4950 MeV, we used 
the tabulation of Amblard et al22 Above 4950 MeV, 
we used the asymptotic formula <T~~—<T+=7.73 mb 
X[&/(BeV/c)]~"0-7 given by von Dardel et al.n This 
formula gives a good fit to the experimental data up to 
20 BeV/c. Use of this formula beyond 20 BeV/c repre
sents an extrapolation from the present experimental 
data, and gives 

19 For the pion-nucleon coupling constant, we used the value 
fs=*gfMw*/(16rMifl=0.Q&l±0M2 quoted by W. S. Woolcock, 
Proceedings of the Aix-en-Provence International Conference on 
Elementary Particles (Centre d'Etudes NuclSaires de Saclay, Seine 
et Oise, 1961), Vol. I, p . 459. 

20 C. S. Wu (private communication). 

4MN
2 1 lN
2 1 r30 dv 

2 2wJ 20 BeV V2 
(v2-Mv

2)1,2(<r+-<T-)~ - 0 . 0 1 1 . (58) 

Thus, unless the £&/(BeV/c)}~0 '7 asymptotic behavior 
is very much in error, the region above 20 BeV/c 
contributes only a few percent of l—gA~~2> 

B. Calculation of R2 

I t is convenient to express R2 as a single integral 
over center-of-mass energy Wy the integrand of which 
is the difference of terms referring to VB=0 and to VB 
= —MV

2/(2MN). The center-of-mass scattering angle <f> 
is given by 

y = c o s 0 = l + M T
2 / | k | 2 at vB=0, 

y - c o s ^ = l at vB=-M7
2/(2MN)i 

(59) 

where | k | is the center-of-mass frame pion momentum. 
Thus we get 

Ri=-\6\ dWA(W), 
J Mn+Mt 

W* r / Mr\ 
A(B')= / i W, 1 + ) 

(w+MNy 
(W+MNf-MS 

(w-MNy 
+M W, 1+ ) 

\ \k\y(W-Mji)F-Mr*J 

-lfi(W,l)+MW,l)l, (60) 
w* 

(Wi-MN
i-Mr

2)i 

S1N. P. Klepikov et al., Dubna report D-584, 1960 
(unpublished). 

82 B. Amblard et al., Ref. 18 and private communication. 
» G. von Dardel et al., Phys. Rev. Letters 8, 173 (1962). 
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with fi(W7y) and f2(W,y) the usual center-of-mass 
pion-nucleon scattering amplitudes. Since / i and ji are 
analytic functions of y in an ellipse with foci ± 1 and 
with semimajor axis l+2M,r2/|k|2,24 w e c a n legiti
mately use partial-wave expansions in calculating / i 
and f2 in both terms of Eq. (60). The integral is rapidly 
convergent, since the two terms in A(W) tend to 
cancel at high energies. 

The number (4MN
2/gr

2)R2= 0.155 quoted in Eq. (55) 
was obtained by using Roper's /m=3 phase-shift fit,25 

truncating the integral at W=U.20MT. (Beyond this 
energy no phase-shift fit is available.) The integral is 
dominated by the (3,3) resonance; extending the inte
gral only over the (3,3) resonance gave (4Mj^2/gr2)i^2 
= 0.166. A third calculation, using simple Breit-Wigner 
forms for the (3,3) and the 600- and 900-MeV reso
nances, and neglecting all other partial waves, gave 
(4Mtft/gr

2)R2= 0.156 when the integral was truncated 
at 11.20MT, and (4MN

2/gr
2)R2= 0.145 when the integral 

was extended to an upper limit of W^ 17 MT. The good 
agreement of these numbers indicates that R2 is in
sensitive to "controversial" features of Roper's phases, 
such as whether the Pu wave resonates. 

C. Calculation of Ra 

The term R$, which describes corrections arising from 
taking the external pion off the mass shell, cannot be 
calculated directly from experimental data. In order to 
estimate this term, we must assume a model for the 
off-mass-shell partial wave amplitude fui^W^MJyM^). 
(Here /= orbital angular momentum, / = total angular 
momentum, and/=isospin.) 

Actually, in order to evaluate Rz, we only need to 
know the imaginary part of fui^W^MJ^M^). Below 
the inelastic threshold at W=MN+2MT, generalized 
unitarity tells us that 

= \k\fiji(WMAMr)fiji(W)MT^Mir)*. (61) 

The intermediate state pion is, of course, on the mass 
shell. Since only the region around the (333) resonance 
is appreciably affected by taking the external pions off 
the mass shell, it suffices to study fui(W,M JM*) and 
then to use the elastic unitarity relation of Eq. (61) to 
get ImfUI{WyMT\M/). 

In constructing a model, we use the following in
formation about fui: 

(i) Threshold behavior. From kinematic considera
tions, we know that near the threshold at W= MN+MX, 
fui(W,M*4,M*f) will be equal to (|k*'||k'|)' times 

84 This statement assumes the validity of the Mandelstam 
representation. 

25 L. D. Roper, Phys. Rev. Letters 12, 340 (1964) and private 
communication. 

slowly varying factors, with 

| k ^ | = [ ( W ' 0 2 - ^ ] l / 2 , 

kQ<J= [w*~Mx>+ (MriJ)2l/(2W). 

Here | k*'| and | k ' | are the center-of-mass momenta of 
the initial and final pions; when Mx

i=0(M7r)i we de
note |k ' | by |k° | ( |k | ) . 

(ii) Unitarity. Setting either Mv* or Mv
f equal to 

Mr in Eq. (61), we see that fuiQV^M^^Mr) has the 
same phase 8ui as the true pion-nucleon partial wave 
amplitude fiji{W,Mr,Mr)' 

(iii) Left-hand singularities. Changing the external 
pion mass changes the left-hand singularities in the 
partial wave amplitude fui(W)MT

i,Mir
f)' The left-

hand singularities closest to the physical region come 
from the partial wave projection ju^^W^MJM^) of 
the Born approximation (the pole term) in Eq. (46). 
Reference to Eq. (46) shows that fuiB{W,MT\MT

f) 
contains a factor KNN*[- (MT<)2lKNN*t- C&f/)2] aris
ing from the change in strength of the coupling of the 
external pions to nucleons when the external pion mass 
is changed from the physical value. 

A simple model, which takes into account the con
siderations (i)-(iii), is to take 

fui(W,Mv\Mr) 

fuiB(W,MJ,M*) 
« fuiOVW^Mr). (63) 

flJIB(W,Mr,Mr) 

Equation (63) gives fui^W^MJ^Mr) the same phase as 
fui(W,Mv,Mr). Multiplying the physical fui by the 
ratio of the Born approximations gives the off-mass-
shell fui the correct threshold behavior and, approxi
mately, the correct nearby left-hand singularities. A 
second model is to take 

fUI(WyM^Mx) 
«(I k'|/1 kI) lKNN*l- (M^lfui(W}M^Mv). (64) 

Here we have put in only a threshold correction factor 
and a constant factor KNNr[m— (M/)2] to account for 
the change in strength of the nearby left-hand singu
larities. According to Eq. (61), the first model gives 

lmfUI(W,0fi) 

r fuftwm I2 

H , Bin i r „ x I m / i / r O * ^ , J O , (65) 

while the second model gives 

JmfuifWflfi) = (I k° I /1 k I )*lKNN*(0)* 
XlmfuiiWMrMr). (66) 

Although Eq. (61) is valid only below the inelastic 
threshold, we will use Eq. (65) and Eq. (66) above the 
inelastic threshold as well as below. 

Numerical evaluation of Eq. (54c) gives (^M^/gr
2)Rz 
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= —0.061 when the model of Eq. (65) is used, and 
(4Misr7gr2)£s= - 0 . 0 5 1 when we assume Eq. (66). In 
both cases, Roper's phase-shift fit was used, and the in
tegral was truncated at W= 11.20M*. Using Eq. (65) in
tegrated only over the (3,3) resonance gave (AM^/gr^Rz 
= —0.066. Evaluating the integral with only Breit-
Wigner terms for the low-lying resonances gave similar 
results. Thus, the quoted value of Rz, while dependent 
on the model used for going off mass shell, is insensitive 
to "controversial" features of the phase shifts. 

D. Remarks 

The terms R2 and Rz, which come largely from the 
(3,3) resonance region, give a combined contribution of 
0.094, as compared with the contribution of 0.254 
coming from R\. I t may at first seem surprising that 
the effect of R2 and Rz is so big, but it is easy to under
stand this. From Eq. (66), we can see that the main 
effect of R2 and Rz is to multiply 0-3,3, the (3,3) reso
nance contribution to the integrand of Rh by a factor 

|k°|2/|k|2. (67) 

At the peak of the (3,3) resonance, this factor is 1.27. 
Since the (3,3) contribution to Ri is 0.43, we expect 
Ri to be increased by an amount of order 

0.27X0.43«0.12, (68) 

in rough agreement with the sum of R2 and Rz. 

IV. PION-PION SCATTERING SUM RULE 

In Sec. I I , we took the matrix element of Eq. (7) 
between proton states and derived a sum rule relating 
gA to pion-proton scattering. Now let us take the 
matrix element of Eq. (7) between w+ states. The same 
manipulations used in the proton case lead to the sum 
rule 

2 4M*2 1 r°° WdW 

gA2~~gr2K»N*(0y J2Mr W2-M2 

X[<ro,-(WO-cro,+ (WO], <69) 

where a^iW) is the total cross section for scattering 
of a zero mass w± on a physical 7r+, at center-of-mass 
energy W. Equation (69) involves gA~2, rather than 
gA~2— 1, because the one-pion intermediate state con
tribution vanishes on account of parity. The factor 2 
on the left-hand side of Eq. (69) comes from the fact 
that (ir+(q) \ IP | TT+(?')>= 2 • (27r)35(q- q'). 

While, of course, no direct pion-pion scattering data 
is available, there is enough information on pion-pion 
resonances to compare Eq. (69) with experiment. First 
of all, <r^{W) comes only from 1=2 scattering. While 
there are resonances in the low energy 7 = 0 and 1=1 
pion-pion scattering, the 1=2 scattering seems to be 
small. Thus the right-hand side of Eq. (69) is positive, 
agreeing in sign with the left-hand side. 

Now let us make a quantitative analysis. According 
to Eq. (57), the left-hand side of Eq. (69) is 

2 / ^ = 1 . 4 3 . (70) 

Let us express the right-hand side of Eq. (69) in terms 
of the variable s = W2, giving 

AMN* 1 r ds 

/ t<ro*-(s)-<r«S(s)']- (71) 
g>K'""{0)>2TJ*uw*s-Mr

t 

As in the proton case, we take account of the fact tha t 
the external pion in Eq. (71) is of zero mass by writing 

*o.l'z(s) = K»»*(0)*( | k° [ /1 k| )« W-T(?) 
=KNN*(oyi(s-Mr2y/s(s-4MS)y<rri'i(s), 

(72) 

where / = orbital angular momentum, 7=isospin, and 
<TT

1,I(S) is the on-mass-shell partial wave cross section. 
Thus Eq. (71) becomes 

4MJV2 1 r as 

gr2 2TTJ AM^S—Mr4 

oo r (S-MSY -y 
X' ~ I /-oU($-4Afir

2)J 
/ even 

» r (S-M *y -y 1 
+ Z - U r w ( * ) . (73) 

J-l L5(5-4i l / , 2 )J J 
/odd 

Let us first evaluate the contributions of the two 
well-established TTTT resonances, the 1=1=1 p and the 
/ = 2 ,1= 0 / ° . We parametrize a*1'1 and o^2'0 in the form26 

^1JW= 

20ry,V/(H-lfV) 

{sf-sy+iMlr+MS) 

(74) 

The reduced widths yp
2 and yf

2 are related to the 
experimental full widths at half-maximum Tp and Tf by 

v,+Mw* 
SPV2, 7/2 = 

Pf+MJ 
SfTf2, 

vPj=\spj-MT
2. 

(75) 

Using the experimental values27 5P=29.7M^2, Tp 

= 0.755MT, sf=m.0Mv
2, Yf=0.n6M*, we get, for the 

p and f° contributions to Eq. (73), 

(76) 
p contribution = 0.42, 

f° contribution = 0 . 1 1 . 

As a check, we also calculated the p and f° contribu-
26 L. A. P. Bal£zs, Phys. Rev. 129, 872 (1963). 
27 A. H. Rosenfeld et al.f Rev. Mod. Phys. 36, 977 (1964). 



B746 S T E P H E N L . A D L E R 

tions in the narrow resonance approximation. This gave 
0.35 for the p and 0.09 for the /° contribution, indicating 
that resonance shape corrections will not substantially 
change the numbers of Eq. (76). 

The contribution of 0.53 from the p and the f° is 
only 37% of the total of 1.43 required by the sum rule. 
Since the f° contribution is so small, and since there 
seem to be no resonances with />3 in the low-energy 
region,27 it should be reasonable to neglect the con
tribution of terms with />3 in Eq. (73). Rearranging 
Eq. (69), we get 

AMN
2 1 r00 ds 

/ K>0W 
g? 2lT J AM** S—Mr

2 

4MN
2 1 r ds 

gr2 IwJiuJS-Mf 

2 ( r (s-MT
2 )2 f i 

31 Ls(s-4Mr*)J I 

+ 1.43-0.42-0.11>0.9. (77) 
Thus, the pion-pion sum rule can be satisfied only if there 
is a large low-energy 1=0, S-wave pion-pion scattering 
cross section, 

In order to get an idea of how big the 7=0, 5-wave 
scattering cross section would have to be in order to 
satisfy Eq. (77), we evaluated the left-hand side of 
Eq. (77) using a simple scattering-length parametriza-
tion of the 1=0, S-wave phase shift,28 

(v/(v+MT
2)yi* cotS°'°= l/a0+H(v), 

H{v)= {2M(v/(v+Mf))W (78) 
Xlntip/Mjyit+iv/MJ+iy*!, 

which gives 
47rao2 

*™= . (79) 
ao2v+(p+Mv%l+aoH(v)J 

We find that Eq. (77) can be satisfied only if a0> 1.3 or 
if 0O<—0.85. It is interesting that an 1=0, S-wave 
scattering length of the order of a pion Compton 
wavelength is also suggested by studies of low-energy 
pion-nucleon scattering29 and of Ku decays.30 Needless 
to say, there is nothing unique about the parametriza-
tion of Eq. (78). 

V. TESTS OF THE CURRENT ALGEBRA IN 
HIGH-ENERGY NEUTRINO REACTIONS 

The sum rules discussed in the preceding three sec
tions are derived from two principal hypotheses: the 

28 G. F. Chew and S. Mandelstam, Phys. Rev. 119, 467 (1960). 
29 J. Hamilton, Strong Interactions and High Energy Physics— 

Scottish Universities* Summer School, 1963, edited by R. G. Moor-
house (Plenum Press, New York, 1964). 

30 C. Kacser, P. Singer, and T. Truong, Phys. Rev. 137, B1605 

axial-vector current commutation relations of Eq. (7) 
and the partially conserved axial-vector current hy
pothesis of Eq. (5). In this section, we discuss a sum 
rule which follows from the axial-vector current algebra 
alone, regardless of whether PCAC is true. We will 
also derive sum rules which follow from a proposed 
algebra of the strangeness-changing currents. 

Let us begin by reviewing the theory of leptonic 
weak interactions of the hadrons. According to Gell-
Mann4 and to Cabibbo,6 the hadronic weak current is31 

J\h= ($i\+i$2\+$i\5+i$2\5)Gv cos0 
+ ($4\+i$*\+$*\B+i$s\5)Gv sin0. (80) 

Here Gv is the Fermi coupling constant and 0 is the 
Cabibbo angle. The vector currents £F/x and the axial 
currents 3vx6 0 = 1 , "•,&) each form an SUz octet. 
The SUz generalization of the conserved-vector-cur
rent (CVC) hypothesis is to assume that the vector 
currents SF/x are just the unitary spin currents, with 

Sax=/x°, 0=1 ,2 ,3 ; (81) 

^8x=|V3Fx, 

where i \ a is the isotopic spin current and Y\ is the 
hypercharge current. In our new notation, the currents 
defined in Sec. I are 

/xFa=ffax, /x^=*ax5 , a = l , 2 , 3 . (82) 

Let us define vector and axial-vector "charges" F3 

and Fjb according to 

Fj= -i / dzx 5v4; F / = - * / dzx 3^. (83) 

Gell-Mann4 has postulated that even in the presence of 
the SUz symmetry-breaking interaction, the following 
commutation relations hold exactly: 

PW>»/WV, (84) 

The chirality commutation relation of Eq. (7) is, of 
course, just a special case of Eq. (84): 

p V + i i V , F!5~iF2
5]= 2FZ. (85) 

From Eq. (84), we also get the following commutation 
relation for the "charge" associated with the strange
ness changing part of J\h: 

tFi+iFs+Ff+iFf, Ft-iFs+FJ-iF^l 
= 2VJF8+ 2F3+ 2VJF8

5+ 2F3
5. (86) 

Assuming that we can integrate by parts with respect 
to the spatial variables x, we can express the time de
rivatives of the "charges" in terms of the divergences of 

81 In this section, we use the notation of Ref. 4 for the currents. 
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the corresponding currents 

d 

dt 

d 

dt 

?,= jd'xdtf», 

V6= jdtxdtfjx*. 

(87) 

Let us now derive sum rules which provide tests of 
the commutation relations of Eq. (85) and Eq. (86), 
considering first the strangeness-conserving case, Eq. 
(85), We proceed exactly as in Sec. II, taking the matrix 
element of Eq. (85) between proton states. The only 
difference is that we do not assume that the divergence 
d\$a\

5 is proportional to the pion field. We thus get 
the sum rule 

l = g / + 
/ . 

4MNWdW 
INP-(W)-N+{W)1, 

with 
(88) 

NPHW)= Z iQV-Mj)W\t+-V)^, 
INT 

= ((MJV/9o)(My/gyo))1'2ffy±. (89) 

In other words, 5/*= is the matrix element of the di
vergence of the axial-vector current; the sum rule of 
Eq. (88) involves this matrix element only at zero 
four-momentum transfer (q—qj)2. 

The matrix element needed to evaluate the right-
hand side of Eq. (88) can be directly measured in high-
energy neutrino reactions. Consider the inelastic 
reaction 

vi+N->l+j, (90) 

with vi a neutrino, / a lepton, N a nucleon, and j a 
system of strongly interacting particles with Mj?*MN. 
In a previous paper,32 we showed that when the lepton 
emerges parallel to the incident neutrino direction, and 
when the lepton mass is neglected, the matrix element 
for Eq. (90) depends only on the divergences of the 
hadronic current. Clearly, under these hypotheses the 
momentum transfer (q—qj)2 is zero, so we are measuring 
just the matrix element needed in Eq. (88). (In the 
A5=0 case, the divergence of the vector current 
vanishes.) Summing over final states j of strangeness 

1 S. L. Adler, Phys. Rev. 135, B963 (1964). 

zero (S=Q) leads to the relations, for forward lepton, 

d2<rlv+p-*l-+(S=0)l 

dQidEi 

<P<rlv+p->l++(S=Q)'] 

~Gv*cos26f(W)Np
+(W), 

(91) 

with 
dQtdEi 

=Gv2coss0/(flOiVJ)-(WOJ 

1 rMJ+lMnE-W*-? 
f(jV)=— . (92) 

Here E is the incident-neutrino energy, Ei is the final-
lepton energy, and I2j is the lepton solid angle (all in 
the laboratory frame, where the initial proton is at 
rest). In terms of W and E, Ei is given by 

Ei= (M^+IMHE-WJ/QMH). (93) 

We can apply the same method to the commutator 
of the strangeness-changing currents33 [Eq. (86)], giv
ing the two sum rules 

4tMNWdW 
t = / 

J (W2-

J (W*—M„*\* 

(W2-M^)2 

mNwdw 

tSp-(W)Sp+(W)-], (94a) 

(w2-MN
2y 

tSrT(W)-Sn+(W)']. (94b) 

Equation (94a) has discrete contributions at W=MA, 
W=Mz and a continuum from W=MT-\-M& to <». 
Equation (94b) has a discrete contribution at W=Mz 
and a continuum from W—Mv-\-M^ to <». The func
tions SPin

± are measurable in strangeness-changing 
high-energy neutrino reactions, since for forward lepton, 

^[H-(M->*-+CS=+i)3 
d&idEt 

=Gv*sm2df(W)Sip,n)+(W), (95) 

<*V[>+ (p,n) -» /++ (5= - 1 ) ] 

dtiidEi 
-Gv*sm26f(W)SiPtn)-(W). 

Thus, Eqs. (88), (91), (94), and (95) can be used to 
directly test the algebra proposed by Gell-Mann for 
the vector and the axial-vector currents. 
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83 The nucleon matrix element of the axial-vector terms on the 
right-hand side of Eq. (86) vanishes when we average over 
nucleon spin. 


